Check for
Updates

Hybrid Automated Program Repair by Combining Large Language
Models and Program Analysis

FENGJIE LI, Tianjin University, China

JIAJUN JIANG?, Tianjin University, China
JIAJUN SUN, Tianjin University, China
HONGYU ZHANG, Chongging University, China

Automated Program Repair (APR) has garnered significant attention due to its potential to streamline the bug repair process
for human developers. Recently, LLM-based APR methods have shown promise in repairing real-world bugs. However, existing
APR methods often utilize patches generated by LLMs without further optimization, resulting in reduced effectiveness due to
the lack of program-specific knowledge. Furthermore, the evaluations of these APR methods have typically been conducted
under the assumption of perfect fault localization, which may not accurately reflect their real-world effectiveness. To address
these limitations, this paper introduces an innovative APR approach called GIANTREPAIR. Our approach leverages the insight
that LLM-generated patches, although not necessarily correct, offer valuable guidance for the patch generation process. Based
on this insight, GIANTREPAIR first constructs patch skeletons from LLM-generated patches to confine the patch space, and
then generates high-quality patches tailored to specific programs through context-aware patch generation by instantiating
the skeletons. To evaluate the performance of our approach, we conduct two large-scale experiments. The results demonstrate
that GIANTREPAIR not only effectively repairs more bugs (an average of 27.78% on Defects4] v1.2 and 23.40% on Defects4]
v2.0) than using LLM-generated patches directly, but also outperforms state-of-the-art APR methods by repairing at least 42
and 7 more bugs under perfect and automated fault localization scenarios, respectively.

CCS Concepts: « Software and its engineering — Software maintenance tools; Search-based software engineering.

Additional Key Words and Phrases: Program Repair, Large Language Model, Program Synthesis

1 INTRODUCTION

As the scale and complexity of modern software systems continue to grow, the prevalence of software bugs has
also risen, resulting in substantial financial and operational loss for organizations and end-users. Addressing
these bugs requires a significant investment of time and effort from developers. As a result, Automated Program
Repair (APR), which seeks to automatically generate correct patches for buggy code, has garnered considerable
interest from both academia and industry.

In the past years, numerous APR approaches have been proposed with the goal of enhancing the quality of
automatically generated patches and making them more practical for real-world use [1-18]. These approaches
include generating patches through predefined repair templates [6, 11, 12, 16-18], heuristic rules [1, 7-10, 13, 14],

“Corresponding author.

Authors’addresses: Fengjie Li, fengjie@tju.edu.cn, College of Intelligence and Computing, Tianjin University, Tianjin, China; Jiajun Jiang,
College of Intelligence and Computing, Tianjin University, Tianjin, China, jiangjiajun@tju.edu.cn; Jiajun Sun, College of Intelligence and
Computing, Tianjin University, Tianjin, China, sjjtianjin@tju.edu.cn; Hongyu Zhang, School of Big Data and Software Engineering, Chongging
University, Chongging, China, hyzhang@cqu.edu.cn.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

© 2025 Copyright held by the owner/author(s).

ACM 1557-7392/2025/1-ART

https://doi.org/10.1145/3715004

ACM Trans. Softw. Eng. Methodol.

https://orcid.org/0009-0001-7137-3934
https://orcid.org/0000-0003-1983-6572
https://orcid.org/0009-0006-0320-908x
https://orcid.org/0000-0002-3063-9425
https://orcid.org/0009-0001-7137-3934
https://orcid.org/0000-0003-1983-6572
https://orcid.org/0009-0006-0320-908x
https://orcid.org/0000-0002-3063-9425
https://doi.org/10.1145/3715004
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3715004&domain=pdf&date_stamp=2025-01-24

2 .« Fengjie Li, Jiajun Jiang, Jiajun Sun, and Hongyu Zhang

and constraint solving techniques [2-5]. While these methods have proven effective in addressing some real-world
bugs, the number of correct fixes remains limited [19, 20]. The reason is that it is difficult for these methods to
tackle the large search space of diverse patches in real applications. For example, the template-based methods rely
on high expertise and manual efforts to construct the templates; the heuristic-based methods are less effective
when facing the rapid growing of patch space; while the constraint-based methods suffer from scalability issues.
Although deep-learning-based APR methods have significantly improved the repair ability by utilizing the latest
advance of deep learning techniques [21-27], many previous studies [28-30] pointed out that their repair capacity
relies on the quality of training data, making them hard to repair bugs that have not encountered during training.

Recently, Large Language Models (LLMs) have demonstrated promising results across various software engi-
neering tasks, e.g., code search [31], program synthesis [32], defect detection [33], code summarization [34] and
so on. Some recent studies [19, 20, 29, 35-40] have also explored the application of LLMs in automated program
repair. The initial results demonstrate their ability to correctly repair real-world bugs, including those that were
previously unrepairable by existing APR approaches. The promising outcomes suggest the potential of LLMs in
developing more effective APR methods.

While recent studies [19, 20, 37-39] have explored the use of LLMs for automated program repair, there are
still significant limitations that need to be addressed:

(1) Existing LLM-based APR approaches directly leverage the patches generated by LLMs, without further
optimization or refinement. However, LLMs may struggle to generate patches that correctly incorporate
program-specific elements like local variables and domain-specific method calls [41, 42]. This means that
even if the LLM-generated patches are “close” to the desired solution, they may still fail to pass the test
cases. How to effectively utilize these “incorrect” patches toimprove the overall repair ability remains a
largely unexplored question.

(2) Evaluations of LLM-based APR approaches have so far been conducted under the assumption of perfect
fault localization, where the faulty locations are already known. This is an unrealistic scenario, as in
practice, automated fault localization techniques are often inaccurate. The real-world performance of
LLM-based APR approaches under the more realistic setting of automated fault localization is yet to be
thoroughly investigated.

To address these limitations, a more comprehensive and practical evaluation of LLM-based APR approaches
is required. This should involve exploring methods to better leverage the insights from “incorrect” patches
generated by LLMs, as well as assessing the performance of these techniques under the more challenging scenario
of automated fault localization. Addressing these limitations is crucial for understanding the true potential and
practical applicability of LLM-based approaches in the field of automated program repair.

In this paper, we aim to address these two limitations. Specifically, to address the first limitation, we propose
a novel automated program repair approach, named GIANTREPAIR. The key insight behind GIANTREPAIR is
that patches generated by LLMs, although not always correct, can still provide valuable guidance for the patch
generation process. Specifically, GIANTREPAIR first leverages LLMs to efficiently generate a diverse set of candidate
patches. It then abstracts these candidate patches into a set of patch skeletons that capture the core structures of
the patches. These patch skeletons are then used to guide the subsequent context-aware patch generation process,
where the patches are refined and instantiated to fit the specific program context. This two-step approach has
several advantages. First, existing studies [19, 20, 29, 35-42] show that while LLMs demonstrate strong coding
capabilities, they often lack precision when generating domain-specific code elements. Consequently, extracting
patch skeletons from LLM-generated patches helps to confine the search space for possible patches (since LLMs
can indicate a clear direction for the repair process) while avoiding unusable portions of the generated content.
This makes the patch generation process more efficient and effective compared with generating patches from
scratch. Second, by combining the strengths of LLMs (for initial patch generation) and context-aware refinement

ACM Trans. Softw. Eng. Methodol.

Hybrid Automated Program Repair by Combining Large Language Models and Program Analysis + 3

(for patch instantiation), GIANTREPAIR is able to generate high-quality patches that can correctly fix real-
world bugs. To address the second limitation and comprehensively evaluate the performance of GIANTREPAIR,
we assess its effectiveness not only under the assumption of perfect fault localization (as done in previous
studies [19, 20, 37-39, 43]), but also with the more realistic scenario of automated fault localization. This allows
us to better understand the practical applicability of GIANTREPAIR in real-world settings.

We have conducted two large-scale experiments using the widely-used Defects4] benchmark [44] to evaluate
GIANTREPAIR in two different application scenarios.

(1) In the first scenario, we compared the repair results of individual LLMs with and without integrating
GIANTREPAIR. The results showed that GIANTREPAIR improved the repair performance of individual LLMs
by correctly repairing an average of 27.78% and 23.40% more bugs on Defects4] v1.2 and Defects4] v2.0.

(2) In the second scenario, we integrated GIANTREPAIR with existing LLMs to form a standalone APR and
compared its repair results with existing state-of-the-art APR approaches. Under the assumption of
perfect fault localization, GIANTREPAIR successfully repaired 171 bugs, outperforming the best state-of-
the-art APR approaches by repairing at least 42 more bugs. When with the more realistic scenario of
automated fault localization, GIANTREPAIR can still repair at least 7 more bugs than the best-performing
APR approaches.

Overall, the experimental results demonstrate the effectiveness and generality of GIANTREPAIR, providing new
insights for future research in the field of APR. The results highlight the potential for better utilization of LLM
outputs for improved APR. To sum up, this paper makes the following major contributions.

e An innovative automated program repair technique that leverages the capabilities of LLMs and context-
aware patch refinement.

e A novel patch generation method that extracts patch skeleton from LLM-generated patches to confine the
patch space for better APR.

e A comprehensive evaluation in two application scenarios, and the experimental results confirm the
effectiveness and generalizability of our approach.

e We have open-sourced our implementations and all experimental data to facilitate future research in this
field. https://github.com/Feng-Jay/GiantRepair

2 MOTIVATING EXAMPLES

In this section, we show two real-world examples from our experiment to demonstrate how incorrect LLM-
generated patches can be utilized to guide the patch generation process, thereby motivating the need for our
context-aware patch generation method. Listing 1 shows the developer patch and LLM’s patch for the bug
JacksonDatabind-51from Defects4] [44]. In this paper, a line of code starting with “+” denotes a newly added line
while lines starting with “-”"denote lines to be deleted.

The developer patch indicates the need to add an if condition to fix the bug. Specifically, the root cause of
this bug is that the statement type = ctxt.get TypeFactory().constructSpecializedType(...) incorrectly overwrites the
generic type information of type. Therefore, it is essential to verify if the current type includes generics before
proceeding, where the method call hasGenericTypes() is used to achieve this goal. However, the LLM-generated
patch, which uses ! type.equals(_baseType) as the condition, is not semantically equivalent to the intended
solution. This is because having type equal to _baseType does not necessarily imply that type includes generic
parameters. For example, when both type and _baseType are SimpleTypes (e.g., String) without any generic
types, the LLM-generated patch prevents the assignment within the if block from executing, whereas the desired
behavior is the opposite. Addressing this bug presents several challenges for existing APR methods: (1) pinpointing
the exact faulty line of code is difficult; (2) determining the necessity of introducing a new if statement is complex;
(3) the specific conditional expression (! type.hasGenericTypes()) is domain-specific and may not be applicable

ACM Trans. Softw. Eng. Methodol.

https://github.com/Feng-Jay/GiantRepair

4 « Fengjie Li, Jiajun Jiang, Jiajun Sun, and Hongyu Zhang

elsewhere. These challenges result in a vast search space for potential patches. Consequently, none of the existing
approaches in our experiment, including the latest LLM-based APR methods, were able to successfully address
this issue.

JavaType type = _idResolver.typeFromId(ctxt, typeld);

if ((_baseType != null) && _baseType.getClass() == type.getClass()) {
// Developer patch
+ if (!type.hasGenericTypes()) {
type = ctxt.getTypeFactory()
.constructSpecializedType(_baseType,
type.getRawClass());
+)
// LLM's patch
+ if (!type.equals(_baseType)) {
type = ctxt.getTypeFactory()
.constructSpecializedType(_baseType,
type.getRawClass());

Listing 1. Patches of JacksonDatabind-51 from Defects4)

// Developer patch

+ result[resultOffset] =

+ FastMath.atan2(y[yOffset], x[xOffset]);

// LLM's patch

+ for (int i = @; i < tmpl.length; ++i) {

+ result[resultOffset + i] =

+ FastMath.atan2(y[yOffset + i],x[xOffset + i]);
+

Listing 2. Patches of Math-10 from Defects4)

Upon comparing the LLM’s patch with the developer patch, it becomes evident that they are somewhat
similar — both introduce a new if statement with a method call as the condition. Although the LLM’s patch
lacks domain-specific knowledge (i.e., the method call hasGenericTypes()), it still offers valuable guidance by
providing a similar patch structure (e.g., the if statement), effectively narrowing down the search space for
potential patches. However, effectively leveraging these LLM-generated patches for improving APR remains
challenging due to the diverse and complex nature of real-world situations. For example, in Listing 2, another
real-world bug repair example is presented. Here, the desired patch involves inserting a new Assignment for the
variable result[resultOffset], while the LLM’s patch introduces a new for loop statement. In this case, only a
portion of the LLM’s patch may be useful, as reusing the entire for loop will not pass the test cases. Additionally,
updating the indices of the array accesses to variables x and y is also necessary to construct the correct patch.

