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Deep learning (DL) techniques have attracted much attention in recent years and have been applied to
many application scenarios. To improve the performance of DL models regarding different properties, many
approaches have been proposed in the last decades, such as improving the robustness and fairness of DL
models to meet the requirements for practical use. Among existing approaches, post-training is an effective
method that has been widely adopted in practice due to its high efficiency and good performance. Nevertheless,
its performance is still limited due to the incompleteness of training data. Additionally, existing approaches
are always specifically designed for certain tasks, such as improving model robustness, which cannot be used
for other purposes.

In this paper, we aim to fill this gap and propose an effective and general post-training framework, which
can be adapted to improve the model performance from different aspects. Specifically, it incorporates a novel
model transformation technique that transforms a classification model into an isomorphic regression model
for fine-tuning, which can effectively overcome the problem of incomplete training data by forcing the model
to strengthen the memory of crucial input features and thus improve the model performance eventually. To
evaluate the performance of our framework, we have adapted it to two emerging tasks for improving DL
models, i.e., robustness and fairness improvement, and conducted extensive studies by comparing it with
state-of-the-art approaches. The experimental results demonstrate that our framework is indeed general as it
is effective in both tasks. Specifically, in the task of robustness improvement, our approach Dare has achieved
the best results on 61.1% cases (vs. 11.1% cases achieved by baselines). In the task of fairness improvement, our
approach FMT can effectively improve the fairness without sacrificing the accuracy of the models.
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1 INTRODUCTION

Deep learning (DL) techniques, due to their high effectiveness, have attracted much attention
from both academic researchers and industrial developers, and have been widely used in many
application scenarios, such as image processing [130, 134], machine translation [54, 76] and software
engineering [16, 67, 102, 119], etc. The typical working pipeline of DL techniques consists of three
major phases [21]. First, developers design and implement a neural network architecture of desired
functionality; then, a DL model will be trained over a set of training data with the implemented
network; finally, the trained model can be deployed for practical use. Due to the random nature of
model training involved by both training data and training process [144], some properties usually
cannot be guaranteed by the trained models even though they may be critically important, which
may risk DL models’ performance and reliability for practical use, such as causing ethical violations
or safety issues. As reported by existing studies [25, 90, 100], DL models, in practice, are fragile
when facing perturbations and thus easy to be attacked by hackers. For example, researchers from
Tencent Keen Security Lab successfully tricked the lane detection system of Tesla Model S with three
small adversarial sticker images, making it swerve into the wrong lane without any warnings or
precautions [1]. Additionally, AI systems also affect our daily lives with their inherent biases, such
as the existence of bias in AI chatbots, employment matching, automated legal aid for immigration
algorithms and so on [80]. With the increase in DL models’ adoption in more and more ethically
sensitive and safety-critical application scenarios, e.g., AI judge [96, 105], hiring [7], loaning [77],
autonomous driving [15, 69, 132, 143] and aircraft collision avoidance [52], it is emerging to improve
the performance of DL models regarding certain properties (e.g., fairness and safety) for producing
reliable results.

However, unlike traditional handcrafted programs that are deterministic with a fixed code logic
defined by a set of executable machine instructions, as aforementioned deep learning models are
built based on a set of input examples. That is, when providing a set of training data, a model with
a set of parameters will be learned according to the implemented neural network architecture,
which is expected to meet the functionality requirement, such as image classification. However,
since the number of input examples is limited and the complete input space is usually enormous or
infinite in practice (aka., incomplete specification issue in traditional software engineering tasks
like programming by examples [31–35, 45, 55, 60]), the learned model may not work well on unseen
inputs. In particular, it tends to produce incorrect results when facing inputs decorated with crafted
attacking features.

