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Background—GitHub Ecosystems

» Dependency between projects
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Motivation—Cross-project correlated bugs

Upstream project: numpy numpy/numpy#6467
reported 4. fixing and testing ~ closed
timeline 2. finding correlated issue

3. sending a test
u v

\
closed
reported 1 related with ANumPy

Downstream project: astropy astropy/astropy#4259

An average of 17.28% of bugs are cross-project ones.

Part 1



Motivation—Cross-project correlated bugs

Upstream project: numpy numpy/numpy#6467
repor@ N\ 4. fixing and testing closed "\
. 2. finding correlated issue
timeline 3. sending a test
7 v \ébsed
repogted 1 related with NumPy N\ %
Step 1: Track the root cause Step 2: Collaborate to fix

Downstream project: astropy astropy/astropy#4259

Part 1



Motivation—Cross-project bugs

. » Survey results S 4 Statistical comparison
5 Yes =No = Itdepends » Cross-project bugs vs. within-project bugs
00% (63.1% X N\( ) » Based on the data collected from bug reports
00.0% 50.00% | | 53-1%
50.0% P
40.7% Dl .
40.0% 33.3% 34.4% Results:
30.0% » Requiring more time to fix
20.0% 9.3% 12.5% » More comments in bug reports
12'33’ 3.6% : » More participants during fixing
.U70

 oos JU bos )\ ues ............................................................................................................ :

> Com Twith wihin- Tbugs. gress s sy
;o omparediwiin WwiTIn-project 543 ‘= More severe impact
» DQ6. more difficult to deal with ?

= More difficult to fix
‘= Attracting more attention

» DQ3. have more severe impact ?
» UQA4. pay more attention ?

DQ: for downstream developers  UQ: for upstream developers



Objective

To investigate how software practitioners fix cross-project
correlated bugs

» Focusing on two aspects:

1. cross-project root cause tracking

» as the bug carries over from one project to another, it becomes harder to trace the bug back to its
root

2. coordination in bug fixing

» while waiting for an upstream fix, the downstream developers need to coordinate their project with
the upstream one in order to minimize any undesirable impact of the cross-project bugs

Part 2



Study design—Studied Projects

» GitHub Scientific Python ecosystem

» Seven seed projects

SciPy library
Fundamental
library for scientific

IPvth computing . ~ .
IPLy: En!'l:an[:Zd Interactive pandas g TOTG”Y 271 pCllr'S Of cross pPOJeCT
iPython "7 P correlated bugs

Data structures &

oS _
NumPy analysis > anOIVlng 204 proJeCTs
Matplotlib Base N-dimensional

array package

. Comprehensive 2D
N plotting .

astropy

A Community Python Library for Astronomy

machine leaming in Python
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Study design—Research Questions

» Research questions

1. How long does it take to find the root cause of cross-project correlated
bugs, that is, to link the downstream bug fto the criminal upstream bug?

2. What factors are important to track the root cause of cross-project
correlated bugs?

3. How do downstream developers coordinate with upstream projects to
deal with cross-project correlated bugs after identifying the root cause?

Part 3




» Manual inspection » Online survey

» Three authors of the
paper

» 116 responses
» response rate: 17.2%

Summarizing the findings

Part 3



.» Manual inspection

- 300%
- 25.0%
- 200%
- 15.0%
- 100%
- 5.0%
- 00%

» How long to find the root cause?

40

68

34

<1h 1h-1d
h: hour, d: day

1d-10d  10d-100d

129/271 = 47.6%:

>100

...................................................................................................

Part 4

» The root causes of nearly half of the
cross-project bugs are identified in a
relatively long time (one day to more than
100 days).



. > Survey results _
- » DQ2:is it difficult to find the root causes for

cross_presecy bugs?

» 605% of the downstream developers

60.0% thought it difficult or very difficult to
50.06% find the root cause.

4000% 32.1%

30{0%

1006 6.2% 6.2%

1.2%

Qry difficult  difffCult normal easy very easy
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» Manual inspection

b ™ ™
Stack traces Communication Familiarity
the sequences of calls between upstream and expertise in the buggy
to the failure downstream developers component

Part 4



. > Survey results
' » DQ4: what factors may act as positive roles to find the root-causes of cross-project bugs?

80.0% ﬁs.s% 72.6%
63.1%
60.0%
40.0% )
20.0% 9.5%

0.0%
Stack traces Communication Familiariy Others
. J

» Others: test cases, documentation, stack overflow, ...