To address the challenges outlined above, this paper introduces a context-aware and adaptive patch generation
method aimed at effectively reusing patches generated by LLMs. As previously discussed, LLM’s patches offer
valuable patch structures. Therefore, the core concept of our approach is to construct patch skeletons from
LLM’s patches to limit the patch space, and then generate high-quality patches through context-aware skeleton
instantiation using static analysis. This enables the generation of patches tailored to specific programs.

3 APPROACH

In this section, we provide a detailed explanation of our approach, i.e., GIANTREPAIR. As previously mentioned, our
approach is based on the insight that LLM-generated patches, while not always correct, can offer valuable guidance
on patch structure for constraining the patch space. Therefore, our patch generation process consists of two
key components: skeleton construction and patch instantiation. (1) The skeleton construction component

ACM Trans. Softw. Eng. Methodol.

Hybrid Automated Program Repair by Combining Large Language Models and Program Analysis + 5

Code Elements:
Classes: Methods: Variables:

\

1

'

=, H

- 1.NodeUtil 1.isGet 1.n '
= 2.Node 2.isDelProp 2.c

. . . '

1

1

'

Buggy Project
Collecting Accessible Code Elements

f?’x

- (5]
AST Parsing Q’dQ Modification Skeleton Ranking
Buggy Py
: Extraction O/.O.\O Abstraction
Function Buggy AST Validating .
Extracted Abstracted Candidate Plausible
Modification Skeletons Patches Patches

Fig. 1. Overview of GIANTREPAIR

(Section 3.1) involves extracting a set of code modifications from the provided LLM-generated patches by
comparing the buggy code and patched code through tree-level differencing over the abstract syntax tree. These
modifications are then abstracted into patch skeletons using a set of abstraction rules. (2) The patch instantiation
component (Section 3.2) takes these skeletons and instantiates them using valid (e.g:; defined under certain
contexts) and compatible (e.g., satisfying type constraints) program elements through static analysis, resulting in
executable patches. Finally, GIANTREPAIR evaluates the correctness of the patches by running test cases according
to a patch ranking strategy (Section 3.3). Figure 1 provides an overview of our approach, and in the following
sections, we will delve into each step in detail.

3.1 Skeleton Construction

As mentioned in Section 2, it is often the case that not all the code changes in an LLM-generated patch are
desirable under different contexts. Therefore, it is necessary to disassemble the code changes in a patch into
individual components, allowing them to be applied independently. To achieve this, GIANTREPAIR incorporates a
modification extraction process that aims to identify all concrete code changes through tree-level code differencing
between the buggy code and the patched code. Each identified modification then will be abstracted into a patch
skeleton for subsequent patch generation.

3.1.1 Modification Extraction. In order to extract concrete modifications, GIANTREPAIR performs a tree-level
code matching and differencing process. Specifically, GIANTREPAIR endeavors to match the code elements from
the buggy code and the patched code and then generates code modifications for those elements that are different
between these two sides. In particular, we consider statement-level code matching rather than the expression-level.
The reasons are twofold: (1) matching statements are more efficient and less likely to produce incorrect matching
because different statements tend to be diverse while the finer-grained expressions have a larger possibility to be
the same at different locations; (2) the search space of statement-level code changes is relatively small and should
be efficient for skeleton construction and instantiation.

Algorithm 1 presents the matching algorithm in GIANTREPAIR, which is inspired by GumTreeDiff [45]. In
particular, we use the function type(a) to represent the AST node type (e.g., IfStatement) of node a, and use
children(a) to return a set of statements that are child nodes of a. In general, it takes two AST nodes (one from
the buggy code and one from the patched code) as inputs and recursively performs a top-down matching process
following a greedy strategy — two AST nodes (i.e., statements) can match each other as long as their node types
are the same (line 12). After this process, one statement from the buggy code may have more than one matched
statement from the patched code (according to line 14). To obtain the best matching and extract the fewest

ACM Trans. Softw. Eng. Methodol.

6 « Fengjie Li, Jiajun Jiang, Jiajun Sun, and Hongyu Zhang

Algorithm 1: AST Node Matching

1 func match(a: ASTNode, b: ASTNode):
mapping < matchNode(a, b)
mapping.sortBySimilarity()
result «— 0, dups — 0
foreach (a,b) € mapping do
if a ¢ dups and b ¢ dups then
dups — dups U{a,b}
result < result U{{a, b)}
return result
func matchNode (a: ASTNode, b: ASTNode):
result «— 0
if type(a) = type(b) then
result « result U{{a, b)}

© 9 N G A W N

- =
@ N = O

/* x: Cartesian product of two sets */
14 foreach (a’,b’) € children(a) X children(b) do
15 | result « result U matchNode (a’,b")
16 return result

modifications, GIANTREPAIR removes the redundant matches and only preserves the best one by measuring the
similarity between the matched statements (line 3). Formula 1 defines the computation of similarity between two
statements. In the formula, we use “atomic stmts” to denote those statements that cannot be decomposed into
finer-grained ones, e.g., ExpressionStatement, while use “ensembled stmts” to represent those that are ensembled
by other statements, e.g., IfStatement. In addition, the function editDistance(a,b) computes the token-level edit
distance [46, 47] between code snippets corresponding to node a and b, while C, denotes the child statements of
a.

ediistaniglinb) _ .
length(a) :atomic stmits.
. 1 . .
sim(a,b) = { 7¢,] IEZC max sim(cy,c;) :ensembled stmts. W
0 :otherwise

Once obtaining the matching results from Algorithm 1, GIANTREPAIR extracts the concrete modifications at the
statement level. Suppose that statements a and b are from the buggy and the patched code respectively. Then,
GIANTREPAIR may generate the following modifications according to the matching results:

Update(a;b) : replaces statement a with statement b if a matches b but they are not completely the same code;

Insert(b, i) :inserts the statement b into the buggy code as the i, child statement of p’ if b does not match any
statement but its parent node p matches statement p’. i is the index of b in p;

Delete(a) : deletes the statement a from the buggy code;

Intuitively, after applying all extracted modifications to the buggy code, it will be transformed into the same
one as the patched code.

3.1.2 Skeleton Abstraction. As aforementioned, the modifications extracted from LLM-generated patches contain
valuable guidance. Specifically, they often make changes at the correct locations and possess AST structures
similar to the correct fixes. However, directly applying these modifications may not necessarily produce correct
patches as they may introduce incorrect program elements that are not applicable to certain contexts under
repair. To overcome this issue, GIANTREPAIR involves a code abstraction process. That is, after obtaining the

ACM Trans. Softw. Eng. Methodol.

Hybrid Automated Program Repair by Combining Large Language Models and Program Analysis + 7

Table 1. Abstraction rules for patch skeleton construction regarding different AST node types. The blue tokens in the skeleton
are keywords that will be extended from the source code during abstraction, while the red tokens will be instantiated for
patch generation via static analysis. In particular, EXPR[T] denotes the type of expression EXPR is constrained by T.

‘ AST Node Type ‘ Example ‘ Skeleton ‘ Constraint Description
AssertStatement assert a > 0; assert EXPRLTI; T is boolean
ConstructorInvocation this(a); this(EXPR{[T;], ... ,EXPR,[T,1); n and T, should be compatible with the class.
DoStatement do{ S Jwhile(a < @); do{STMT} while(EXPRLTI); T is boolean
ForStatement for(;a<@;){ S} for (GEXPRLTI;){STMT} T is boolean
IfStatement ifa<o{s} if (EXPRLTI){STMT} T is boolean
STMT ReturnStatement return a; return EXPRLTI; T is compatible with the return type
SwitchStatement switch(a){case b: f();} | switch(EXPRI1[T,1){case EXPR2[T,]: STMT} | T, and T; are compatible
ThrowStatement throw a; throw EXPRLTI; T is Exception
VarDeclStatement int a = b; int EXPR[T]; T is compatible with int
WhileStatement while(a < 0){S} while(EXPRLT]){STMT} T is boolean
ExpressionStatement a=a+b; EXPRLTI; No constraint on T
Assignment a=a+hb VAR[LT;1=EXPR[T,] T, and T, are compatible
CastExpression (int) b (int) EXPRLT] T is compatible with int
ClassInstanceCreation new ClassA(a,b) new CNAME(EXPR;[Ty],...EXPR,[T,]) class CNAME is compatible with To; n.and T, fit CNAME
ConditionalExpression |a >b ? a : b EXPR;[T;]?EXPR,[T2]:EXPR3[T5] T, is boolean; T, T3 are compatible with T,
FieldAccess a.b EXPRLT{1.VARLT,] VAR is defined in Ty; Ty, Ty are compatible
InfixExpression a+h EXPR;[T;] INFIX_OP EXPR,[T,] Ty, T2 are compatible with INFIX_OP
EXPRLT,] PrefixExpression la.isEmpty() PREFIX_OP EXPRLT] T, PREFIX_OP are compatible
PostfixExpression at+ EXPRLT] POSTFIX_OP T, POSTFIX_OP are compatible
MethodInvocation a.method(b) EXPR.FNAME(EXPR;[T1], . ..,EXPR,[T,1) Return type of FNAME is compatible with To; n and T, fit FNAME
SimpleName a VARLT] T and Ty are compatible
SuperFieldAccess super.a super.EXPR[T] T and Ty are compatible
SuperMethodInvocation | super.a(b) super.FNAME(EXPR{[Ty], ... ,EXPR,[T,]) Return type of FNAME is compatible with To; n and T,, fit FNAME
VarDeclExpression inta=b int a = EXPR[T] T is compatible with int
VarDeclFragment a=b a = EXPR[T] T is compatible with T,

concrete modifications according to the algorithm explained above, GIANTREPAIR performs code abstraction
that constructs patch skeletons by removing concrete program elements while preserving the code structure for
confining the subsequent patch generation. Specifically, GIANTREPAIR performs the abstraction process only for
the statement b appearing in modifications Update(a,b) and Insert(b,i). In contrast, for modification Delete(a),
abstraction is not necessary as it will not introduce any new elements to the program.

More specifically, we have defined a set of code abstraction rules by following the AST node definition in the
Java Development Toolkit [48]. Table 1 presents the details of the rules. In the table, the first column presents the
abstracted notations that can be further abstracted according to their actual AST node types as shown in the
second column. That is, the abstraction process is a recursive process in a top-down fashion by following the
abstract syntax tree structure of the code until it cannot be further abstracted by any rules, e.g., individual variables
or operators. Particularly, we provide a simple example (the 3rd column) for each type of AST node for better
understanding of the skeleton construction rules (the 4th column). The last column describes the constraints that
have to be satisfied when instantiating the skeleton for patch generation. Taking the AssertStatement “assert
a>0;” as an example; the abstracted skeleton will be “assert EXPR[boolean]”, where the “EXPR” will be further
abstracted into “VAR INFIX-OP @” according to the rule for InfixExpression. Please note that we do not abstract
constant values (e.g., 0) in the code since they are not program-specific elements and thus can be reused directly.
Consequently, the ultimate skeleton will be “assert VAR INFIX_OP 0;”, where VAR has to be a variable of
number type (e.g., int and float) and the operator INFIX_OP has to be logical comparators (e.g., > and <). In
this way, the structure of the LLM-generated patches can be preserved for effectively constraining the patch
space, and the abstracted tokens (colored red) can be instantiated via analyzing the contexts under repair for
tailoring to certain programs.

3.2 Patch Instantiation

According to the constructed patch skeletons introduced above, the patch instantiation process becomes straight-
forward - replacing the abstracted tokens in the skeleton with concrete program elements that satisfy the given
constraints. Specifically, there are in total four types of abstracted tokens (see Table 1) in the ultimate skeletons

ACM Trans. Softw. Eng. Methodol.