In order to improve the performance of DL models for practical use, many advanced approaches
have been proposed aiming at different properties. Specifically, to improve the safety, researchers put
forward a set of defensive approaches to enhance the robustness of DL models to combat adversarial
inputs in the last decade, which typically can be classified into two categories. The first category
aims at enhancing the robustness of the learned model itself with an offline training process, such as
defensive distillation [82], feature squeezing [118], adversarial training [28, 72, 89], and so on. On the
contrary, the other category aims at designing a detection method that can distinguish adversarial
inputs from benign ones [140]; then, each time a new input is provided, an online detection process
will be required. Similarly, to improve the fairness, many optimization techniques from different
perspectives and in different phases have been proposed aiming at reducing the bias in the learned
models, including optimizing the training data before model training [8, 20], optimizing the training
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process [23, 126], and fine-tuning already learned models [133, 141]. Although many approaches
have been proposed, they usually improve the fairness by largely sacrificing the accuracy of the
learned model. More importantly, different properties of DL models are always studied separately
in the literature, and there is no general technique that can fit them all. In this paper, we aim to fill
this gap by proposing a general framework that can be used for improving DL models’ performance
regarding different properties.
Specifically, our basic intuition is that the unsatisfactory performance of DL models is due to

their weak understanding of crucial input features, which makes them easy to be attacked or tricked
by less relevant features. However, how to improve the understanding of DL models to such crucial
features is indeed challenging since the interpretability of DL models is usually a mystery. Indeed,
some approaches try to perform a white-box optimization process during the model training, but
they need to change the architecture of the original models and conduct model training from
scratch [82], which is actually time-consuming. As a result, most existing approaches typically
work in a completely black-box fashion by feeding more training data for model fine-tuning [72, 89],
which is orthogonal to the white-box approaches. In other words, the underlying purpose behind
the black-box approaches is to improve model performance by enlarging the coverage of input
features through incorporating more training samples. The advantage of them is that they can
inherit the good performance of the learned models and have higher efficiency. In this paper, we
also target the second category that improves DL models by a pluggable post model training, but
with a novel finer-grained training strategy in a white-box fashion.

As aforementioned, training samples are limited in practice; as a result the models after fine-
tuning may still perform unsatisfactorily with unseen inputs. For example, DL models fine-tuned
by FGSM (Fast Gradient Sign Method) [28] (one widely-used fine-tuning method for improv-
ing model robustness) can still be easily attacked by a different attacking algorithm, e.g., C&W
(Carlini&Wagner) [11]. The reasons of the limited effectiveness of existing black-box fine-tuning
approaches are twofold: 1) The training effect is limited as they do not have enough understanding
of the model but simply augment the training data, where the crucial input features may not be
well captured and strengthened. As a consequence, the performance improvement of the model is
limited; 2) The improvement gained from a particular set of training examples cannot generalize
to other unseen inputs, i.e., weak generalizability. Therefore, the target of our framework is to
overcome these two major limitations. Particularly, in order to overcome the first limitation of
post-training approaches with data augmentation, we first transform the original classification
model into an isomorphic regression model, which inherits the underlying network architecture
of the classification model but incorporates a finer-grained loss function that is more sensitive to
small perturbations. In this way, the crucial input features can be better captured and strengthened
by suppressing irrelevant input features. On the other hand, to overcome the second limitation, we
put forward a novel data augmentation strategy conforming to the transformed regression model,
which is inspired by traditional delta debugging techniques [19, 124, 125]. It will force the model to
strengthen the memory of critical input features and ignore non-relevant features so as to be more
generalizable.
In summary, aiming at effectively improving the performance of DL models for meeting the

requirements of different properties, we propose a novel post-training framework in this paper,
which constitutes a model transformation technique and a delta-debugging-fashion data augmenta-
tion strategy. Specifically, the basic idea of our framework was originally proposed in our previous
work [138] for improving the universal robustness of DL models. Compared with the previous
version, in this paper we further generalize it into a post-training framework, and additionally
adapt it to a completely new application scenario, i.e., improving the fairness of DL models, for
which we design and implement a new data augmentation algorithm under this framework. Finally,
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we have conducted an extensive study to evaluate the performance of our framework for improving
both robustness and fairness of DL models by comparing it with a set of state-of-the-art approaches.
The experimental results demonstrate that our framework is indeed effective and general, where
it outperforms the best existing approaches in both application scenarios. Specifically, our ap-
proach Dare has achieved the best results on 61.1% cases (vs 11.1% cases achieved by the best
state-of-the-art baseline approach) in the task of robustness improvement, while in the task of
fairness improvement, our approach FMT can effectively improve the fairness without sacrificing
the accuracy of the models.

