
ShapingProgramRepair SpacewithExisting
Patches andSimilarCode

Jiajun Jiang1, Yingfei Xiong1, Hongyu Zhang2, Qing Gao1, Xiangqun Chen1

1Peking University, China, 2The University of Newcastle, Australia

I. Introduction
Automated program repair (APR) has great po-
tential to reduce bug-fixing effort and many ap-
proaches have been proposed in recent years. In
this paper, we propose a novel automatic pro-
gram repair approach, called SimFix, that uti-
lizes two kinds of data sources:

(1) Similar code within faulty program.
(2) Exiting patches from other projects.

where we (1) extract modifications to the faulty
code via AST differencing with similar code and
(2) further filter those modifications using fre-
quent abstract modifications obtained from ex-
isting patches. We evaluate SimFix on the De-
fects4J benchmark, which results in:

• 34 bugs were repaired (most number so far).
• 13 bugs were never repaired by others.

II. Motivation
• Pros of similar code:

Provide repair guidence with fixing ingredients.
• Cons of existing patches:

Cannot cover all repairs under specific context.

Figure 1: Correct patch for Closure-57.

• Cons of similar code:
Cannot tell the likelihood of modifications.

• Pros of existing patches:
Provide repair modification distribution.

Figure 2: Plausible patch of Time-24.

Our approach combines the merits of them.

III. Approach
Two Stage of SimFix :

• Mining Stage mines a set of frequent abstract modifications from open-source programs.
• Repairing Stage generages concrete modifications to faulty code via AST differencing with

similar code, and take intersection with abstract modifications to rule out invalid modifications.

Mining Stage (Offline) :

Figure 3: Mining frequent modifications.

• The process of mining modifications:

1 Extract repair history from existing projects.
2 Compare changed files before and after repairing

with abstract syntax tree (AST) matching.
3 Extract frequent modifications using AST-diff.

• In total, we identified 16 kinds of frequent abstract repair modifications.
• Achieving a 102.5x reduction of search space in theory and 2.0x speedup in experiment.

Repair Stage with Running Example (Online) :

1. Extract Faulty Snippet.
• Locate faulty line of code
• Extract snippet surrounding it.

2. Identify Similar Snippets.
• Search similar code by features:

– How similar of structures
– How similar of variable names
– How similar of method names

3. Rename Variables.
• Establish var-mapping by features:

– Use structure similarity.
– Type compatibility.
– Variable name similarity.

4. Extract Modifications.
• Match faulty and similar ASTs.
• Extract modifications based on node

differences.
• Filter modifications with frequent ab-

stract modifications.
• Combine different modifications.
• Rank modifications by heuristics.

5. Validate Patch Correctness.
• Run test suite.
• Manually check.

IV. Evaluation

B Overall effectiveness of SimFix on Defects4J.

• 34 correct patches (most number so far) and 22 incorrect patches, leading to a precison of 60.7% (Table 1).
• 13 bugs repaired by SimFix were never repaired by other approaches. (Figure 4).

Table 1: Repair result comparison among approaches. Figure 4: Overlaps of different techniques among the faults fixed by SimFix.

B Effectiveness of other conponents.

• Existing patches : 12 less correct and 14 more incorrect patches without using existing patches.
• Fine-grained code reuse : 17 less bugs would be repaired without fine-grained code reuse (AST node level).