8 « Fengjie Li, Jiajun Jiang, Jiajun Sun, and Hongyu Zhang

for instantiation, i.e., variables (VAR), classes (CNAME), method calls (FNAME), and operators (INFIX_OP, PREFIX_OP,
and POSTFIX_OP). While the skeleton can already effectively constrain the patch space, randomly generating
patches from them may still encounter a large search space. Therefore, it is less efficient and easy to fail due to a
limited time budget. Therefore, GIANTREPAIR incorporates a context-aware patch generation strategy during
skeleton instantiation, which involves three optimizations:

¢ Element selection: All used elements have to be usable under certain contexts and meet the constraints of
used patch skeletons. For operators, GIANTREPAIR enumerates all type-compatible ones belonging to each type
during skeleton instantiation since the number of them is very small (<10), while for the other three types of
tokens, GIANTREPAIR includes a static analysis process for collecting all usable ones. Specifically, for variables,
GIANTREPAIR records their types and scopes; for classes, it records their inheritance relations and accessible
fields; for method calls, it records their complete signatures, including the required arguments, return types and
classes which they belong to. Such information will determine the usability of program elements by checking
the constraints associated to the skeleton.

e Context similarity: GIANTREPAIR considers two kinds of similarities, one of which is between the instantiated
patch and the buggy code while the other is between instantiated patch and the LLM-generated patch. The
first similarity is inspired by previous studies [19, 20, 29, 35-40], which reported that the desired patches in
realistic scenarios often involve small code changes. The second similarity is inspired by our insights and the
prominent results of LLMs as they can provide valuable material for patch generation. To achieve these goals,
GIANTREPAIR first preserves the common code elements (e.g., variables) used in both the buggy code and the
LLM patch as much as possible. For different elements, GIANTREPAIR prefers patches that are “close” to the
LLM patch. Specifically, it uses the general token-level edit distance [46,47] to measure the closeness between
patches. The reason is that the instantiated patches share the same skeleton with the LLM patches, and thus
the major differences between them mainly lie in the variable and function names. In addition, by “closeness”,
we mean whether the patches use the same variables or function calls as the LLM patch. We believe that this
distinction can be effectively measured using the token-level edit distance.

e Adaptive application: As explained in Section 2, it is possible that only a part of the LLM patch is desirable.
Therefore, if the patches with all code changes failed to repair the bug, GIANTREPAIR adaptively applies a
subset of the extracted modifications. Specifically, GIANTREPAIR endeavors to apply at most three individual
modifications in one patch (producing a reasonable and manageable number of patches). In particular, as
shown by existing literature [19, 20, 37-40, 49] and our motivating examples outlined in Section 2, LLMs
have demonstrated powerful capabilities in coding related tasks and the patches generated by LLMs often
contain valuable modifications. To fully leverage the guidance information within the LLM-generated patches,
GIANTREPAIR prefers to select the most complex modifications for combination, as they can maximize the use
of valuable information within the patches, as explained above.

Based. on the above patch instantiation process, given an LLM-generated patch, GIANTREPAIR generates
candidate patches on top of the abstracted patch skeletons, which can effectively constrain the search space of
patches.

3.3 Patch Ranking and Validation

To make the most probable patches to be evaluated early, we have developed a patch ranking strategy. As
reported in previous studies [19, 20, 29, 31-40], LLMs have shown powerful capabilities in code understanding
and generation. Therefore, when given a set of candidate patches generated by LLMs, GIANTREPAIR favors
those that can offer more new resources for patch generation. In this way, we can make best use of the code
generation capability of LLMs by maximizing the repair-relevant information available for generating effective
fixes. Specifically, GIANTREPAIR assesses the number of Insert(*) and Update(*) modifications involved in a

ACM Trans. Softw. Eng. Methodol.

Hybrid Automated Program Repair by Combining Large Language Models and Program Analysis + 9

patch since they can bring new program elements/structures while Delete(*) cannot. The higher the count of
these modifications, the higher the rank of the patch. Subsequently, for each LLM-generated patch, GIANTREPAIR
constructs candidate patches using the patch instantiation process introduced earlier. Finally, GIANTREPAIR
executes the associated test cases after applying each patch and identifies the ones that pass all the test cases
as plausible patches, in line with existing studies [20, 27, 29, 38, 39]. In this process, GIANTREPAIR utilizes the
ExpressAPR [50] framework for managing the test running. Consistent with existing studies [20, 27, 29, 38, 39],
a patch is deemed correct only if it is semantically equivalent to the developer patch, as determined through
manual inspection.

4 EXPERIMENTAL SETUP

4.1 Research Questions

In this paper, we aim to answer the following research questions for evaluating the effectiveness of GIANTREPAIR.

e RQ1: How effective is GIANTREPAIR for improving LLMs in repairing real-world bugs? In this RQ, we
explore whether GIANTREPAIR can improve the effectiveness of existing LLMs in the task of program repair.
Specifically, we integrate GIANTREPAIR with different LLMs and check whether it can correctly repair more
bugs than using the LLM-generated patches directly.

o RQ2: How effective is GIANTREPAIR compared to the state-of-the-art APR tools? In this RQ, we integrate
GiaNTREPAIR with existing LLMs to form a standalone APR tool by following existing study [20, 38, 39], and
then compare its performance with a set of state-of-the-art APR tools.

e RQ3: What is the contribution of each component in GIANTREPAIR? In this RQ, we investigate the
contribution of each component in GIANTREPAIR to its effectiveness. Specifically, as introduced in Section 3,
GIANTREPAIR incorporates four major components, including patch skeleton construction, context-aware patch
instantiation, adaptive application of modifications and patch ranking. For the first component, we explore
the contribution of each abstraction rule (see Table 1) for skeleton construction to the generation of correct
patches. For the remaining three components, we develop a set of variants of GIANTREPAIR for analyzing their
effectiveness. The details will be introduced in Section 5.3.

4.2 Subjects

In our experiment, we employed the widely-studied Defects4] [44] benchmark. In particular, we adopted both
version 1.2 and version 2.0 of the benchmark for evaluating the generality of GIANTREPAIR. Specifically, Defects4]
v1.2 consists of 391 bugs from six real-world projects, while Defects4] v2.0 includes another 438 bugs from 11
real-world projects. By following existing studies [19, 37], we leveraged LLMs to generate candidate patches when
providing the buggy function. The reasons are twofold: (1) The code length of a single function is suitable for the
input andoutput of current LLMs, and the entire method can offer local contexts for LLMs; (2) Function-level fault
localization is more precise than the line-level fault localization, and thus the APR tools depending on the former
can be more practical for real use. Therefore, we removed the bugs that require cross-function modifications.
Consequently, we use all 255 single-function bugs from Defects4] v1.2 and 228 single-function bugs from Defects4]
v2.0 in our evaluation.

4.3 Baselines and Metrics

To answer RQ1, we selected four commonly-used LLMs as the baselines, including two general-purpose LLMs
(GPT-3.5 Turbo [51, 52] and Llama-2 [53]) and two code-specific LLMs (StarCoder [54] and CodeLlama [55]),
all of which have been used in diverse software engineering tasks [56, 57] and demonstrated to be effective,
including automated program repair [40, 43].

ACM Trans. Softw. Eng. Methodol.

10 « Fengjie Li, Jiajun Jiang, Jiajun Sun, and Hongyu Zhang

To answer RQ2, we compared GIANTREPAIR with the 11 latest and best-performing APR tools due to the
space limit, including four LLM-based (FitRepair [20], Repilot [38], GAMMA [39], and AlphaRepair [29]), five
specially-designed deep-learning-based (Tare [27], ITER [58], CURE [25], Recoder [24], and Hanabi [59]), one
template-based (TBar [15]), and one heuristic search-based (SimFix [14]). These APR tools cover most of the SOTA
techniques used in recent APR research. In particular, we also offer a more comprehensive comparison regarding
unique fixes between our approach and existing APR tools in Section 6.1.

In this paper, a patch is plausible if it can pass all the test cases, and a plausible patch is correct if it is
semantically equivalent to the developer patch. For result analysis, we mainly compare the number of bugs that
can be correctly repaired by each baseline by following previous studies [14, 15, 20, 24, 25, 27, 29, 38, 39, 59].
Furthermore, we also calculate the precision of the generated patches, which denotes the ratio of bugs with
correct patches to the bugs with plausible patches, and the recall of the generated patches, which is the ratio of
bugs with correct patches to the total number of fixable bugs.

//Provide a fix for the buggy function
//Buggy function

//Fixed function r
//Provide a fix for the buggy ‘
//Buggy function N

//Fixed function L ‘ A '
//Provide a fix for the buggy function
//Bugg tion

{bug}

Fig. 2. The input prompt for the function-level APR

4.4 Implementation and Configuration

Foundation models. We selected four widely-used models in previous studies[60-62], including three open-
source models — StarCoderBase (i.e., StarCoder-15.5B), CodeLlama-7B, Llama-2-13B, and one close-source model
- GPT-3.5, which have demonstrated impressive performance on many tasks. The first three open-source models
were downloaded from HuggingFace [63] and then deployed on our local machines while the last GPT-3.5 online
model was accessed via API requests [64]. For each model, we reused the prompt proposed by Xia et al. [19],
and adopted the model default settings for patch generation — Top-p Necleus Sampling [65] with p = 0.95 and
temperature = 0.8. Figure 2 shows the template of the prompt used in our experiment. Specifically, we use a 2-shot
method. The first example demonstrates the repair task and the expected output format to the LLM. The second
example, selected from the same project where the bug originates, provides the LLM with the relevant coding
style. Lastly, the specific bug to be fixed is included in the prompt. Finally, for each bug, one LLM generates at
most 200 patches. For other baseline APR tools, we reused their experimental results from the corresponding
publications directly.

ACM Trans. Softw. Eng. Methodol.

Hybrid Automated Program Repair by Combining Large Language Models and Program Analysis « 11

GIANTREPAIR. We implemented GIANTREPAIR in Java with approximately 22k lines of code. During the repair
process, GIANTREPAIR at most generates 200 candidate patches based on one patch skeleton from LLM-generated
patches. Besides, following prior work [14, 15, 27], we offer a 5-hour time budget for repairing a single bug.

Fault localization. As mentioned in Section 1, we comprehensively evaluated the performance of our approach
under both perfect and imperfect (i.e., automated) fault localization. In the first scenario, when given the perfect
fault localization results (i.e., the specific faulty code lines) [15, 24, 27, 29], we initially mapped these lines to
their respective enclosing functions. This step is necessary because, as shown in Figure 2, our approach uses
the entire faulty function as input rather than isolated faulty lines. Subsequently, we directly fed each faulty
function to the LLMs for patch generation. While in the second scenario, we followed prior studies [14, 15, 24] and
employed the spectrum-based algorithm, Ochiai [66], implemented in GZoltar [67], to obtain a list of faulty code
lines. Similarly, based on existing work [68], we further mapped these faulty lines to their respective enclosing
functions to achieve function-level fault localization results, which were fed to our approach: Then, following
the function ranking, we tried to generate patches for each one until exceeding the time limit. Please note that
some baseline APR tools used a finer-gained line-level perfect fault localization (i.e., offering the buggy line) in
their experiments, such as FitRepair and Repilot. Although it can be more accurate as it confines the patch space
into a single line, we do not further unify this configuration in this paper because the baselines cannot work
with the function-level fault localization. Nevertheless, this difference may underestimate the effectiveness of our
approach when compared with the baselines.

Experimental environment. Our experiments were conducted on a local machine equipped with dual Intel
Xeon 6388 CPUs, 512GB RAM, and four A800 GPUs, running Ubuntu 20.04.6LTS.

5 RESULT ANALYSIS
5.1 RQ1: Overall Effectiveness for Improving LLMs in APR

As explained in Section 4.1, to evaluate whether our approach can better utilize the LLM-generated patches in
program repair, we compare the results of GIANTREPAIR with the repair results when using the LLM-generated
patches directly. Specifically, we selected four diverse LLMs for comparison, aiming to display the generality of
our approach (see Section 4.3). In this experiment, we offer LLMs the function-level perfect fault localization by
following existing studies [19, 20, 25, 29, 37, 38]. Table 2 presents the number of bugs that can be correctly repaired
by each method. In the table, we use GIANTREPAIRGpT—_3.5 to represent the repair results when GIANTREPAIR
takes the patches generated by GPT-3.5 as inputs.

From the table, we can‘observe that GIANTREPAIR can effectively increase the number of correct fixes compared
with using the LLM-generated patches directly. Specifically, on Defects4] v1.2, GIANTREPAIR increases the number
of correct fixes from 43, 42, 40, 19 to 53, 55, 51, 25 respectively compared with the four LLMs. The relative
improvement is up to 31.58%, with an average increase of 27.78%. On Defects4] v2.0, GIANTREPAIR increases the
number of correct fixes from 45, 44, 34, 18 to 53, 54, 43, 24. The relative improvement is up to 33.33%, with an
average increase of 23.40%. This results demonstrate the generalizability of GIANTREPAIR in enhancing repair
performance of LLMs since it achieved relatively close effectiveness when comparing with diverse models over
different benchmarks.