In summary, we make the following major contributions:
• We propose a novel and general post-training framework for improving the performance of
DL models via model transformation and data augmentation.
• We present a model transformation technique that can transform a classification model into
an isomorphic regression model, which preserves the effectiveness of the original model.
• We instantiate our framework for two distinct DL models’ performance improvement tasks,
i.e., improving robustness and fairness, for which we propose two data augmentation algo-
rithms according to our framework.
• We have implemented our approaches in two tools, named Dare and FMT for robustness
and fairness improvement respectively, and conducted extensive evaluations to demonstrate
the effectiveness of the proposed approaches.
• We make our implementations and all experimental data open-source to facilitate the replica-
tion and comparison in future studies: https://doi.org/10.5281/zenodo.10009069

The remainder of the paper is organized as follows. Section 2 introduces the background and
motivates our framework; Section 3 presents the overview of our framework; Section 4 and Section 5
present the adaptations and evaluations of our framework for improving the robustness and
fairness of deep learning models, respectively; Section 6 introduces the related work. Finally,
Section 7 discusses the difference fromKnowledgeDistillation, limitations and futurework; Section 8
discusses the threats to validity while Section 9 concludes the paper.

2 BACKGROUND ANDMOTIVATION

In this section, we take the robustness improvement task as an example to show the limitation of
existing approaches and motivate our research. Then, we introduce the background knowledge of
delta debugging [124, 125], which inspires our framework.

2.1 Limited Performance Improvement

As introduced, unlike traditional programs that constitute a sequence of deterministic machine
instructions, deep learning models are built over a set of training examples and can be typically
viewed as probabilistic decision processes according to the feature distribution among the fed
training examples. However, since the training data are usually limited and not complete, the
learned models may also produce unexpected outputs, especially when facing inputs decorated by
unseen features, which makes the learned model easy to be attacked by hackers. In this section,
we take the model robustness improvement task as the example to present the issues faced by
existing approaches. Specifically, we adopt the definition of Empirical Robustness from a previous
study [107] as the Model Robustness in this paper, which denotes the capability of the model to
defend against attacking inputs. It has been widely-used by existing studies [10, 73, 108, 109].

For example, Figure 1(a) presents a testing image of “dog” from the CIFAR10 dataset [61] in our
experiment, which can be correctly classified by a well-trained VGG16[93] modelM. Particularly,
we use the Gradient-weighted Class ActivationMap [88] (heatmap for short) to visualize the features
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(a) original (b) M (c) M𝐶&𝑊 (d) MDare

(e) C&W (f) M (g) M𝐶&𝑊 (h) MDare

(i) BIM (j) M (k) M𝐶&𝑊 (l) MDare

In the figure, (a) is the
original image from the CI-
FAR10 dataset, (e) and (i) are
two corresponding adversar-
ial images generated by C&W
and BIM, respectively. The
heatmaps visualize the predic-
tion results of different mod-
els on the three images. M
denotes the original model,
while M𝐶&𝑊 and MDare re-
spectively denote the mod-
els fine-tuned by adversarial
training method C&W and
our approach Dare.

Fig. 1. An example to show the weak universal robustness of existing approaches.

that dominate the prediction (i.e., Figure 1(b)). However, when it comes to the inputs decorated by
small attacking perturbations (Figure 1(e) and Figure 1(i)),M easily produces incorrect outputs. To
improve the model robustness and to defend against potential attacks, many approaches have been
proposed, among which adversarial training methods stand out due to their high effectiveness [74].
The underlying process is performing post model tuning over a set of samples generated by
specifically-designed algorithms, such as C&W [11] and BIM [64]. By incorporating new training
samples with particular types of unseen attacking features, the model can then identify and ideally
become immune to them. As a consequence, the upcoming inputs with similar attacking features
will be correctly discriminated and the model will produce the desired results. For instance,M𝐶&𝑊
can correctly classify the input image shown in Figure 1(e).
However, since different attacking algorithms may vary greatly, the improvement of model

