%R H

NANJING UNIVERSITY

How do Developers Fix Cross-project Correlated Bugs?

A case study on the GitHub scientific Python ecosystem

Wanwangying Ma, Lin Chen, Xiangyu Zhang, Yuming Zhou, Baowen Xu
Nanjing University, China and Purdue University, USA

Contents

Motivation
Objective
Study Design
Study Results
Discussions

Conclusion

'—-; a,
roan M g
&,

g

Background—GitHub Ecosystems

» Dependency between projects

tw&m;ma bindings

prthenpliow/Pllew T PyAbeliPyAbel ! ' pYT h o n
Jgresndmipoly mww""“'m"""""‘“’""“ ianeze/ Sterfish S C | py

e sieybanman/iTiadRFerfpythan ginfer m" s e SR sphin 05Tt e sphin
et it
v ST PY A S Pt ™I e numpy

prytacemn

rudm-«s!rn—lwl!;:imw Congrfvepy whinglpycamedi Xyl QoA g o 7 OTher‘ PPOJ@CTS

i ebatumss PP scikit- Ie.urri‘?smkrf learn
m learn
anthatght /chaca S7TOPYIPYTEdN nergainengqnne rﬁﬁﬁ"‘%”“ﬂé,,w};,
astrefrod/weEEiarerts . mwnmlmmwwpma
Pl PY'InhlesfP'rTﬂbles oo e sbet 051- rn o py ‘
3?“ =g Homebrew/homeb: Iw&nul."xlrd
WAT. Shofiieldrpysac 5 PRSI FoQEry sopylsooymrmpy/sympy
astrap, py-helpere pydohpy -devs/rase Y hddden-detvaddm i
o | Homebeemhomet & W‘:Lauﬁ.lm
gammapylgammapy e dewa ity SF - i Manage:
STSCT Citzen Science/MTireily, L ma'rpiotg%g;ptploﬂlb o Mo ol
- . W“'}.:’.E?.‘:’Imnuum.-.r

mperein/pofEp

talderof tioscin

ustrepyfoadprc Target
seropy/scrapy
-y 1 revsiunet/ sublimetext-go0gie -0pps-Seripts

oy
SFITORy/package-1emP S Eplgyoplay 25,

ottt e l%ﬂwﬁxﬁm il A great number of projects

ehtERES gEnOuta/EIDMach
upyterdnatebook Py MU AP MDA

astropyfistreplan swearpentry/be pycassalpycpfieder/netebook_cherry._picker
dxth%?‘uwam TAEIEr B By ey prow
exle.

jarace/s tuptoals e codenirroriCodeminror
amaffatish gibsanshysEHaskell

g} P uth sogecel

mamograv/PINT

Motivation—Cross-project correlated bugs

Upstream project: numpy numpy/numpy#6467
reported 4. fixing and testing ~ closed
timeline 2. finding correlated issue

3. sending a test
u v

\
closed
reported 1 related with ANumPy

Downstream project: astropy astropy/astropy#4259

An average of 17.28% of bugs are cross-project ones.

Part 1

Motivation—Cross-project correlated bugs

Upstream project: numpy numpy/numpy#6467
repor@ N\ 4. fixing and testing closed "\
. 2. finding correlated issue
timeline 3. sending a test
7 v \ébsed
repogted 1 related with NumPy N\ %
Step 1: Track the root cause Step 2: Collaborate to fix

Downstream project: astropy astropy/astropy#4259

Part 1

Motivation—Cross-project bugs

. » Survey results S 4 Statistical comparison
5 Yes =No = Itdepends » Cross-project bugs vs. within-project bugs
00% (63.1% X N\() » Based on the data collected from bug reports
00.0% 50.00% | | 53-1%
50.0% P
40.7% Dl .
40.0% 33.3% 34.4% Results:
30.0% » Requiring more time to fix
20.0% 9.3% 12.5% » More comments in bug reports
12'33’ 3.6% : » More participants during fixing
.U70

 oos JU bos)\ ues .. :

> Com Twith wihin- Tbugs. gress s sy
;o omparediwiin WwiTIn-project 543 ‘= More severe impact
» DQ6. more difficult to deal with ?

= More difficult to fix
‘= Attracting more attention

» DQ3. have more severe impact ?
» UQA4. pay more attention ?