Furthermore, the repair performance of the selected LLMs in this paper is also consistent with prior work [57]:
GPT-3.5>StarCoder> CodeLlama>Llama-2. This reflects that training purposes tend to have a larger influence
on the LLM’s performance than LLM’s sizes. For example, GPT-3.5, despite having a much larger model size
than StarCoder, shows very close repair effectiveness in our experiment. In contrast, CodeLlama, which is
fine-tuned from Llama-2 on code, demonstrates a significant improvement in patch generation. We leave the
further exploration of this situation in a broader range to our future work.

ACM Trans. Softw. Eng. Methodol.

12« Fengjie Li, Jiajun Jiang, Jiajun Sun, and Hongyu Zhang

Table 2. Result comparison with different LLMs

Tool ‘ Defects4] v1.2 ‘ Defects4] v2.0
‘ #Correct Impv.(%) #Plausible Precision (%) Recall (%) | #Correct Impv.(%) #Plausible Precision (%) Recall (%)

GPT-3.5 43 75 57.33 16.86 45 62 72.58 19.74
GIANTREPAIRGPT 3.5 53 23.26 102 51.96 20.78 53 17.78 82 64.63 23.25
StarCoder 42 72 58.33 16.47 44 60 73.33 19.30
GIANTREPAIR qyCoder 55 30.95 104 52.88 21.57 54 22.73 86 62.79 23.68
CodeLlama 40 65 61.54 15.69 34 58 58.62 14.91
GIANTREPAIRCodeLiama 51 27.50 96 53.13 20.00 43 26.47 77 55.84 18.86
Llama-2 19 29 65.52 7.45 18 29 62.10 7.89
GIANTREPAIR} 14 ma—2 25 31.58 61 40.98 9.80 24 33.33 47 51.06 10.53
Averager s 36 60.25 59.75 14.12 35.25 52.25 63.80 15.46
AVerageGiantRepAIR s 46 27.78 90.75 50.69 18.04 43.25 23.40 73 59.25 18.97

To analyze the additional overhead introduced by GIANTREPAIR in exploring the patch space, we conducted
analyses from two perspectives: 1) Balance between precision and recall. As shown in Table 2, although
GIANTREPAIR leads to a decrease in precision for each LLM, this decrease is relatively modest compared to the
increase in the number of correct fixes. The most substantial drop in precision occurs with Llama-2, which we
attribute to its poor coding capabilities, resulting in less effective guidance information. On average, the precision
of patches generated on Defects4] v1.2 and Defects4] v2.0 decreased from59.75% and 63.80% to 50.69% and 59.25%,
respectively. This decrease is relatively minor and is comparable to.the improvement in recall, which increased
from 14.12% and 15.46% to 18.04% and 18.97% on Defects4] v1.2 and Defects4] v2.0, respectively, demonstrating
that GIANTREPATIR strikes a favorable balance between precision and recall. In addition, as reported in the previous
study [69], plausible patches will not largely sacrifice the debugging efficiency of developers with the help of
debugging tools. Moreover, patch filtering tools [70-73] can be further incorporated to improve patch precision.
2) Token and time consumption. To explore the overhead of our approach, we further analyzed the token and
time consumption required by GIANTREPAIR to generate all correct fixes. As shown in Table 3, GIANTREPAIR
on average requires only an additional 2517.33 output tokens to generate one correct fix compared to using the
LLMs directly, which results in on average 0.025 more dollars for repairing one bug according to the pricing of
the GPT-40 model [74]. Regarding the time consumption required by GIANTREPAIR, about 71.67% of the correct
fixes were generated within 0.5 hours, and the vast majority (about 93.25%) could be produced within 2 hours.
This execution time is also acceptable compared with many existing approaches [13-15], which may even require
about five hours to repair a-bug.

We also analyzed the complementary of different LLMs in this task. Figure 3 presents the number of bugs that
are uniquely repaired when integrating GIANTREPAIR with each LLM. The results reveal that, although different
LLMs performed diversely, they tend to complement each other as each individual LLM can offer the valuable
repair guidance for some unique bugs. For example, Llama-2, which achieved the fewest correct fixes, contributed
3 unique fixes. This indicates that both code-specific and general-purpose LLMs should be considered in APR. In
addition, the results also inspired us to explore whether GIANTREPATIR can still improve the repair performance
when taking the complementary among different LLMs into consideration. Consequently, we combined the repair
results of all the four LLMs, and then compared it with GIANTREPAIR that takes all their patches as inputs. The
results show that the combination of the four LLMs successfully repaired 141 bugs on the two benchmarks, while
GIANTREPAIR repaired 171 bugs (will be further discussed in Section 5.2), demonstrating that GIANTREPAIR is
indeed effective as it can effectively utilize the LLM-generated patches for better APR. In fact, when comparing
with the latest GPT-4, GIANTREPAIR can still contribute unique fixes. We will discuss this result in Section 6.2.

To show the necessity and effectiveness of our approach, we present two examples that the studied LLMs
failed to repair under our experimental setting, whereas GIANTREPAIR generated the correct fixes. Listing 3 and

ACM Trans. Softw. Eng. Methodol.

Hybrid Automated Program Repair by Combining Large Language Models and Program Analysis + 13

Table 3. Token consumption of GIANTREPAIR in generating correct fixes

Tool Token Consumption
#min #max #median #average
GPT-3.5 19 66751 244 4765.93
GIANTREPAIRGPT -3 5 19 101508 282 6934.11
StarCoder 22 60828 258 3293.81
GIANTREPAIR; 4 Coder 13 64253 335 5390.38
CodeLlama 26 255798 299 9328.30
GIANTREPAIRCpdeLlama 17 255798 482 11881.89
Llama-2 30 76127 286 7694.51
GIANTREPAIR jg1ma—2 30 76127 598 11688.57
Totalya 19 255798 260.50 5874.41
TotalgantRepamr 13 255798 346.50 8391.74
StarCoder CodeLlama StarCoder CodeLlama
' 5 4
[
2
2
| 0
.
Llama-2
a) on Defects4J 1.2 b) on Defects4] 2.0

Fig. 3. GIANTREPAIR uniquely repaired bugs when integrating with different LLMs.

Listing 4 show the LLM-generated patches and the developer patches for two different bugs. The root cause
of the bug in Listing 3 is that inlining singleton getter method is not permitted. Therefore, it is necessary to
verify whether the inlined method is a singleton or not (i.e., calling getSingletonGetterClassName). However,
without the domain-specific knowledge regarding the used API, LLMs cannot generate the desired patch. In
contrast, the LLM’s patch provide a meaningful repair guidance by inserting an IfStatement to check callNode.
GIANTREPAIR successfully leveraged this insight by constructing a patch skeleton and performing static analysis
to instantiate the skeleton via considering the type constraint and contexts. Ultimately, GIANTREPAIR successfully
repaired this bug.

private boolean canInline(Reference declaration,Reference initialization,Reference reference){

Node callNode = reference.getParent();
CodingConvention convention = compiler.getCodingConvention();

//Developer patch: handle a special case by inserting a new if statement
+ if (convention.getSingletonGetterClassName(callNode) != null) {
+ return false;
+ %
//LLM's patch
+ if (convention.getGetterMethod(callNode) != null) {
+ return false;

ACM Trans. Softw. Eng. Methodol.

14 « Fengjie Li, Jiajun Jiang, Jiajun Sun, and Hongyu Zhang

Listing 3. Patch code of Closure-36 from Defects4).

protected int findWrapPos(String text, int width, int startPos) {
int pos;

// look for the last whitespace character before (startPos+width)
pos = startPos + width;
while(...) (...)

// Developer patch
// if we didn't find the last whitespace, simply chop at (startPos+width)
pos = startPos + width;
- while ((pos <= text.length()) &% ((c = text.charAt(pos)) != ' ') & (c != '\n') && (c != '"\r')){
- ++pos;
-}
// LLM's patch
- pos = startPos + width;

- while ((pos <= text.length()) && ((c = text.charAt(pos)) != "' ') && (c != '\n') & (c != '\r')) {
= ++pos;
-2

return pos == text.length() ? -1 : pos;

}

Listing 4. Patch code of Cli-32 from Defects4).

Regarding the faulty method shown in Listing 4, its purpose is to return the position of the last whitespace
in the input text, starting at startPos and ending at (startPos+width). If no whitespace is found, it should
return the position of (startPos+width). However, the faulty code erroneously continues searching for white-
space in the text beyond the length of (startPos+width) due to an incorrect while loop. To fix this bug, the
entire while loop statement should be removed, as demonstrated. Unfortunately, without sufficiently under-
standing the context, the LLM-generated patch also removed the line (pos=startPos+width;), resulting in
errors. In contrast, GIANTREPAIR, utilizing its adaptive patch instantiation method, successfully generated a
patch that only removed the while loop statement, thereby fixing the bug. This is noteworthy since deletion
can often lead to incorrect patches and is usually avoided by existing APR approaches [14, 72]. From these
examples, we can see that GIANTREPAIR effectively leverages program-specific knowledge (such as requiring
getSingletonGetterClassName() in Closure-36) and contextual information (such as assigning a value to pos)
to address bugs that are challenging for LLMs to repair.

5.2 RQ2: Effectiveness Compared with Baselines

(1) Performance with perfect localization. We compare our approach with the state-of-the-art APR tools that were
also evaluated under the assumption of perfect fault localization. As explained in Section 4.4, GIANTREPAIR takes
a buggy function as input and leverages LLMs to generate the initial patches, while the baseline APR tools may
take a buggy line as input. Table 4 displays the number of bugs that can be correctly fixed by each APR on both
Defects4] v1.2.and v2.0. In particular, FitRepair [20] concurrently runs four LLMs to generate patches. For a fair
comparison, we define two configurations: GRyimxs,, and LLM X 4,;;. Configuration GRyymxs,,, denotes that
GIANTREPAIR takes the patches generated by the four LLMs as inputs (i.e., 200x4=800) for subsequent patch
generation. Configuration LLM X 4, on the other hand, uses the LLM-generated patches directly without the
aid of GiIANTREPAIR. This configuration obviously requires more computing resources. To offer a fair comparison
with other baselines, we developed another variant of GRrmx4 part> which only takes the first quarter of patches
from each LLM as inputs (i.e., 50x4=200), resulting in the same number of candidate patches as using one LLM.
Similarly, LLM X 4,4,; represents adopting the same quarter of LLMs’ patches directly.

ACM Trans. Softw. Eng. Methodol.

Hybrid Automated Program Repair by Combining Large Language Models and Program Analysis + 15
Table 4. Repair results with perfect fault localization. In the table, GR represents our approach GIANTREPAIR.

Project #Bugs | GRiivx4,; LLMX4qy | GRitMxd,,, LLMxd4ye | FitRepair Repilot Tare GAMMA AlphaRepair CURE Recoder TBar
Chart 16 8 7 7 7 8 6 11 9 8 9 10 9
Closure 93 32 20 30 20 29 21 22 20 22 13 20 15
Lang 42 14 11 11 10 17 15 13 10 11 9 10 10
Math 72 26 23 26 23 23 20 20 19 19 16 16 16
Time 16 1 1 1 1 3 2 3 1 3 1 3 2
Mockito 16 6 6 6 6 4 0 2 2 4 4 2 2
Defects4] v1.2 255 87 68 81 67 85 64 71 61 67 52 61 54
Closure 12 2 1 1 1 0 0 1 0 0 1

Cli 23 7 6 7 6 6 6 6 8 5 2

Codec 11 8 7 8 7 5 5 4 2 5 4

Collections 1 0 0 0 0 1 1 0 0 0 0

Compress 33 12 9 12 9 2 3 4 4 1 1

Csv 11 6 6 6 6 2 2 5 0 1 0

Gson 9 6 6 6 6 1 1 1 3 2 0

JacksonCore 13 8 5 8 5 3 3 2 2 3 2

JacksonDatabind 51 15 15 14 14 10 8 0 9 8 2

JacksonXml 4 1 0 1 0 0 0 0 0 0 0

Jsoup 53 18 17 18 17 13 17 14 10 9 4

JxPath 7 1 1 1 1 1 1 3 1 1 2

Defectsd] v2.0 228 | 84 73| 82 72 | 44 47 40 39 35 18

Total 483 | 171 141 | 163 139 | 129 111 111 100 102 70

Table 5. Repair results without perfect fault localization. X/Y denotesX correct and Y plausible patches.