Part 4



» Communication

7 Downstream Upstream

UQ3. As an upstream developer, do you care about the opinions from the

downstream projects or communicate with the downstream developers?

“One is rarely facile
80.0%

Attitude with the upstream . 59.4%
project's |r}terr_1als: S0 10.0% 37.5%
communication is 20.0% o
essential” 0.0% o
Always Sometimes Never

Responsiveness: early Content: concrete description of the bug and the

Focus and friendly responses  requirements of the downstream project
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» Manual inspection

.Y h n
.| 1

Working around the

bug locally (60) Restricting the Doing nothing bug
Workaround: a femporary dependent upstream WalT for'.'l'he
solution injected in the versions (8) upstream fix (49)

downstream code locally

Part 4



. > Survey results

» DQ7.What do downstream developers usually
do with a cross-project bug?

100.0% | 89.3%
80.0%
)

60.0% 50.0%
40.0% 33.3%
20.0%

0.0%

A B C Others
\. J\. J\L

Part 4

Results-RQ3:Practices of Downstream Developers_: = |

A. Proposing a workaround

B. Restricting the upstream versions
C. Doing nothing but waiting

D. Using a different upstream project

Others: Actively help the
proposing/pushing solutions

upstream project Dby

“Whatever is easiest in their specific circumstances,
above are good examples! but probably work
around the issue.”




Results-RQ3:Practices of Downstream Developers

[ = LRk T
o i

. » Workaround A bug in numpy 1.6 affected astropy.

» Problems: » Affected code in astropy:

» version-dependent codes format_ufunc = np.vectorize(do_format, otypes=['U’])

. . : result = format_ufunc(values)

< adding maintenance burden _
» Implications: » Workaround:

» tools to support synthesis and I n;mpylzverSiogf L

maintenance of workarounds : work around it
new code
else:

Part 4



= Downstream = Upstream
suites for downstream projects of downstream projects
are run before releasing an o different ways for downstream
upstream version. projects to run their tests

o it would be helpful if the testing o impossible to get the complete list |
o time consuming E

Part 5



> to deprecate outdated workarounds DQ8. Is it necessary for the affected downstream
projects to be notified?
= Downstream

60.0%
40.0% 30.9%
= Upstream 20.0%
o anh extra burden 0.0%
Yes No

[
1 [
I [
I [
1 [
I [
1 [
I [
I [
I [
1 [
I [
I [
i o helpful 80.0% 69.1% i
I [
I [
I [
1 [
I [
1 [
I [
1 [
I [
I [
I [
1 [

[

| to improve the notification scheme of GitHub so i
' that it can send automatic massages :
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| |
| |
| |
| |
| |
| |
| |
| :
|

! = Downstream UQ8. When scheduling a bug-fix release, will you consider the |
i o hoping for a quick release requirements of the important downstream projects? i
) 80.0% 68.8% ]
| |
E = Upstream 60.0% |
. . . . 0 [

i o preferring to give a bit of time for 40.0%  5e 00 !
. |

i reflection 20.0% 7 i
! 0.0% :
: Always Sometimes Never |
1

' “The reformation should help best of both-ends.”

Part 5



Related Work

» Practices in fixing bugs
T. Zimmermann, N. Nagappan, P. J. Guo, and B. Murphy, "Characterizing and predicting which bugs get reopened"

G. Canfora, L. Cerulo, M. Cimitile, and M. Di Penta, "Social interactions around cross-system bug fixings: the case of
FreeBSD and OpenBSD"

S. Breu, R. Premraj, J. Sillito, and T. Zimmermann, "Information needs in bug reports: improving cooperation between
developers and users"

» Collaboration on GitHub

L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb, "Social coding in GitHub: transparency and collaboration in an open
software repository"

A. Lima, L. Rossi, and M. Musolesi, "Coding together at scale: GitHub as a collaborative social network"

» Evolution of software ecosystems

J. Bosch and P. M. Bosch-Sijtsema, "Softwares product lines, global development and ecosystems: collaboration in software
engineering”

A. Decan, T. Mens, M. Claes, and P. Grosjean, "On the development and distribution of R packages: an empirical analysis of
the R ecosystem"
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Conclusion and Future Work

» How do developers fix cross-project bugs?
» More difficult to repair and more severe
» Beneficial factors for finding the root cause
Stack traces, communication, and familiarity
» Common practices for downstream developers
The workaround
» Future work:
» Workarounds
» Tool support

Part 6
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