robustness is actually limited. Specifically, models fine-tuned by a particular adversarial training
method hardly generalize to other attacking methods. For example,M𝐶&𝑊 still misclassifies the
input image shown in Figure 1(i). From the figures, we can see that though the attacking features
of C&W and BIM are different, they are in fact small and negligible from the perspective of human
beings. In other words, the learned model failed to capture the crucial features leading to the desired
prediction of the input image, making it easy to be attacked. Actually, it is not a special case, as
it will be shown in our evaluation (Section 4.3), model robustness trained by adversarial training
approaches will dramatically drop when facing unknown attacks. It is also a common limitation
of existing post-training-based model robustness improvement techniques. In the face of this
limitation, in this paper we aim at proposing a novel and more effective post-training framework,
which improves the performance of DL models by effectively strengthening the memory of crucial
input features learned by the models and so that the effects of irrelevant input features will be
significantly reduced. In this way, the model will have a larger possibility to produce the desired
prediction when facing different kinds of attacking methods. The last three images in Figure 1 show
the heatmaps ofMDare leading to the prediction results. We can see that our approach (Dare)
can effectively defend against different attacks and produce the correct results. As our evaluation
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shows (see Section 4.3), Dare can significantly improve the universal robustness of learned models
combating various adversarial methods.

Note that the post-training process of our framework is general as it is not specifically designed
to improve only the robustness of DL models. It can also be used to improve the other performance
of DL models by enhancing their understanding of crucial input features. In particular, new data
augmentation algorithms are needed for adapting our framework to new tasks as introduced in
Section 3.2. As shown in our final evaluation, it can effectively improve the fairness of DL models
as well. The reason is that our framework does not depend on any task specific features but
enhancing the DL models’ performance from the perspective of fine-grained model optimization
(to be presented in Section 3).

2.2 Motivation from Delta Debugging

Delta debugging was originally proposed by Zeller et al. [19, 124, 125]. It aims at finding the root
causes of bugs in traditional programs via isolation of potential error-prone states during program
running. Specifically, when given two similar test inputs, where one of them passes while the other
fails, a typical delta debugging algorithm inspects and compares the program states (e.g., values of
variables) during the running of the tests at some particular checkpoints, different states will be
reported as latent root causes for subsequent manual inspection. In this procedure, the passing test
performs as a reference that guides the process of finding and finally fixing the bug.

Inspired by this, we borrow the idea of delta debugging for model improvement. It is well known
that existing post-training techniques [133, 141] for model optimization rely solely on the final
prediction outputs (i.e., the classification labels, which are used for loss calculation). However, these
outputs are too coarse-grained and thus may not be sensitive enough to small input perturbations to
effectively guide the feature extraction, especially in classification tasks where correct predictions
may have a low probability. This indicates that the model failed to accurately discriminate the
input from other categories, making it vulnerable to attacks and easily influenced. On the contrary,
regression models can be more sensitive to input features since small input perturbations may
have a larger possibility to be propagated to and differ from the final output due to their finer-
grained ground truth compared with discrete classification labels. Formally, we consider a simple
regression model with 𝑛 input variables (𝑥1, 𝑥2, · · · , 𝑥𝑛) and one output variable 𝑦. The model can
be represented as:

𝑦 = 𝑓 (𝑤1 × 𝑥1 +𝑤2 × 𝑥2 + · · · +𝑤𝑛 × 𝑥𝑛 + 𝑏) (1)
where 𝑓 is a continuous function and𝑤𝑛 and 𝑏 are the weights and bias of the model. Given a small
perturbation in the input variable 𝑥𝑖 , denoted as 𝛿𝑖 , the output will be

𝑦 = 𝑓 (𝑤1 × 𝑥1 +𝑤2 × 𝑥2 + · · · +𝑤𝑖 × 𝑥𝑖 +𝑤𝑖 × 𝛿𝑖 + · · · +𝑤𝑛 × 𝑥𝑛 + 𝑏) (2)