Project ‘ GIANTREPAIRLI Mx4,, ‘ GIANTREPAIRLLMX4part Tare ITER TBar SimFix Hanabi
Chart 7/10 7/10 11/14 8/12 7/10 4/5 1/3
Closure 16/33 15/33 12/23 15/20 6/10 5/5 -/-
Lang 12/19 11/18 12/19 7/7 4/11 6/9 1/1
Math 22/40 7/38 18/34 13/24 12/26 11/20 13/15
Time 1/3 1/3 2/3 2/3 1/2 1/1 2/2
Mockito 6/6 6/6 2/2 -/~ 1/2 -/- -/-
Total | 64/111 62/108 | 57/95 45/66 31/61 27/40 17/21
P(%) ‘ 57.66 57.41 ‘ 60.00 68.18 50.82 67.50 80.95

From the table, we can see that GIANTREPAIR can not only significantly improve the correct fixes compared
with using the LLM-generated patches directly, it also significantly outperforms all baseline APR tools. For
example, compared with the best-performing FitRepair, GIANTREPAIR successfully repaired 42 more bugs (171 vs

129). In particular, even only using the first quarter of LLM patches, GIANTREPAIR can still outperform all the

baseline methods by repairing as least 34 more bugs (163 vs 129). Specifically, GIANTREPAIR performs consistently
well on different benchmarks. On the contrary, the baseline APR tools tend to achieve better performance on
Defects4] v1.2 than v2.0, indicating that our approach is more general and less likely to overfit certain benchmarks.

As it will be presented in Section 6.3, when using an another new benchmark that was never used by previous
studies, GIANTREPAIR can still effectively repair a number of bugs.

static boolean isReduceableFunctionExpression(Node n) {
// Developer patch

+ return NodeUtil.isFunctionExpression(n)

+ && !NodeUtil.isGetOrSetKey(n.getParent());

= return NodeUtil.isFunctionExpression(n);

// LLM's patch

+ return NodeUtil.isFunctionExpression(n)
+ && !NodeUtil.isNameDeclaration(n.getParent());

ACM Trans. Softw. Eng. Methodol.

16 « Fengjie Li, Jiajun Jiang, Jiajun Sun, and Hongyu Zhang

= return NodeUtil.isFunctionExpression(n);

Listing 5. Patch code of Closure-55 from Defects4).

Similarly, we further analyzed the complementary between our approach and the baseline APR tools. In
particular, since not all the 24 baselines were evaluated on Defects4] v2.0, we only compared their results
on Defects4] v1.2. Figure 4 shows the overlaps of correct fixes by different APR tools. Specifically, we first
compare our approach with the top-4 baseline APR tools (see Table 4) in the left figure. Then, we compare
our approach with these 11 SOTA APR tools (explained in Section 4.3) in the right figure. From the figures we
can see that GIANTREPAIR has the capability to repair more new bugs compared with existing APR tools. In
particular, compared with all 11 SOTA baselines, GIANTREPAIR can still repair 22 unique bugs, indicating its high
effectiveness. For instance, besides the two bugs introduced in Section 2, the bug shown in Listing 5 is. an another
example which can be correctly repaired by GIANTREPAIR but cannot by all the baseline APR tools. To repair
this bug, a new condition should be inserted. As a result, the patch skeleton (i.e., inserting -a method call as the
condition) generated from the LLM’s patch can offer the valuable insights and effectively confine the search
space.

T \ FitRepair FitRepair

GiantRepair /

GiantRepair S
B

Repilot Repilot
10)
g 2
1 3 1 2
26
0 4
\
< 5 -3
SN K 5
5 1 3 0 5 o S .
8 2
AlphaRepair . Tare Others Tare
a) with top APR tools b) with all 11 SOTA APR tools

Fig. 4. Unique bug repairs compared to SOTA baselines on Defects4) v1.2

In contrast, previous APR tools often struggled to find modifications similar to the correct fixes in the vast
search space. Additionally, many existing LLM-based tools are designed to fix only single-line or single-hunk bugs,
limiting their ability to address complex issues that require modifications across multiple lines. To demonstrate
GIANTREPAIR s capability in fixing more complex bugs, we compared the number of lines of code modified in
patches generated by GIANTREPAIR with those generated by other LLM-based APR methods. Figure 5 shows the
number distribution of changed code lines in the patches generated by different approaches. We observe that
patches from existing LLM-based APR tools typically involve fewer than 3 lines of code. In contrast, patches
generated by GIANTREPAIR modify an average of 4.9 lines of code, nearly 1.94 times that of Repilot (changes on
average 2.53 lines of code). This result further demonstrates the promise of combining the strengths of LLM and
static analysis techniques.

(2) Performance with imperfect localization. As mentioned in Section 1, existing studies usually evaluated the
performance of LLM-based APR tools under the assumption of perfect fault localization. In this experiment,
we further evaluate GIANTREPAIR in a more realistic application scenario with imperfect fault localization.
Specifically, we used the automated fault localization results as introduced in Section 4.4. Therefore, we compared
it with baseline approaches that were also evaluated under the same setting. Table 5 shows the repair results of

ACM Trans. Softw. Eng. Methodol.

Hybrid Automated Program Repair by Combining Large Language Models and Program Analysis « 17

30 800
700
o 3
S 5 600+
& s00
20 £
=t o o
3 < 400
[9
15} o < 300
5 o g
£ S £ 200
H o
10 o s 1004
o
o o
51 (o] o
41 o
37 ° [—— &
21 NN
14 o o ‘° SO
AlphaRepair FitRepair Repilot GiantRepair A
APR Tools
Fig. 5. Numbers of changed lines in correct patches. Fig. 6. Rules used in GIANTREPAIR’s correct patches.

different methods on Defects4] v1.2 because all the baselines consistently used this benchmark. Moreover, we
also report their patch precision like the baselines did.

Table 6. Component contribution of GIANTREPAIR

Based LLM ‘ Variant ‘ #Plausible Patches (P) ' #Correct Patches (C) ‘ %Precision (=P /C)
GIANTREPAIR,, /o conrext 93 47 50.54%
GPT-35 GIANTREPAIR,, /o —adaptive 99 51 51.52%
GIANTREPAIR,, /o rank 93 47 50.54%
GIANTREPAIRGPT_3 5 102 53 51.96%
GIANTREPAIR,, /o conrext 105 46 43.81%
GIANTREPAIR /0 —adaptive 107 49 45.79%
StarCoder GIANTREPAIR /0 rank 101 51 50.50%
GIANTREPAIRS 47 Coder 104 55 52.88%

From the result we can conclude that GIANTREPAIR can also achieve better repair performance when using the
imperfect fault localization than the best-performing APR. Specifically, GIANTREPAIR successfully repaired 64
bugs, which is even close to.existing LLM-based APR tools with perfect fault localization, such as Repilot and
AlphaRepair. This is partially attributed to the reason that GIANTREPAIR relies on a coarse-grained function-level
fault localization, which is much easier than that at the line level. However, the results also show that the
powerful code generation ability of LLMs may also increase the risk of generating incorrect patches (i.e., low
patch precision) due to the issue of weak tests [71, 73, 75].

5.3 RQ3: Contribution of Each Component in GIANTREPAIR

In this section, we experimentally analyze the contribution of each component in GIANTREPAIR. As introduced
in Section 4.1, we have developed a set of variants of GIANTREPAIR for systematically conducting this ablation
study:

e GIANTREPAIR,,/o—context Teplaces the context-aware patch instantiation in GIANTREPAIR with a random
method. Specifically, to address a more practical scenario, rather than randomly selecting code elements

ACM Trans. Softw. Eng. Methodol.

18 « Fengjie Li, Jiajun Jiang, Jiajun Sun, and Hongyu Zhang

from the entire project to fill the code skeletons, we randomly selected from all accessible code elements
at the current position. This strategy fills the skeletons without considering the type constraints present
within them.

o GIANTREPAIR,,/o_adaptive Will randomly select modifications from LLM patches, rather than preferring
the coarse-grained modifications.

o GIANTREPAIR,,/o—rank €valuates the generated patches in the order of generation, rather than ranking by
the similarities with original buggy code.

In particular, in this experiment, we adopted GPT-3.5 (a closed-source LLM) and StarCoder (an open-source
model, which demonstrated the best performance among other selected open-source LLMs in Table 2) as the
representative LLMs. Besides, we conducted this ablation study on Defects4] 1.2 (including 255 single-function
bugs) to save time. Table 6 presents the experimental results of the original GIANTREPAIR (i.e., GIANTREPAIRGpT_3 5
and GIANTREPAIRGqrCoder When adopting GPT-3.5 and StarCoder, respectively) and their variants introduced
above. According to the experimental results, we observe that: 1) Every component in GIANTREPAIR
significantly contributed to its overall effectiveness. The results manifest that the absence of any one
component will lead to a reduced number of both plausible and correct patches. Specifically, the context-aware
patch instantiation, adaptive modification application and patch ranking contributed 9, 6 and 4 more correct fixes
for StarCoder, and 6, 2, 6 more correct fixes for GPT-3.5, respectively. 2) The context-aware patch instantiation
is the most effective component in GIANTREPAIR. We find that considering the context constraints for patch
instantiation significantly enhances the repair capabilities of GIANTREPAIR, which again demonstrates that our
approach is effective for advancing LLMs’ repair ability by incorporating static analysis for patch generation.

Finally, to investigate the contribution of each abstraction rule in the repair process of GIANTREPAIR, we
analyzed the frequency of each rule that was involved in all the correct fixes of GIANTREPAIR. The results is
shown in Figure 6. Note that one fix may involve multiple same or different rules. For example, abstracting an
if statement may also need to abstract an infix expression in its condition. The x-axis presents the associated
AST node types of the rules. From the figure we can see that most rules contributed to the final correct fixes.
In particular, MethodInvocation, InfixExpression and IfStatement are the most frequently used ones except for
SimpleName, which aligns with existing conclusions [14, 15, 76]. Moreover, benefited from the patch skeleton,
GIANTREPAIR is able to repair bugs that require complex modifications, such as inserting a completely new
for statement. In summary, all components are essential for the overall performance of GIANTREPAIR. And the
abstraction rules in GIANTREPAIR are most effective.

6 DISCUSSION
6.1 Unique Repairs Compared with 24 Existing APR Tools

To investigate whether our approach can significantly advance the research of APR and repair unique bugs, we
further compared GIANTREPAIR with 24 diverse APR tools in this section. Specifically, besides the 11 APR tools
explained in Section 4.3, the other 13 APR tools are as follows: one LLM-based method (Fine-tuned UniXcoder [77]),
two deep learning-based methods (KNOD [78], SelfAPR [79]), five heuristic search-based methods (PraPR [80],
CapGen [13], jGenProg [81], jKali [6], jMutRepair [6]), three template-based methods (FixMiner [47], AVATAR [16],
SketchFix [12]), and two constraint solving-based methods (JAID [82], NOPOL [2]). These baseline methods
encompass the majority of methodologies employed in recent APR tools. Comparing GIANTREPAIR against these
varied baselines strengthens the reliability of the evaluation conclusions. The details of all baselines are presented
in Table 7.

In particular, we compared the bugs that were correctly repaired by different APR tools on the Defects4] v1.2
dataset since all the compared baselines were consistently evaluated on it. Figure 7 presents the comparing results.

ACM Trans. Softw. Eng. Methodol.

Hybrid Automated Program Repair by Combining Large Language Models and Program Analysis + 19

Table 7. Details of APR Tools for comparing unique repairs 4 5 \FitRepair
GiantRepair/ 2t Repilot
APR Tool ‘ Year ‘ Methodology ‘ APR Tool ‘ Year ‘ Methodology 0 " 3
ITER 2024 | Deep Learning-based | FixMiner | 2020 Template-based 20 3
KNOD 2023 | Deep Learning-basd | AVATAR | 2019 Template-based 1 !
Tare 2023 | Deep Learning-based TBar 2019 Template-based -

Fine-tuned UniXcoder | 2023 LLM-based PraPR 2019 | Heuristic Search-based 9
FitRepair 2023 LLM-based CapGen | 2018 | Heuristic Search-based 1 ° : q\
GAMMA 2023 LLM-based SimFix 2018 | Heuristic Search-based 9 - J

Repilot 2023 LLM-based SketchFix | 2018 Template-based . 4 7 s 0/
AlphaRepair 2022 LLM-based JAID 2017 | Constraint Solving-based ‘5 - /
Hanabi 2022 | Deep Learning-based | jGenProg | 2017 | Heuristic Search-based 14 . 1
SelfAPR 2022 | Deep Learning-based jKali 2016 | Heuristic Search-based Others Tare
CURE 2021 | Deep Learning-based | jMutRepair | 2016 | Heuristic Search-based
Recoder 2021 | Deep Learning-based | NOPOL 2016 | Constraint Solving-based

Fig. 7. Unique repairs

According to this figure, even when compared to all the 24 baselines, GIANTREPAIR still offers 20 unique repairs,
highlighting its effectiveness.