DQ: for downstream developers UQ: for upstream developers

Objective

To investigate how software practitioners fix cross-project
correlated bugs

» Focusing on two aspects:

1. cross-project root cause tracking

» as the bug carries over from one project to another, it becomes harder to trace the bug back to its
root

2. coordination in bug fixing

» while waiting for an upstream fix, the downstream developers need to coordinate their project with
the upstream one in order to minimize any undesirable impact of the cross-project bugs

Part 2

Study design—Studied Projects

» GitHub Scientific Python ecosystem

» Seven seed projects

SciPy library
Fundamental
library for scientific

IPvth computing . ~ .
IPLy: En!'l:an[:Zd Interactive pandas g TOTG”Y 271 pCllr'S Of cross pPOJeCT
iPython "7 P correlated bugs

Data structures &

oS _
NumPy analysis > anOIVlng 204 proJeCTs
Matplotlib Base N-dimensional

array package

. Comprehensive 2D
N plotting .

astropy

A Community Python Library for Astronomy

machine leaming in Python

Part 3

Study design—Research Questions

» Research questions

1. How long does it take to find the root cause of cross-project correlated
bugs, that is, to link the downstream bug fto the criminal upstream bug?

2. What factors are important to track the root cause of cross-project
correlated bugs?

3. How do downstream developers coordinate with upstream projects to
deal with cross-project correlated bugs after identifying the root cause?

Part 3

» Manual inspection » Online survey

» Three authors of the
paper

» 116 responses
» response rate: 17.2%

Summarizing the findings

Part 3

.» Manual inspection

- 300%
- 25.0%
- 200%
- 15.0%
- 100%
- 5.0%
- 00%

» How long to find the root cause?

40

68

34

<1h 1h-1d
h: hour, d: day

1d-10d 10d-100d

129/271 = 47.6%:

>100

...

Part 4

» The root causes of nearly half of the
cross-project bugs are identified in a
relatively long time (one day to more than
100 days).

. > Survey results _
- » DQ2:is it difficult to find the root causes for

cross_presecy bugs?

» 605% of the downstream developers

60.0% thought it difficult or very difficult to
50.06% find the root cause.

4000% 32.1%

30{0%

1006 6.2% 6.2%

1.2%

Qry difficult difffCult normal easy very easy

Part 4

» Manual inspection

b ™ ™
Stack traces Communication Familiarity
the sequences of calls between upstream and expertise in the buggy
to the failure downstream developers component

Part 4

. > Survey results
' » DQ4: what factors may act as positive roles to find the root-causes of cross-project bugs?

80.0% ﬁs.s% 72.6%
63.1%
60.0%
40.0%)
20.0% 9.5%

0.0%
Stack traces Communication Familiariy Others
. J

» Others: test cases, documentation, stack overflow, ...

Part 4

» Communication

7 Downstream Upstream

UQ3. As an upstream developer, do you care about the opinions from the

downstream projects or communicate with the downstream developers?

“One is rarely facile
80.0%

Attitude with the upstream . 59.4%
project's |r}terr_1als: S0 10.0% 37.5%
communication is 20.0% o
essential” 0.0% o
Always Sometimes Never

Responsiveness: early Content: concrete description of the bug and the

Focus and friendly responses requirements of the downstream project

Part 4

» Manual inspection

.Y h n
.| 1

Working around the

bug locally (60) Restricting the Doing nothing bug
Workaround: a femporary dependent upstream WalT for'.'l'he
solution injected in the versions (8) upstream fix (49)

downstream code locally

Part 4

. > Survey results

» DQ7.What do downstream developers usually
do with a cross-project bug?

100.0% | 89.3%
80.0%
)

60.0% 50.0%
40.0% 33.3%
20.0%

0.0%

A B C Others
\. J\. J\L

Part 4

Results-RQ3:Practices of Downstream Developers_: = |

A. Proposing a workaround

B. Restricting the upstream versions
C. Doing nothing but waiting

D. Using a different upstream project

Others: Actively help the
proposing/pushing solutions

upstream project Dby

“Whatever is easiest in their specific circumstances,
above are good examples! but probably work
around the issue.”

Results-RQ3:Practices of Downstream Developers

[= LRk T
o i

. » Workaround A bug in numpy 1.6 affected astropy.