By using the concept of partial derivatives, the sensitivity of the output variable 𝑦 with respect to
the input variable 𝑥𝑖 can be calculated as follows:

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =

���� 𝜕𝑦/𝜕𝑥𝑖𝛿𝑖/𝑥𝑖

���� (3)

where 𝜕𝑦/𝜕𝑥𝑖 is the partial derivative of 𝑦 with respect to 𝑥𝑖 . That is

𝜕𝑦/𝜕𝑥𝑖 = 𝑓 ′ (𝑤1 × 𝑥1 +𝑤2 × 𝑥2 + · · · +𝑤𝑖 × 𝑥𝑖 + · · · +𝑤𝑛 × 𝑥𝑛 + 𝑏) ×𝑤𝑖 (4)

However, since 𝑓 is a continuous function, 𝑓 ′ (∗) is bounded by a constant 𝑀 . Therefore, the
sensitivity of the output variable 𝑦 with respect to the input variable 𝑥𝑖 can be bounded as follows:

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ≤ 𝑀 ×𝑤𝑖

𝛿𝑖/𝑥𝑖
(5)
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This shows that the sensitivity of the output variable 𝑦 with respect to input variable 𝑥𝑖 is directly
proportional to the weight𝑤𝑖 and the ratio of the input perturbation 𝛿𝑖 to the original input variable
𝑥𝑖 . Similarly, for a classification model with the same 𝑛 input variables, the sensitivity of 𝑦 to
input 𝑥𝑖 can also be calculated by equations 3 and 4. However, since the output variable 𝑦 is a
discrete classification label, the sensitivity will be bounded by some constant𝑀 ′ but not directly
proportional to the weight𝑤𝑖 and the input perturbation 𝛿𝑖 . In other words, regression models are
generally more sensitive to small input perturbations compared to classification models.
As aforementioned, the delta debugging process finds incorrect program states by referring

to a passed test run. Similarly, if we can find the desired program states (i.e., neuron outputs
in the neural network scenario) like delta debugging as the reference for each training input in
classification model, the model training process will be more sensitive to input features and thus
can be more targeted to enhance the understanding of the model to crucial features. However,
since the structure of classification and regression models are different, how to guide the training
process of classification models in a finer-grained level like regression models and how to construct
the reference program states are still challenging. To achieve this goal, we propose a novel model
transformation technique that can automatically transform classification models into regression
models for training, and the trained parameters will be synchronized to the original classification
models in the end. This process is completely transparent to end users and will also preserve the
superiority of the original learned models like existing post-training methods. As for the reference
program states, we propose to construct them by mining model training history or taking them
from similar test inputs like traditional delta debugging to fit the requirements of certain tasks.
More details about the reference output construction process will be introduced when adapting
our framework for different tasks later (see Section 4.1 for robustness improvement and Section 5.1
for fairness improvement).

3 FRAMEWORK

In this section, we introduce the details of our post-training framework, which aims at effectively
improving the performance of DL models by strengthening the memory of crucial input features.
In this way, the irrelevant input features will not affect the prediction results. Figure 2 presents the
overview of our framework. From a high-level perspective, it consists of three stages, i.e., model
transformation, data augmentation, andmodel tuning and synchronization.Model transformation

takes the responsibility to construct an isomorphic regression model to the original classification
model via inheriting its underlying structure. Here we borrow the word “isomorphic” to indicate
that the structure of the transformed model is the same as the original model. Particularly, we
design a finer-grained loss function to perceive small input perturbations. Empowered by this,
the transformed regression model can be more sensitive to the difference in inputs and can be
more targeted to strengthen the crucial features leading to the correct prediction. However, since
the labels of the newly constructed model (continuous regression values) are different from the
original ones (discrete category labels), the original training data cannot be directly used for new
model training. In order to conform to the transformed model and provide reference program
states for inputs during model training, the second stage, data augmentation, performs training
data construction, which is a plugin component that can be adapted according to the training
requirements. Finally, the transformed model will be trained over the constructed training data
and then the fine-tuned model weights will be synchronized to the original classification model
by simple weight replacement to obtain a refined model.
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Fig. 2. An overview of our post-training framework for improving DL models’ performance.