6.2 Comparing GIANTREPAIR with GPT-4

As reported in RQ1, GIANTREPAIR can significantly increase the correct fixes compared with directly using
the LLM-generated patches, including many unique fixes. However, since the repair ability of LLMs may also
increase over the time. To investigate whether or not GIANTREPAIR is still effective for repairing unique bugs
when comparing to the most advanced LLMs, we conducted another experiment with a more powerful LLM. For
cost-efficiency, we selected GPT-40-mini-2024-07-18 [83] (According to the evaluation results from OpenAl [84],
this LLM scored 87.2 on the HumanEval dataset [85] and has competitive coding abilities comparable to GPT-4
and GPT-4o [86]). For each of the 483 single-function bugs from Defects4], we used GPT-40-mini via API requests
to generate 200 patches. In this process, we used the same configuration and prompt introduced in Section 4.4. The
experimental results reveal that GPT-40-mini can repair 105 bugs (51 from Defects4] v1.2 and 54 from Defects4]
v2.0), while GIANTREPAIR, utilizing only StarCoder, can repair 109 bugs (55 from Defects4] v1.2 and 54 from
Defects4] v2.0). We further examined the 30 bugs that GIANTREPAIR successfully fixed but were not resolved by
the four studied LLMs. It turns out that GPT-40-mini could fix only six of these, leaving 24 bugs unresolved. This
suggests that GIANTREPAIR remains valuable even when compared to the latest LLM.

6.3 Data leakage

Data leakage is a common concern for LLM-based APR tools. To investigate its impact on our conclusion, we first
performed a manualanalysis by following prior studies [20, 29, 38]. Specifically, we analyzed whether the patched
code has been used as the training data of the LLMs. We selected StarCoder as the representative as it is the only
one that published its training data. The results show that among the 109 (=55+54) correct patches generated by
GIANTREPAIRS; orCoders 23 0f them were included in StarCoder’s training data. That is, a large majority of the
correct patches 86/109 were not seen by StarCoder previously, and thus the effectiveness should come from the
abilities of StarCoder and our patch generation method themselves, rather than the data leakage.

Moreover, to offer a more strong evidence of GIANTREPAIR’s effectiveness while avoiding data leakage, we
conducted two extra experiments. In the first experiment, we adopted the GrowingBugs [87-89] dataset by
removing the projects involved in StarCoder’s training data (34/250 projects left) and the bugs that require
cross-function modifications in these 34 projects (51/122 bugs left). Finally, we employed GIANTREPAIR with
StarCoder to repair them. The results demonstrate that GIANTREPAIR correctly repaired 10 out of the 51 bugs.In
the second experiment, we employed the HumanEval-Java [37] dataset, which consists of 163 bugs, created by
manually converting Python code from HumanEval dataset [85] to Java and intentionally injecting bugs into the

ACM Trans. Softw. Eng. Methodol.

20 .« Fengjie Li, Jiajun Jiang, Jiajun Sun, and Hongyu Zhang

converted code. Additionally, it does not temporally overlap with the chosen LLMs, thereby preventing the data
leakage issue. Similarly, we also employed GIANTREPAIR with StarCoder to repair these 163 bugs. The results
demonstrate that GIANTREPAIR correctly repaired 143 out of the 163 bugs. These results further confirm the
effectiveness of our approach while effectively mitigating the risk of data leakage impacting its performance.

6.4 Limitation

First, our experiments involved four LLMs (GPT-3.5-turbo, Llama-2, StarCoder and CodeLlama) and one program-
ming language (Java). While this provides valuable insights, it still represents a limited scope in demonstrating
the full capabilities of GIANTREPAIR, which is theoretically capable of utilizing any generative LLMs’ generated
patches in a wide range of programming languages. A second limitation of GIANTREPAIR lies in its time efficiency.
The time LLMs take to generate patches is not accounted for in the patch generation process of GIANTREPAIR.
Third, GIANTREPAIR currently abstracts and instantiates code skeletons from single LLM-generated patch, while
during our experiments, we found some bugs’ correct fixes may be distributed across multiple patches. Investigat-
ing how to integrate these meaningful fixes from various patches could be a valuable focus for future development.
Finally, while there are existing approaches that explore the patch search space, the performance of GIANTREPAIR
compared to these methods has yet to be evaluated. We intend to address this in future work.

6.5 Threats to validity

Internal threats to validity. Manually reviewing all plausible patches to identify correct patches that are
semantically consistent with the reference patch is an internal threat to the validity of our work. Following
common APR practice, we perform a careful analysis of each plausible patch and have published our full set of
correct and plausible patches. Another internal threat to validity is the LLMs used in our paper may trained on
open-source code from GitHub, potentially overlapping with Defects4] dataset. To address this, we conduct a
detailed discussion in Section 6.3 and employ a new dataset to demonstrate the effectiveness of GIANTREPAIR.

External threats to validity. The primary external threat to validity comes from the evaluation datasets we
used, and the performance of GIANTREPAIR may not be generalized to other datasets. To address this, we use two
different datasets to evaluate GIANTREPAIR: Defects4] v1.2, Defects4] v2.0 and demonstrate that GIANTREPAIR is
still effective and able to achieve state-of-the-art results. In the future, we plan to evaluate GIANTREPAIR on more
datasets across multiple programming languages to address this threat.

7 RELATED WORK

In this section, we introduce the most related works to this paper.

7.1 Automated Program Repair

Numerous APR approaches have been proposed to address the vast search space of bug fixes, aiming to improve
the quality of generated patches. Traditional APR tools can be categorized into three types: heuristic-based [1, 7-
10, 13, 14], template-based [6, 11, 12, 16—-18] and constraint-based [2-5]. Among these, several heuristic-based
methods are most related to GIANTREPAIR, as they also utilize contextual information for patch generation, such
as RETE [90], FixMiner [47], SimFix [14] and CapGen [13].

RETE [90] abstracts variables within patch templates produced by existing APR tools and predicts embeddings
for these variables. Candidate variables are ranked based on the similarity between their embeddings and
the predicted embedding, and they are subsequently inserted into the template to create patches. In contrast,
GIANTREPAIR utilizes LLMs to generate patch templates and can abstract a broader range of code elements,
such as variable names, class names, and operators. It then instantiates patches by calculating the similarity
with LLM-generated modifications. This broader abstraction capability enables GIANTREPAIR to handle more

ACM Trans. Softw. Eng. Methodol.

Hybrid Automated Program Repair by Combining Large Language Models and Program Analysis « 21

complex code structures and adaptively produce more varied and contextually appropriate patches. FixMiner [47]
incorporates contextual information to search useful patterns from historical changes, generating patches by
filling and applying these patterns. GIANTREPAIR differs from FixMiner in several key aspects. Firstly, FixMiner
derives repair guidance by searching for similar code in historical changes, GIANTREPAIR directly extracts
modifications from patches generated by LLMs. Secondly, while FixMiner utilizes code elements from the file
containing the bug to fill the pattern during patch generation, GIANTREPAIR imposes strict constraints on type
and AST node type during the construction of skeletons and searches for code elements across the entire project.
Thirdly, unlike FixMiner, which applies only one pattern per patch, GIANTREPAIR allows the combination of
multiple modifications. Unlike SimFix [14] and CapGen [13], which reduce the search space by identifying similar
or frequent code elements within the context of the buggy project, GIANTREPAIR adopts a distinct approach by
extracting modifications from patches generated by LLMs. Furthermore, GIANTREPAIR offers greater flexibility in
extracting patch skeletons, which are subsequently filled through a context-aware patch generation process, as
opposed to simply filling pre-defined patterns or directly reusing referenced code.

Recently, many works also employ pre-trained models for APR tasks, treating program repair as a task of code
generation. AlphaRepair [29] is the first to employ LLMs for infilling-style APR, masking the buggy code and
utilizing CodeBERT [91] to directly replace the masked tokens with correct tokens to generate patches. Several
studies [19, 36, 37] have explored the efficacy of applying various types of LLMs directly to APR tasks. While
these works highlight the potential of LLMs in APR, they typically treat the LLM as'a black box and directly
utilize the patches generated by these models. However, it has become evident that LLMs may not always produce
correct patches without a comprehensive understanding of the project’s full context under repair. To address this
issue, FitRepair [20] leverages the plastic surgery hypothesis by fine-tuning two CodeT5 models specifically on
the buggy project and incorporates relevant identifiers from the buggy project into the prompt. It engages four
CodeT5 models simultaneously to generate patches. Similarly, Repilot [38] fuses CodeT5 [92] with a completion
engine to improve repair performance. Additionally, GAMMA [39] employs CodeBERT [91] and UniXcoder [31]
to fill a set of predefined repair templates. All these methods differ from GIANTREPAIR as none of them modify
the patches generated by LLMs like GIANTREPAIR whereas reuse the LLM-generated patches directly.

7.2 Automated Code Template Extraction

7.2.1 Extracting Templates from Code Changes. Extracting templates from code changes has many potential uses,
such as systematic program editing, refactoring and program repair. Many existing works [11, 93-98] extract
templates from multiple examples with similar code changes. Spdiff [93, 94] and LASE [95] extract transformation
templates from a set of examples and take the most common part of templates as a transformation pattern.
REFAZER [96] searches for a transformation template that is consistent with all provided examples. Genesis [11]
extracts AST templates from existing patches that can cover all examples. Phoenix [97] extracts repair tempaltes
via clustering to fix bugs reported by static analyzers. CPATMINER [98] extracts semantic code change graphs
from a large number of repositories. All these approaches requires the duplication of very similar examples,
which are often difficult to obtain in practice. Different from them, GIANTREPAIR generates patch skeleton by
comparing with only one LLM generated patch.

To overcome the dependency on duplicate examples, SYDIT [99] and GenPat [18] were proposed. Specifically,
SYDIT extracts code change templates relying on the predefined rules, i.e., removing all variable and method
names while preserving the code structures. In contrast, GenPat extracts code change templates by analyzing the
distribution of certain code elements in a code corpus. Different from these approaches, GIANTREPAIR removes
all the concrete code elements away (including operators) and preserves the type information of variables and
expressions, whereas these existing methods do not. Then, GIANTREPAIR incorporates a context-aware patch
instantiation process for patch generation. Please note that these differences are critical since the type information

ACM Trans. Softw. Eng. Methodol.

22 .« Fengjie Li, Jiajun Jiang, Jiajun Sun, and Hongyu Zhang

can effectively refine the search space and promote the repair ability as demonstrated in our evaluation (ref:
GIANTREPAIR,/o—context)- Nevertheless, these existing approaches are orthogonal to GIANTREPAIR and potentially
can be combined with GIANTREPAIR for optimizing the constructed patch skeletons.

7.2.2 Extracting Templates from LLM. Recently, some works [100, 101] in the field of program synthesis have
also explored extracting templates with LLMs. Specifically, these works adjust the weights of various grammar
rules used for synthesizing programs by analyzing the content generated by LLMs. In essence, the templates
extracted from the LLM-generated programs are grammar rules applied for program generation. Different from
them, GIANTREPAIR derives program repair templates by directly abstracting the specific modifications made by
LLMs. It then generates executable patches by instantiating these templates with concrete program elements.

8 CONCLUSION

In this paper, we have proposed GIANTREPAIR, a novel automated program repair approach. Specifically, G1-
ANTREPAIR leverages LLM-generated patches for patch skeleton construction and constraining the patch space,
and then incorporates a context-aware skeleton instantiation process for generating high-quality patches tai-
lored to specific programs. We have conducted two large-scale experiments for evaluating the effectivenes of
GIANTREPAIR. The results demonstrated that it not only improved the correct fixes compared with pure LLMs,
but also outperformed the latest state-of-the-art APR tools.

ACKNOWLEDGMENTS

We thank the editors and anonymous reviewers for their constructive suggestions to help improve the quality
of this paper. This work was supported by the National Natural Science Foundation of China under Grant Nos.
62202324.

