
How do Developers Fix Cross-project Correlated Bugs?

A case study on the GitHub scientific Python ecosystem

Wanwangying Ma, Lin Chen, Xiangyu Zhang, Yuming Zhou, Baowen Xu
Nanjing University, China and Purdue University, USA

Contents

 Motivation

 Objective

 Study Design

 Study Results

 Discussions

 Conclusion

Background—GitHub Ecosystems

 Dependency between projects

astropy

7 other projects

ipythonscipy
numpy

A great number of projects

Motivation—Cross-project correlated bugs

reported

numpy/numpy#6467

astropy/astropy#4259

reported

1. related with NumPy

2. finding correlated issue

closed

closed

Part 1

Upstream project: numpy

Downstream project: astropy

timeline

4. fixing and testing

3. sending a test

An average of 17.28% of bugs are cross-project ones.

Motivation—Cross-project correlated bugs

reported

3. sending a test

numpy/numpy#6467

astropy/astropy#4259

reported

1. related with NumPy

2. finding correlated issue

closed

closed

Part 1

Upstream project: numpy

Downstream project: astropy

Step 1: Track the root cause

timeline

Step 2: Collaborate to fix

4. fixing and testing

 Statistical comparison
 Cross-project bugs vs. within-project bugs
 Based on the data collected from bug reports

Results:
 Requiring more time to fix
 More comments in bug reports
 More participants during fixing

 Survey results

 Compared with within-project bugs,

 DQ6. more difficult to deal with ?

 DQ3. have more severe impact ?

 UQ4. pay more attention ?

DQ: for downstream developers

Motivation—Cross-project bugs

 More severe impact
 More difficult to fix
 Attracting more attention

63.1%

40.7%
53.1%

3.6%
9.3%

34.4%33.3%

50.0%

12.5%

0.0%
10.0%
20.0%
30.0%
40.0%
50.0%
60.0%
70.0%

DQ6 DQ3 UQ4

Yes No It depends

Part 1

UQ: for upstream developers

Objective

To investigate how software practitioners fix cross-project
correlated bugs

 Focusing on two aspects:

1. cross-project root cause tracking
 as the bug carries over from one project to another, it becomes harder to trace the bug back to its

root

2. coordination in bug fixing
 while waiting for an upstream fix, the downstream developers need to coordinate their project with

the upstream one in order to minimize any undesirable impact of the cross-project bugs

Part 2

 GitHub Scientific Python ecosystem
 Seven seed projects

Study design—Studied Projects

Part 3

 totally 271 pairs of cross-project
correlated bugs

 involving 204 projects

Study design—Research Questions

 Research questions

1. How long does it take to find the root cause of cross-project correlated
bugs, that is, to link the downstream bug to the criminal upstream bug?

2. What factors are important to track the root cause of cross-project
correlated bugs?

3. How do downstream developers coordinate with upstream projects to
deal with cross-project correlated bugs after identifying the root cause?

Part 3

Study design—Research Methods

Part 3

 Manual inspection
 Three authors of the

paper

 Online survey
 116 responses

 response rate: 17.2%

Summarizing the findings

 Manual inspection
 How long to find the root cause?

h: hour, d: day

Results-RQ1:Difficulty of Finding the Root Cause

40
34

68
62

42

25

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

0 <1h 1h-1d 1d-10d 10d-100d >100d

 The root causes of nearly half of the
cross-project bugs are identified in a
relatively long time (one day to more than
100 days).

Part 4

129/271 = 47.6%:

 Survey results
 DQ2: is it difficult to find the root causes for

cross-project bugs?

6.2%

54.3%

32.1%

6.2%
1.2%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

very difficult difficult normal easy very easy

Results-RQ1:Difficulty of Finding the Root Cause

Part 4

 60.5% of the downstream developers
thought it difficult or very difficult to
find the root cause.60.5%

Communication

between upstream and
downstream developers

Familiarity

expertise in the buggy
component

 Manual inspection

Results-RQ2:Factors for Tracking the Root Cause

Part 4

Stack traces

the sequences of calls
to the failure

 Survey results
 DQ4: what factors may act as positive roles to find the root-causes of cross-project bugs?