3.1 Model Transformation

In order to improve the performance of deep learning models, the memory of crucial input features
should be tremendously strengthened so as to produce the correct prediction regardless of whatever
attacking features are seeded as long as the crucial features exist. This requires the model to capture
small input perturbations and suppress their impact on the final prediction. To accomplish this, we
propose to transform the original classification model into an isomorphic regression model in our
framework. The reason is that, as aforementioned, the finer-grained loss function in the regression
model (based on continuous values) is naturally more sensitive to input features compared with the
coarse-grained loss function in the classification model (based on category labels), which dominates
the optimization direction of the model during training (i.e., gradients are calculated according to
the loss). More concretely, the model transformation stage consists of two steps, i.e., model slicing

and loss function design.

3.1.1 Model Slicing. In fact, different training inputs may be contradictory, e.g., some inputs make
the parameter𝑤𝑖 in the model increase while some decrease𝑤𝑖 . In other words, the optimization
direction based on different input examples may contradict each other, making it hard to improve
the performance consistently for different inputs. To reduce the training effect over different inputs,
the model slicing process aims at identifying a set of crucial neurons and synapses (i.e., connections
between neurons) for different inputs, which are responsible for reflecting the pivotal input features
and determining the prediction, and thus may largely affect model performance on that input.
Therefore, tuning these crucial neurons and synapses is desirable. Compared with tuning all the
neurons and synapses, it confines the impact of the post-training on a smaller scale and reduces
the performance risk among different inputs.

Specifically, we employed NNSlicer [139], a state-of-the-art dynamic model slicing method. When
given a set of interested neurons N and a set of input samples, it computes a subset of neurons
and synapses that may significantly affect the outputs of those neurons in N . In the following,
we briefly introduce the process of NNSlicer to make the paper self-contained. It consists of three
phases, i.e, profiling, forward analysis and backward analysis.

In the profiling phase, NNSlicer feeds the whole training set D into the model and calculates the
mean activation value per neuron. Specifically, suppose 𝜎 ∈ D is an input sample, by feeding 𝜎 into
the model, an output value 𝑦𝑛 (𝜎) of neuron 𝑛 can be observed. Formally, 𝑦𝑛 (𝜎) =𝑚𝑒𝑎𝑛𝑚𝑖=1𝑦

𝑛
𝑖 (𝜎),

where 𝑦𝑛𝑖 (𝜎) is the 𝑖𝑡ℎ activation value and 𝑚 is the total number of activations of 𝑛. Particu-
larly, when 𝑛 is a neuron in a fully connected layer, 𝑚 equals to 1. On the contrary, 𝑚 is the
number of convolution operations performed by the filter if 𝑛 is in a convolutional layer. Then,
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the average activation value of neuron 𝑛 over the complete training set will be computed by
𝑦𝑛 (D) = Σ𝜎∈D𝑦𝑛 (𝜎)/|D|, which is viewed as the baseline output of neuron 𝑛 over the training set.

Then, in the forward analysis phase, when given a set of interested input samples D′, NNSlicer
computes the reaction difference of each neuron 𝑛 over the whole training set D by Formula 6,
which is regarded as the relative activation value of neuron 𝑛.

Δ𝑦𝑛 = 𝑦𝑛 (D′) − 𝑦𝑛 (D) (6)

Therefore, Δ𝑦𝑛 reflects the sensitivity of neuron 𝑛 to the particular inputs D′. Finally, in the
backward analysis phase, NNSlicer takes a set of interested neuronsN as the target and recursively
calculates the contributions of preceding neurons and synapses backward. Specifically, suppose
𝐶𝑂𝑁𝑇𝑅𝐼𝐵𝑛 is the cumulative contribution of neuron 𝑛, the contribution of neuron ℎ can be
computed by Formula 7, where Δ𝑦𝑛 and Δ𝑦ℎ are the relative activation values of neurons 𝑛 and
ℎ respectively calculated by Formula 6. Additionally, we use 𝑠 to denote the synapse connecting
neurons ℎ and 𝑛, and use𝑤ℎ𝑛 to denote the connection weight.