REFERENCES

[1] C.Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “Genprog: A generic method for automatic software repair,” leee transactions on
software engineering, vol. 38, no. 1, pp. 54-72, 2011.
[2] J. Xuan, M. Martinez, F. Demarco, M. Clement, S. L. Marcote, T. Durieux, D. Le Berre, and M. Monperrus, “Nopol: Automatic repair of
conditional statement bugs in java programs,” IEEE Transactions on Software Engineering, vol. 43, no. 1, pp. 34-55, 2016.
[3] X.-B.D.Le, D.-H. Chu, D. Lo, C. Le Goues, and W. Visser, “S3: syntax-and semantic-guided repair synthesis via programming by
examples,” in Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering, 2017, pp. 593-604.
[4] F.Long and M. Rinard, “Staged program repair with condition synthesis,” in Proceedings of the 2015 10th Joint Meeting on Foundations
of Software Engineering, 2015, pp. 166=178.
[5] S.Mechtaev,J. Yi, and A. Roychoudhury, “Angelix: Scalable multiline program patch synthesis via symbolic analysis,” in Proceedings of
the 38th international conference on software engineering, 2016, pp. 691-701.
[6] M. Martinez.and M. Monperrus, “Astor: A program repair library for java,” in Proceedings of the 25th international symposium on
software testing and analysis, 2016, pp. 441-444.
[7] X.-B.D.Le, D. Lo, and C. L. Goues, “History driven program repair,” 2016 IEEE 23rd International Conference on Software Analysis,
Evolution, and Reengineering (SANER), vol. 1, pp. 213-224, 2016. [Online]. Available: https://api.semanticscholar.org/CorpusID:8844190
[8] F.Longand M. Rinard, “Automatic patch generation by learning correct code,” in Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, 2016, pp. 298-312.
[9] Q.Xin and S. P. Reiss, “Leveraging syntax-related code for automated program repair,” in 2017 32nd IEEE/ACM International Conference
on Automated Software Engineering (ASE). IEEE, 2017, pp. 660-670.
[10] Y. Xiong, J. Wang, R. Yan, J. Zhang, S. Han, G. Huang, and L. Zhang, “Precise condition synthesis for program repair,” in 2017 IEEE/ACM
39th International Conference on Software Engineering (ICSE). 1EEE, 2017, pp. 416-426.
[11] F.Long, P. Amidon, and M. Rinard, “Automatic inference of code transforms for patch generation,” in Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering, 2017, pp. 727-739.
[12] J. Hua, M. Zhang, K. Wang, and S. Khurshid, “Towards practical program repair with on-demand candidate generation,” in Proceedings
of the 40th international conference on software engineering, 2018, pp. 12-23.

ACM Trans. Softw. Eng. Methodol.

https://api.semanticscholar.org/CorpusID:8844190

[13]
[14]
[15]
[16]
[17]
(18]
[19]
[20]
[21]

[22]

(23]

[24]

[25]
[26]
[27]

(28]

[29]

[30]
(31]
(32]
(33]
[34]
(35]
[36]

[37]

Hybrid Automated Program Repair by Combining Large Language Models and Program Analysis + 23

M. Wen, J. Chen, R. Wu, D. Hao, and S.-C. Cheung, “Context-aware patch generation for better automated program repair,” in Proceedings
of the 40th international conference on software engineering, 2018, pp. 1-11.

J. Jiang, Y. Xiong, H. Zhang, Q. Gao, and X. Chen, “Shaping program repair space with existing patches and similar code,” in Proceedings
of the 27th ACM SIGSOFT international symposium on software testing and analysis, 2018, pp. 298-309.

K. Liu, A. Koyuncu, D. Kim, and T. F. Bissyandé, “Tbar: Revisiting template-based automated program repair,” in Proceedings of the 28th
ACM SIGSOFT international symposium on software testing and analysis, 2019, pp. 31-42.

K. Liu, A. Koyuncu, D. Kim, and T. F. Bissyandeé, “Avatar: Fixing semantic bugs with fix patterns of static analysis violations,” in 2019
IEEE 26th International Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE, 2019, pp. 1-12.

A. Ghanbari, S. Benton, and L. Zhang, “Practical program repair via bytecode mutation,” in Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis, 2019, pp. 19-30.

J.Jiang, L. Ren, Y. Xiong, and L. Zhang, “Inferring program transformations from singular examples via big code,” in 2019 34th [EEE/ACM
International Conference on Automated Software Engineering (ASE). IEEE, 2019, pp. 255-266.

C. S. Xia, Y. Wei, and L. Zhang, “Automated program repair in the era of large pre-trained language models,” in Proceedings of the 45th
International Conference on Software Engineering (ICSE 2023). Association for Computing Machinery, 2023.

C.S.Xia, Y. Ding, and L. Zhang, “The plastic surgery hypothesis in the era of large language models,” in 2023 38th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 2023, pp. 522-534.

Z. Chen, S. Kommrusch, M. Tufano, L.-N. Pouchet, D. Poshyvanyk, and M. Monperrus, “Sequencer: Sequence-to-sequence learning for
end-to-end program repair,” IEEE Transactions on Software Engineering, vol. 47, no. 9, pp. 1943-1959, 2019.

T. Lutellier, H. V. Pham, L. Pang, Y. Li, M. Wei, and L. Tan, “Coconut: combining context-aware neural translation models using
ensemble for program repair;” in Proceedings of the 29th ACM SIGSOFT international symposium on software testing and analysis, 2020,
pp.- 101-114.

Y. Li, S. Wang, and T. N. Nguyen, “Dlfix: Context-based code transformation learning for automated program repair,” in Proceedings of
the ACM/IEEE 42nd international conference on software engineering, 2020, pp. 602-614.

Q. Zhu, Z. Sun, Y.-a. Xiao, W. Zhang, K. Yuan, Y. Xiong, and L. Zhang, “A syntax-guided edit decoder for neural program repair,” in
Proceedings of the 29th ACM joint meeting on European software engineering conference and symposium on the foundations of software
engineering, 2021, pp. 341-353.

N. Jiang, T. Lutellier, and L. Tan, “Cure: Code-aware neural machine translation for automatic program repair, in 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE). 1EEE, 2021, pp. 1161-1173.

H. Ye, M. Martinez, and M. Monperrus, “Neural program repair with execution-based backpropagation,” in Proceedings of the 44th
international conference on software engineering, 2022, pp. 1506-1518.

Q. Zhu, Z. Sun, W. Zhang, Y. Xiong, and L. Zhang, “Tare: Type-aware neural program repair,” in 2023 IEEE/ACM 45th International
Conference on Software Engineering (ICSE). IEEE, 2023, pp. 1443-1455.

M. Fu, C. Tantithamthavorn, T. Le, V. Nguyen, and D. Phung, “Vulrepair: a t5-based automated software vulnerability repair,” in
Proceedings of the 30th ACM joint european software engineering conference and symposium on the foundations of software engineering,
2022, pp. 935-947.

C. Xia and L. Zhang, “Less training, more repairing please: revisiting automated program repair via zero-shot learning,” Proceedings
of the 30th ACM joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering, 2022.
[Online]. Available: https://api.semanticscholar.org/CorpusID:250627519

S. Feng and C. Chen, “Prompting is all you need: Automated android bug replay with large language models,” in Proceedings of the 46th
IEEE/ACM International Conference on Software Engineering, 2024, pp. 1-13.

D. Guo, S. Lu, N. Duan, Y. Wang, M. Zhou, and J. Yin, “Unixcoder: Unified cross-modal pre-training for code representation,” arXiv
preprint arXiv:2203.03850, 2022.

E. Nijkamp, B. Pang, H. Hayashi, L. Tu, H. Wang, Y. Zhou, S. Savarese, and C. Xiong, “Codegen: An open large language model for
code with multi-turn program synthesis,” arXiv preprint arXiv:2203.13474, 2022.

Y. Wang, H. Le, A. D. Gotmare, N. D. Bui, J. Li, and S. C. Hoi, “Codet5+: Open code large language models for code understanding and
generation,” arXiv preprint arXiv:2305.07922, 2023.

T. Ahmed-and P. Devanbu, “Few-shot training llms for project-specific code-summarization,” in Proceedings of the 37th IEEE/ACM
International Conference on Automated Software Engineering, 2022, pp. 1-5.

S. D. Kolak, R. Martins, C. Le Goues, and V. J. Hellendoorn, “Patch generation with language models: Feasibility and scaling behavior,”
in Deep Learning for Code Workshop, 2022.

J. A. Prenner, H. Babii, and R. Robbes, “Can openai’s codex fix bugs? an evaluation on quixbugs,” in Proceedings of the Third International
Workshop on Automated Program Repair, 2022, pp. 69-75.

N. Jiang, K. Liu, T. Lutellier, and L. Tan, “Impact of code language models on automated program repair,” in 2023 I[EEE/ACM 45th
International Conference on Software Engineering (ICSE). IEEE, 2023, pp. 1430-1442.

ACM Trans. Softw. Eng. Methodol.

https://api.semanticscholar.org/CorpusID:250627519

24 .

[38]

(39]
[40]
[41]
[42]
[43]
[44]
[45]
[46]
[47]

(48]
[49]

[50]
[51]
[52]
(53]
[54]
[55]
[56]
[57]
(58]
[59]
[60]
[61]
[62]
[63]

[64]
[65]

Fengjie Li, Jiajun Jiang, Jiajun Sun, and Hongyu Zhang

Y. Wei, C. S. Xia, and L. Zhang, “Copiloting the copilots: Fusing large language models with completion engines for automated program
repair;” in Proceedings of the 31st ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software
Engineering, 2023, pp. 172-184.

Q. Zhang, C. Fang, T. Zhang, B. Yu, W. Sun, and Z. Chen, “Gamma: Revisiting template-based automated program repair via mask
prediction,” in 2023 38th IEEE/ACM International Conference on Automated Software Engineering (ASE). IEEE, 2023, pp. 535-547.

A. Silva, S. Fang, and M. Monperrus, “Repairllama: Efficient representations and fine-tuned adapters for program repair,” arXiv preprint
arXiv:2312.15698, 2023.

X. Gu, M. Chen, Y. Lin, Y. Hu, H. Zhang, C. Wan, Z. Wei, Y. Xu, and J. Wang, “On the effectiveness of large language models in
domain-specific code generation,” ACM Transactions on Software Engineering and Methodology, 2024.

K. Jin, C.-Y. Wang, H. V. Pham, and H. Hemmati, “Can chatgpt support developers? an empirical evaluation of large language models
for code generation,” in 2024 IEEE/ACM 21st International Conference on Mining Software Repositories (MSR). IEEE, 2024, pp. 167-171.
C. S. Xia and L. Zhang, “Keep the conversation going: Fixing 162 out of 337 bugs for $0.42 each using chatgpt,” arXiv preprint
arXiv:2304.00385, 2023.

R. Just, D. Jalali, and M. D. Ernst, “Defects4j: A database of existing faults to enable controlled testing studies for java programs,” in
Proceedings of the 2014 international symposium on software testing and analysis, 2014, pp. 437-440.

J.-R. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Monperrus, “Fine-grained and accurate source code differencing,” in Proceedings
of the 29th ACM/IEEE international conference on Automated software engineering, 2014, pp. 313-324.

Y. Ke, K. T. Stolee, C. Le Goues, and Y. Brun, “Repairing programs with semantic code search (t),” in 2015 30th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 2015, pp. 295-306.

A. Koyuncu, K. Liu, T. F. Bissyandé, D. Kim, J. Klein, M. Monperrus, and Y. Le Traon, “Fixminer: Mining relevant fix patterns for
automated program repair,” Empirical Software Engineering, vol. 25, pp. 1980-2024, 2020.

“Eclipse JDT Core,” https://www.eclipse.org/jdt/core/, Eclipse Foundation, 2024, accessed: 2023-08.

Z.Fan, X. Gao, M. Mirchev, A. Roychoudhury, and S. H. Tan, “Automated repair of programs from large language models,” in 2023
IEEE/ACM 45th International Conference on Software Engineering (ICSE). IEEE, 2023, pp. 1469-1481.

Y.-A. Xiao, C. Yang, B. Wang, and Y. Xiong, “Expressapr: Efficient patch validation for java automated program repair systems,” in
Proceedings of the 38th IEEE/ACM International Conference on Automated Software Engineering, 2023, pp. 1-4.

A. Radford,]J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever et al,, “Language models are unsupervised multitask learners,” OpenAl
blog, vol. 1, no. 8, p. 9, 2019.

T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language
models are few-shot learners,” Advances in neural information processing systems, vol. 33, pp. 1877-1901, 2020.

H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale et al,, “Llama 2: Open
foundation and fine-tuned chat models,” arXiv preprint arXiv:2307.09288, 2023.

R.Li, L. B. Allal, Y. Zi, N. Muennighoff, D. Kocetkov, C. Mou, M. Marone, C. Akiki, J. Li, J. Chim et al,, “Starcoder: may the source be
with you!” arXiv preprint arXiv:2305.06161, 2023.

B. Roziere, J. Gehring, F. Gloeckle, S. Sootla, I. Gat, X. E. Tan, Y. Adi, J. Liu, T. Remez, J. Rapin et al., “Code llama: Open foundation
models for code,” arXiv preprint arXiv:2308.12950, 2023.

M. Schifer, S. Nadi, A. Eghbali,and F. Tip, “An empirical evaluation of using large language models for automated unit test generation,”
IEEE Transactions on Software Engineering, 2023.