» Problems: » Affected code in astropy:

» version-dependent codes format_ufunc = np.vectorize(do_format, otypes=['U’])

. . : result = format_ufunc(values)

< adding maintenance burden _
» Implications: » Workaround:

» tools to support synthesis and I n;mpylzverSiogf L

maintenance of workarounds : work around it
new code
else:

Part 4

= Downstream = Upstream
suites for downstream projects of downstream projects
are run before releasing an o different ways for downstream
upstream version. projects to run their tests

o it would be helpful if the testing o impossible to get the complete list |
o time consuming E

Part 5

> to deprecate outdated workarounds DQ8. Is it necessary for the affected downstream
projects to be notified?
= Downstream

60.0%
40.0% 30.9%
= Upstream 20.0%
o anh extra burden 0.0%
Yes No

[
1 [
I [
I [
1 [
I [
1 [
I [
I [
I [
1 [
I [
I [
i o helpful 80.0% 69.1% i
I [
I [
I [
1 [
I [
1 [
I [
1 [
I [
I [
I [
1 [

[

| to improve the notification scheme of GitHub so i
' that it can send automatic massages :

Part 5

| |
| |
| |
| |
| |
| |
| |
| :
|

! = Downstream UQ8. When scheduling a bug-fix release, will you consider the |
i o hoping for a quick release requirements of the important downstream projects? i
) 80.0% 68.8%]
| |
E = Upstream 60.0% |
. . . . 0 [

i o preferring to give a bit of time for 40.0% 5e 00 !
. |

i reflection 20.0% 7 i
! 0.0% :
: Always Sometimes Never |
1

' “The reformation should help best of both-ends.”

Part 5

Related Work

» Practices in fixing bugs
T. Zimmermann, N. Nagappan, P. J. Guo, and B. Murphy, "Characterizing and predicting which bugs get reopened"

G. Canfora, L. Cerulo, M. Cimitile, and M. Di Penta, "Social interactions around cross-system bug fixings: the case of
FreeBSD and OpenBSD"

S. Breu, R. Premraj, J. Sillito, and T. Zimmermann, "Information needs in bug reports: improving cooperation between
developers and users"

» Collaboration on GitHub

L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb, "Social coding in GitHub: transparency and collaboration in an open
software repository"

A. Lima, L. Rossi, and M. Musolesi, "Coding together at scale: GitHub as a collaborative social network"

» Evolution of software ecosystems

J. Bosch and P. M. Bosch-Sijtsema, "Softwares product lines, global development and ecosystems: collaboration in software
engineering”

A. Decan, T. Mens, M. Claes, and P. Grosjean, "On the development and distribution of R packages: an empirical analysis of
the R ecosystem"

Part 6

Conclusion and Future Work

» How do developers fix cross-project bugs?
» More difficult to repair and more severe
» Beneficial factors for finding the root cause
Stack traces, communication, and familiarity
» Common practices for downstream developers
The workaround
» Future work:
» Workarounds
» Tool support

Part 6

Thank you |
Q&A

@J Motivation—Cross-project bugs

o

b Crashpraject buyt (CB) vs. when-preject but (W)

Results-RQI:Difficulty of Finding the Root Causg‘j #

b Manual inspection

A TR » hidden duration:
- g RN o NN 162 113 FNTE S RS PP P
s IR . WO 116 165 R S firking time - reporting time > 129/271= 47.6%: > one d
L 1 i 1 i CH 184 B4 WA N3 =- e ¥
™ ™ i i vl A B
2 4 R e 13 -===— 42 : =
s 3 e | Wi 3 R R a1 W > The root causes of nearly half of the
[T - g i e ——r]| -
sl oG Lo 5%
b Compuret meth mthprege b

= O mare dffindt by daald

cross-project bugs are identified ina

0 relatively long time,
% : More difficult to fix 50
N = Callobarntion and coordination s
UG et
. Lt] i
Part 1 5/23
Part 4

11/23

[@i] Results-RQ2:Factors for Tracking the Root f‘m‘ts_g‘,& ['lﬂ] Results-RQ3:Practices of Downstream Developers, J @ Results-RQ3:Practices of Downstream Deve.fopers(,&

» Manual inspection

e e v . I
DOT. What de dewnst devel Iy & icring the)
. g 5 demnstream developers usual .
Stack traces Communication Familiarity s with o erass prajoct bugs pars €. [Daing neThing but waiting
E Y . Using a defferent upstream peoject
“thar' & bug that was 0 gp Orhers: Actively help the wemeam project by » thialding the and ceers
propesing/pushing sokutiens
Introduced in mumgy e » Problems:
‘T‘“ﬁ-’w"‘“m“*’:‘ s 0 = version-dependent cedas i i
fixt discusrion o . “Whatever 5 aariet i thetr spac)fic cireumraneas,
? nms , o
it . = ol B oy e o
this) “(satrmdel'unt e % anownd the issue, ™ » Imphications:
armdeladd) —_ —
545 ey B c o oon e

» tools to Support synth d
mantenante af warkareinds

Fip. A vermomn-depradest werkisound o tbe Ble
armpy eoordinaer amgler oy

13723

17/23

18/23