𝑐𝑜𝑛𝑡𝑟𝑖𝑏ℎ = 𝐶𝑂𝑁𝑇𝑅𝐼𝐵𝑛 × Δ𝑦𝑛 ×𝑤ℎ𝑛Δ𝑦
ℎ (7)

As a consequence, the cumulative contribution of neuron ℎ can be updated by 𝐶𝑂𝑁𝑇𝑅𝐼𝐵ℎ+ =

𝑠𝑖𝑔𝑛(𝑐𝑜𝑛𝑡𝑟𝑖𝑏ℎ), while the cumulative contribution of synapse 𝑠 can be calculated by𝐶𝑂𝑁𝑇𝑅𝐼𝐵𝑠+ =
𝑠𝑖𝑔𝑛(𝑐𝑜𝑛𝑡𝑟𝑖𝑏ℎ). Therefore, when given a modelM trained over dataset D, and the interested input
samples D′ as well as the output neurons N as slicing criterion, the cumulative contribution
reflecting the importance of each neuron and each synapse to N can be calculated.
According to the above process, when given the input samples and the targeted neurons, the

contribution of each neuron and their connections can be calculated. In order to obtain the most
accurate model slicing for model updating (will be presented in Section 3.3), we can take the 𝑞%
synapses with the largest cumulative contributions as the key synapses, and then the neurons they
are connecting will be regarded as the key neurons. This process is determined by the following
two observations. First, synapses are more fine-grained than neurons since one neuron usually
associates with a large number of synapses, while on the contrary, one synapse merely connects
two neurons. Second, the larger the cumulative contribution is, the more important the synapse
is. Therefore, when instantiating our framework for certain tasks, the input samples and targeted
neurons are required to be given, and the hyper-parameter 𝑞% should be configured.

3.1.2 Loss Function Design. Loss function is the key to measuring the goodness of predictions
during model training. A well-designed loss function can greatly improve the performance of
learned models. Typically, different loss functions are appropriate for particular types of models. For
example, Cross-Entropy (CE) is usually used in classification models, while Mean Square Error (MSE)

is widely employed by regression models. Compared with classification models, regression models
are in general more sensitive to small perturbations (refer to Section 2.2), and more suitable for fine-
grained model tuning. Therefore, to better perceive small input perturbations for suppression and
strengthen the memory of crucial input features, our framework inherits the underlying structure
of the original classification model and transforms it into an isomorphic regression model with a
specifically-designed novel loss function.

Specifically, when given a classification modelM comprising 𝑟 (convolutional or dense) layers,
denoted asM := ⟨𝑙1, 𝑙2, · · · , 𝑙𝑟 ⟩, our framework transforms it into a new modelM𝑇 by removing
the last 𝑝 layers inM, i.e.,M𝑇 :=

〈
𝑙1, 𝑙2, · · · , 𝑙𝑟−𝑝

〉
, where 0 ≤ 𝑝 < 𝑟 . Then, it leverages the outputs

of model slicing for loss function building, which are a set of crucial neurons that are responsible
for model performance improvement. We use N𝑐

𝑙𝑖
to denote the crucial neurons from layer 𝑙𝑖 for a

set of interested inputs 𝑐 , which can be of the same classification labels or include the same input
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features. The selection of the input 𝑐 is decided according to the application requirements. Then,
the regression loss function of transformed modelM𝑇 is defined by Formula 8, where 𝑦𝑛

𝑜𝑟𝑎𝑐𝑙𝑒
(𝜎)

denotes the corresponding gold standard activation value of neuron 𝑛 under input 𝜎 . Particularly,
𝑦𝑛
𝑜𝑟𝑎𝑐𝑙𝑒

(𝜎) is the reference of expected output, the detailed construction process will be introduced
in the data augmentation procedure (Section 3.2).