Z. Zheng, K. Ning, Y. Wang, J. Zhang, D. Zheng, M. Ye, and J. Chen, “A survey of large language models for code: Evolution,
benchmarking, and future trends,” arXiv preprint arXiv:2311.10372, 2023.

H. Ye and M. Monperrus, “Iter: Iterative neural repair for multi-location patches,” in Proceedings of the 46th IEEE/ACM International
Conference on Software Engineering, 2024, pp. 1-13.

Y. Xiong and B. Wang, “L2s: A framework for synthesizing the most probable program under a specification,” ACM Transactions on
Software Engineering and Methodology (TOSEM), vol. 31, no. 3, pp. 1-45, 2022.

J. Liu, C. S. Xia, Y. Wang, and L. Zhang, “Is your code generated by chatgpt really correct? rigorous evaluation of large language models
for code generation,” Advances in Neural Information Processing Systems, vol. 36, 2024.

X. Du, M. Liu, K. Wang, H. Wang, J. Liu, Y. Chen, J. Feng, C. Sha, X. Peng, and Y. Lou, “Evaluating large language models in class-level
code generation,” in Proceedings of the IEEE/ACM 46th International Conference on Software Engineering, 2024, pp. 1-13.

R. Pan, A. R. Ibrahimzada, R. Krishna, D. Sankar, L. P. Wassi, M. Merler, B. Sobolev, R. Pavuluri, S. Sinha, and R. Jabbarvand, “Lost
in translation: A study of bugs introduced by large language models while translating code,” in Proceedings of the IEEE/ACM 46th
International Conference on Software Engineering, 2024, pp. 1-13.

“Hugging face,” https://huggingface.co, 2023, accessed: 2023-10-06.

“Gpt3.5 api,” https://platform.openai.com/docs/models/gpt-3-5-turbo, 2023, accessed: 2023-05.

A. Holtzman, J. Buys, L. Du, M. Forbes, and Y. Choi, “The curious case of neural text degeneration,” arXiv preprint arXiv:1904.09751,
2019.

ACM Trans. Softw. Eng. Methodol.

https://www.eclipse.org/jdt/core/
https://huggingface.co
https://platform.openai.com/docs/models/gpt-3-5-turbo

[66]
[67]
[68]
[69]

[70]

[71]
[72]
[73]

(74]
[75]

[76]

[77]

(78]
[79]
(80]
(81]
(82]
(83]
(84]
(85]
(86]
(87]
(88]

(89]

[90]
[o1]

[92]

Hybrid Automated Program Repair by Combining Large Language Models and Program Analysis + 25

R. Abreu, P. Zoeteweij, and A. J. Van Gemund, “An evaluation of similarity coefficients for software fault localization,” in 2006 12th
Pacific Rim International Symposium on Dependable Computing (PRDC’06). IEEE, 2006, pp. 39-46.

A. Riboira and R. Abreu, “The gzoltar project: A graphical debugger interface,” in International Academic and Industrial Conference on
Practice and Research Techniques. Springer, 2010, pp. 215-218.

D. Zou, J. Liang, Y. Xiong, M. D. Ernst, and L. Zhang, “An empirical study of fault localization families and their combinations,” IEEE
Transactions on Software Engineering, vol. 47, no. 2, pp. 332-347, 2019.

J. Liang, R. Ji, J. Jiang, S. Zhou, Y. Lou, Y. Xiong, and G. Huang, “Interactive patch filtering as debugging aid,” in 2021 IEEE International
Conference on Software Maintenance and Evolution (ICSME), 2021, pp. 239-250.

Q. Xin and S. P. Reiss, “Identifying test-suite-overfitted patches through test case generation,” in Proceedings of the 26th ACM SIGSOFT
International Symposium on Software Testing and Analysis, ser. ISSTA 2017. New York, NY, USA: Association for Computing
Machinery, 2017, p. 226-236. [Online]. Available: https://doi.org/10.1145/3092703.3092718

Y. Xiong, X. Liu, M. Zeng, L. Zhang, and G. Huang, “Identifying patch correctness in test-based program repair;” in' 2018 IEEE/ACM 40th
International Conference on Software Engineering (ICSE), 2018, pp. 789-799.

S. H. Tan, H. Yoshida, M. R. Prasad, and A. Roychoudhury, “Anti-patterns in search-based program repair,” in Proceedings of the 2016
24th ACM SIGSOFT International Symposium on Foundations of Software Engineering, 2016, pp. 727-738.

H. Tian, Y. Li, W. Pian, A. K. Kaboré, K. Liu, A. Habib, J. Klein, and T. F. Bissyandé, “Predicting patch correctness based on the similarity
of failing test cases,” ACM Trans. Softw. Eng. Methodol., vol. 31, no. 4, 2022.

“Pricing of openai’s llms,” https://openai.com/api/pricing/, 2024, accessed: 2024-10-15.

Z.Qi, F. Long, S. Achour, and M. Rinard, “An analysis of patch plausibility and correctness for generate-and-validate patch generation
systems,” in Proceedings of the 2015 International Symposium on Software Testing and Analysis, ser. ISSTA 2015, 2015, p. 24-36.

R. K. Saha, Y. Lyu, H. Yoshida, and M. R. Prasad, “Elixir: Effective object-oriented program repair,” in 2017 32nd IEEE/ACM International
Conference on Automated Software Engineering (ASE), 2017, pp. 648-659.

K. Huang, X. Meng, J. Zhang, Y. Liu, W. Wang, S. Li, and Y. Zhang, “An empirical study on fine-tuning large language models of code
for automated program repair,” in 2023 38th IEEE/ACM International Conference on Automated Software Engineering (ASE). IEEE, 2023,
pp. 1162-1174.

N. Jiang, T. Lutellier, Y. Lou, L. Tan, D. Goldwasser, and X. Zhang, “Knod: Domain knowledge distilled tree decoder for automated
program repair,” in 2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE). IEEE, 2023, pp. 1251-1263.

H. Ye, M. Martinez, X. Luo, T. Zhang, and M. Monperrus, “Selfapr: Self-supervised program repair with test execution diagnostics,” in
Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering, 2022, pp. 1-13.

A. Ghanbari and L. Zhang, “Prapr: Practical program repair via bytecode mutation,” in 2019 34th IEEE/ACM International Conference on
Automated Software Engineering (ASE). 1EEE, 2019, pp. 1118-1121.

M. Martinez, T. Durieux, R. Sommerard, J. Xuan, and M. Monperrus, “Automatic repair of real bugs in java: A large-scale experiment
on the defects4j dataset,” Empirical Software Engineering, vol. 22, pp. 1936-1964, 2017.

L. Chen, Y. Pei, and C. A. Furia, “Contract-based program repair without the contracts,” in 2017 32nd IEEE/ACM International Conference
on Automated Software Engineering (ASE). IEEE, 2017, pp. 637-647.

“Gpt4o-mini api,” https://platform:openai.com/docs/models/gpt-4o-mini, 2024, accessed: 2024-10-15.

“simple-eval,” https://github.com/openai/simple-evals, 2024, accessed: 2024-10-15.

M. Chen, J. Tworek, H. Jun; Q. Yuan, H. P. d. O. Pinto,]J. Kaplan, H. Edwards, Y. Burda, N. Joseph, G. Brockman et al., “Evaluating large
language models trained on code,” arXiv preprint arXiv:2107.03374, 2021.

“Gpt4 api,” https://platform.openai.com/docs/models, 2024, accessed: 2024-10-15.

Y. Jiang, H. Liu, N. Niu, L. Zhang, and Y. Hu, “Extracting concise bug-fixing patches from human-written patches in version control
systems,” in IEEE/ACM 43rd International Conference on Software Engineering (ICSE 2021). Los Alamitos, CA, USA: IEEE Computer
Society, may 2021, pp. 686-698. [Online]. Available: https://doi.ieeecomputersociety.org/10.1109/ICSE43902.2021.00069

Y. Jiang, H. Liu, X. Luo, Z. Zhu, X. Chi, N. Niu, Y. Zhang, Y. Hu, P. Bian, and L. Zhang, “Bugbuilder: An automated approach to building
bug repository,” IEEE Transactions on Software Engineering, pp. 1-22, 2022.

Y. Jiang, H. Liu, Y. Zhang, W. Ji, H. Zhong, and L. Zhang, “Do bugs lead to unnaturalness of source code?” in Proceedings of the 30th ACM
Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering, ser. ESEC/FSE 2022. New
York, NY, USA: Association for Computing Machinery, 2022, p. 1085-1096. [Online]. Available: https://doi.org/10.1145/3540250.3549149
N. Parasaram, E. T. Barr, and S. Mechtaev, “Rete: Learning namespace representation for program repair,” in 2023 I[EEE/ACM 45th
International Conference on Software Engineering (ICSE). IEEE, 2023, pp. 1264-1276.

Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin, T. Liu, D. Jiang et al., “Codebert: A pre-trained model for
programming and natural languages,” arXiv preprint arXiv:2002.08155, 2020.

Y. Wang, W. Wang, S. Joty, and S. C. Hoi, “Codet5: Identifier-aware unified pre-trained encoder-decoder models for code understanding
and generation,” arXiv preprint arXiv:2109.00859, 2021.

ACM Trans. Softw. Eng. Methodol.

https://doi.org/10.1145/3092703.3092718
https://openai.com/api/pricing/
https://platform.openai.com/docs/models/gpt-4o-mini
https://github.com/openai/simple-evals
https://platform.openai.com/docs/models
https://doi.ieeecomputersociety.org/10.1109/ICSE43902.2021.00069
https://doi.org/10.1145/3540250.3549149

26 « Fengjie Li, Jiajun Jiang, Jiajun Sun, and Hongyu Zhang

[93] J. Andersen and J. L. Lawall, “Generic patch inference,” in 2008 23rd IEEE/ACM International Conference on Automated Software
Engineering, 2008, pp. 337-346.

[94] J. Andersen, A. C. Nguyen, D. Lo, J. L. Lawall, and S.-C. Khoo, “Semantic patch inference,” in 2012 Proceedings of the 27th IEEE/ACM
International Conference on Automated Software Engineering, 2012, pp. 382-385.

[95] N.Meng, M. Kim, and K. S. McKinley, “Lase: locating and applying systematic edits by learning from examples,” in 2013 35th International
Conference on Software Engineering (ICSE). 1EEE, 2013, pp. 502-511.

[96] R. Rolim, G. Soares, L. D’Antoni, O. Polozov, S. Gulwani, R. Gheyi, R. Suzuki, and B. Hartmann, “Learning syntactic program
transformations from examples,” in 2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE). IEEE, 2017, pp.
404-415.

[97] R. Bavishi, H. Yoshida, and M. R. Prasad, “Phoenix: Automated data-driven synthesis of repairs for static analysis violations,” in
Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, 2019, pp. 613-624.

[98] H. A.Nguyen, T. N. Nguyen, D. Dig, S. Nguyen, H. Tran, and M. Hilton, “Graph-based mining of in-the-wild, fine-grained, semantic
code change patterns,” in 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE). IEEE, 2019, pp. 819-830.

[99] N. Meng, M. Kim, and K. S. McKinley, “Sydit: Creating and applying a program transformation from an example,” in Proceedings of the
19th ACM SIGSOFT symposium and the 13th European conference on Foundations of software engineering, 2011, pp. 440-443.

[100] Y.Li J. Parsert, and E. Polgreen, “Guiding enumerative program synthesis with large language models,” in International Conference on
Computer Aided Verification. Springer, 2024, pp. 280-301.

[101] S.Barke, E. A. Gonzalez, S. R. Kasibatla, T. Berg-Kirkpatrick, and N. Polikarpova, “Hysynth: Context-free llm approximation for guiding
program synthesis,” arXiv preprint arXiv:2405.15880, 2024.

ACM Trans. Softw. Eng. Methodol.

	Abstract
	1 Introduction
	2 Motivating Examples
	3 Approach
	3.1 Skeleton Construction
	3.2 Patch Instantiation
	3.3 Patch Ranking and Validation

	4 Experimental Setup
	4.1 Research Questions
	4.2 Subjects
	4.3 Baselines and Metrics
	4.4 Implementation and Configuration

	5 Result Analysis
	5.1 RQ1: Overall Effectiveness for Improving LLMs in APR
	5.2 RQ2: Effectiveness Compared with Baselines
	5.3 RQ3: Contribution of Each Component in GiantRepair

	6 Discussion
	6.1 Unique Repairs Compared with 24 Existing APR Tools
	6.2 Comparing GiantRepair with GPT-4
	6.3 Data leakage
	6.4 Limitation
	6.5 Threats to validity

	7 Related Work
	7.1 Automated Program Repair
	7.2 Automated Code Template Extraction

	8 Conclusion
	Acknowledgments
	References

