= o 18 X F & A
AACIERXERE

Key Lab of High Confidence Software Tech
(Peking University), Ministry of Ed

!

nologies
ucation

PEKING UNIVERSITY

I. Introduction

Automated program repair (APR) has great po-
tential to reduce bug-fixing effort and many ap-
proaches have been proposed in recent years. In
this paper, we propose a novel automatic pro-
ogram repair approach, called StmFix, that uti-
lizes two kinds of data sources:

(1) Similar code within faulty program.

(2) Exiting patches from other projects. ~ A e 60— O/Qo o
Existing [yl | 20 T T 2o | Frequent
: {[{]@ @ public class Af . Modifications
. . Projects [rio0 09 — C;)
where we (1) extract modifications to the faulty | e) —

code via AST differencing with similar code and
(2) further filter those modifications using fre-
quent abstract modifications obtained from ex-
isting patches. We evaluate StmF'ix on the De-
fects4J benchmark, which results in:

e 34 bugs were repaired (most number so far).
e 13 bugs were never repaired by others.

I1I. Motivation

e Pros of similar code:

Provide repair guidence with fixing ingredients.
e Cons of existing patches:

Cannot cover all repairs under specific context.

a // donor (similar) snippet N

1f(last!=null && last.getType()==Token.STRING){
propName=Llast.getString();
return (propName.equals(methodName));

}

// correct patch based on the similar donor snippet
+ 1f(target!=null && target.getType()==Token.STRING){
- 1f(target!=null){
className=target.getString();

\’ Y
Figure 1: Correct patch for Closure-57.

e Cons of similar code:
Cannot tell the likelihood of modifications.
e Pros of existing patches:

Provide repair modification distribution.

//-// donor (similar) snippet A

1f(instant >= 0){

return (1nt)(instant % DateTimeConst .MILLI_PER_DAY);
¥
// 1ncorrect patch with rare bug-fixing modification
1f(instant<firstWeekMillisl){

return getWeeksInYear(year-1);

return (int)(instant%DateTimeConst .MILLI_PER_DAY);

/

Figure 2: Plausible patch of Tivme-24.

Our approach combines the merits of them.

1V. Evaluation

> Overall effectiveness of StmF1x on Defects4l].

I1I. Approach

TWO STAGE OF SimFawx :

Shaping Program Repair Space with Existing
Patches and Similar Code

»
5)\: % J" g Jiajun Jiang!, Yingfei Xiong!, Hongyu Zhang?, Qing Gao!, Xiangqun Chen!
L Peking University, China, * The University of Newcastle, Australia

THE UNIVERSITY OF

NEWCASTLE

AUSTRALIA

e Mining Stage mines a set of frequent abstract modifications from open-source programs.
e Repairing Stage generages concrete modifications to faulty code via AST differencing with
similar code, and take intersection with abstract modifications to rule out invalid modifications.

MINING STAGE (OFFLINE) :

~_ 4

Figure 3: Mining frequent modifications.

e The process of mining modifications:

@ Extract repair history from existing projects.
@ Compare changed files before and after repairing

with abstract syntax tree (AST) matching.

(3) Extract frequent modifications using AST-diff.

e In total, we identified 16 kinds of frequent abstract repair modifications.

e Achieving a 102.5x reduction of search space in theory and 2.0x speedup in experiment.

REPAIR STAGE WITH RUNNING EXAMPLE (ONLINE) :

1. EXTRACT FAULTY SNIPPET.
e Locate faulty line of code

e Extract snippet surrounding it.

2. IDENTIFY SIMILAR SNIPPETS.

e Search similar code by features:

— How similar of structures
— How similar of variable names
— How similar of method names

3. RENAME VARIABLES.

e Listablish var-mapping by features:
— Use structure similarity.
— Type compatibility.
— Variable name similarity.

4. EXTRACT MODIFICATIONS.

e Match faulty and similar ASTs.

e FExtract modifications based on node
differences.

e Filter modifications with frequent ab-
stract modifications.

e Combine different modifications.

e Rank modifications by heuristics.

5. VALIDATE PATCH CORRECTNESS.

e Run test suite.
e Manually check.

Faulty snippet
1f(target!=null){
className=target.getString();
}

b

‘A similar donor snippet

1f(last!=null && last.getType()==Token.STRING){
propName=last.getString();
return (propName.equals(methodName));

h

s

‘Renamed donor snippet

1f(target!=null && target.getType()==Token.STRING){
className=target.getString();
return (className.equals(functionName));

h

U

- Extracted modifications

(

‘target!=null & target...

M1
| BLOCK

——————————————————

ASSIGNMENT)|

M1 : replace target!=null with
target!=null&&target.getType()==Token.STRING

M2 : insert return (className.equals(functionName));

M3 : combine M1 and M2

b

Patched code

1f(target!=null && target.getType()==Token.STRING){
className=target.getString();
¥

e 34 correct patches (most number so far) and 22 incorrect patches, leading to a precison of 60.7% (Table 1).
e 13 bugs repaired by SimFix were never repaired by other approaches. (Figure 4).

Proj. |SimFix|jGP jKali Nopol ACS HDR ssFix ELIXIR JAID
Chart 4 0 0 1 2 -(2) 3 4 2(4)
Closure| 6 0 0 0 0 -(7) 2 0 5(9)
Math 14 | 5 1 1 12 -(7) 10 12 1(7)
Lang 9 0 0 3 3 «(6) 5 8 1(5)
Time 1 0 0 0 1 -(1) 0 2 0(0)
Total | 34 | 5 1 5 18 13(23) 20 26 9(25)
Table 1: Repair result comparison among approaches.

> Effectiveness of other conponents.

e Existing patches :
e Fine-grained code reuse :

SimFix

13

Chart(C)-3,7
Lang(L)-16,27,39.41,50,60
Math(M)-63,71,98
Closure(C1)-57
Time(T)-7

Figure 4: Overlaps of different techniques among the faults fixed by StmFix.

12 less correct and 14 more incorrect patches without using existing patches.
17 less bugs would be repaired without fine-grained code reuse (AST node level).