 Others: test cases, documentation, stack overflow, …

73.8% 72.6%
63.1%

9.5%

0.0%

20.0%

40.0%

60.0%

80.0%

Stack traces Communication Familiarity Others

Results-RQ2:Factors for Tracking the Root Cause

Part 4

 Communication

Downstream Upstream

59.4%

37.5%

3.1%
0.0%

20.0%

40.0%

60.0%

80.0%

Always Sometimes Never

Attitude
“One is rarely facile

with the upstream
project's internals, so

communication is
essential”

UQ3. As an upstream developer, do you care about the opinions from the
downstream projects or communicate with the downstream developers?

Focus Responsiveness: early
and friendly responses

Content: concrete description of the bug and the
requirements of the downstream project

Results-RQ2:Factors for Tracking the Root Cause

Part 4

Restricting the
dependent upstream
versions (8)

Working around the
bug locally (60)
Workaround: a temporary
solution injected in the
downstream code locally

Doing nothing bug
waiting for the
upstream fix (49)

 Manual inspection

Results-RQ3:Practices of Downstream Developers

Part 4

 Survey results
 DQ7. What do downstream developers usually

do with a cross-project bug?

89.3%

50.0%

33.3%

8.3%
16.7%

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

A B C D Others

A. Proposing a workaround
B. Restricting the upstream versions
C. Doing nothing but waiting
D. Using a different upstream project
Others: Actively help the upstream project by
proposing/pushing solutions

“Whatever is easiest in their specific circumstances,
above are good examples! but probably work
around the issue.”

Results-RQ3:Practices of Downstream Developers

Part 4

 Workaround

 Problems:
 version-dependent codes
adding maintenance burden

 Implications:
 tools to support synthesis and

maintenance of workarounds

Results-RQ3:Practices of Downstream Developers

Part 4

A bug in numpy 1.6 affected astropy.

 Affected code in astropy:

 Workaround:
if numpy_version < 1.7:

work around it
new code

else:

format_ufunc = np.vectorize(do_format, otypes=['U'])
result = format_ufunc(values)

 Cross-project testing
 to prevent cross-project bugs

Discussions—Dilemmas in collaboration

 Upstream
 impossible to get the complete list

of downstream projects
 different ways for downstream

projects to run their tests
 time consuming

 Downstream
 it would be helpful if the testing

suites for downstream projects
are run before releasing an
upstream version.

to develop tools for effective cross-project testing

Part 5

 Notification of bug fixes
 to deprecate outdated workarounds

 Upstream
 an extra burden

 Downstream
 helpful

to improve the notification scheme of GitHub so
that it can send automatic massages

69.1%

30.9%

0.0%

20.0%

40.0%

60.0%

80.0%

Yes No

DQ8. Is it necessary for the affected downstream
projects to be notified?

Discussions—Dilemmas in collaboration

Part 5

 Releasing the bug fix version
Problem: “release cycles of downstream and upstream projects are out of sync”

 Upstream
 preferring to give a bit of time for

reflection

 Downstream
 hoping for a quick release

“The reformation should help best of both-ends.”

UQ8. When scheduling a bug-fix release, will you consider the
requirements of the important downstream projects?

25.0%

68.8%

6.2%
0.0%

20.0%

40.0%

60.0%

80.0%

Always Sometimes Never

Discussions—Dilemmas in collaboration

Part 5

Related Work

 Practices in fixing bugs
T. Zimmermann, N. Nagappan, P. J. Guo, and B. Murphy, "Characterizing and predicting which bugs get reopened“

G. Canfora, L. Cerulo, M. Cimitile, and M. Di Penta, "Social interactions around cross-system bug fixings: the case of
FreeBSD and OpenBSD“

S. Breu, R. Premraj, J. Sillito, and T. Zimmermann, "Information needs in bug reports: improving cooperation between
developers and users"

 Collaboration on GitHub
L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb, "Social coding in GitHub: transparency and collaboration in an open
software repository"

A. Lima, L. Rossi, and M. Musolesi, "Coding together at scale: GitHub as a collaborative social network"

 Evolution of software ecosystems
J. Bosch and P. M. Bosch-Sijtsema, "Softwares product lines, global development and ecosystems: collaboration in software
engineering“

A. Decan, T. Mens, M. Claes, and P. Grosjean, "On the development and distribution of R packages: an empirical analysis of
the R ecosystem"

Part 6

Conclusion and Future Work

 How do developers fix cross-project bugs?
 More difficult to repair and more severe
 Beneficial factors for finding the root cause

Stack traces, communication, and familiarity

 Common practices for downstream developers
The workaround

 Future work:
 Workarounds
 Tool support

Part 6

Thank you !
Q & A