L𝑜𝑠𝑠 (𝜎) =

∑
𝑛∈N𝑐

𝑙𝑟−𝑝
(𝑦𝑛 (𝜎) − 𝑦𝑛

𝑜𝑟𝑎𝑐𝑙𝑒
(𝜎))2

|N𝑐
𝑙𝑟−𝑝
| (8)

From the formula, we can find that the loss function is determined by two arguments, the crucial
neurons extracted from model slicing and the layer chosen for observation. It is intuitive that the
neuron is closer to the output layer, its output value embeds more comprehensive information of
input features, whichwill dominate the classification result. Therefore, with the aim of strengthening
the memory of input features, our framework makesM𝑇 preserve as many layers in the original
model as possible. As a consequence, it takes the penultimate layer inM as the output layer (i.e.,
𝑙𝑟−𝑝 ) of the transformed modelM𝑇 , i.e., we set the default value of 𝑝 as 1. Particularly, if the layer
taken has no trainable parameters, e.g., a dropout layer, the framework will take its preceding
one until reaching a layer associated with a set of trainable parameters. In fact, it can be flexibly
configured on demand in practical use.

Therefore, when providing the gold standard outputs, modelM𝑇 can be tuned according to the
calculated loss. Particularly, compared with the original classification model, the transformed model
M𝑇 will largely benefit from the newly designed loss function in two aspects. First,M𝑇 is more
sensitive to small perturbations under the aid of a regression loss, and thus can be more effectively
tuned. Second, since the losses are calculated based on a subset of neurons that largely affect the
prediction results of the training inputs, the parameter tuning process will be more effective. In
addition, updating a subset of parameters may also potentially reduce its effects on predictions for
different training inputs.

3.2 Data Augmentation

In order to strengthen the memory of crucial input features, the classification model will be
transformed into a regression model according to the previous process. However, since the loss
function has been changed, the original training data cannot apply anymore due to the different
training labels, i.e., from classification labels to regression values. Therefore, the data augmentation
process is to fill this gap by constructing new training data for the transformed regression model.
In fact, the basic idea of the data augmentation strategy in our framework is simple and intuitive:
finding more effective isomorphic regression models for certain inputs (e.g., history models in the

training process) as the reference and then collecting the corresponding prediction outputs of desired

neurons. It defines a data augmentation paradigm to conform to the transformed model in our
framework. Note that this paradigm guarantees the collected outputs will make the original model
produce correct predictions with high confidence. The reason is straightforward. As introduced in
Section 3.1.2, the targeted layer is the last one that contains trainable parameters in the model. In
other words, the functionality of the removed layers by our model transformation can be viewed
as a constant function 𝑓 whose output will not change throughout the whole training process
as long as the input of 𝑓 does not change. Therefore, by using the outputs producing higher
prediction confidence as the training reference, the trained model is expected to produce the same
prediction confidence. However, how to find such regression models can be different according to
the requirements of performance improvement. For example, a model achieving good effectiveness
in terms of robustness may still perform unsatisfactorily for fairness improvement. Therefore, the
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concrete algorithms should be specifically designed and adapted accordingly when instantiating
the framework for certain downstream model improvement tasks. Particularly, as they will be
presented in Sections 4.1 and 5.1, we have designed two algorithms for robustness and fairness
improvement, respectively, by taking the task characteristics into account.

3.3 Model Tuning and Synchronization

In the first two stages of our framework, an isomorphic regression model M𝑇 to M and its
corresponding training set T are obtained. The last stage is fine-tuning modelM𝑇 over T , and
finally synchronizing the optimized model M𝑇 back to M. As the optimized model M𝑇 can
better capture the input features, the modelM after synchronization is expected to inherit its
original superiority (e.g., high accuracy) from previous training and be improved regarding certain
properties, such as better robustness to defend against diverse attacks.

In fact, fine-tuning of well-trained models is widely used in many research areas, such as Natural
Language Processing (NLP) and Computer Vision (CV). It has been proved effective in further
improving model performance with high efficiency [47, 91]. However, compared with the traditional
fine-tuning, we would like to highlight two major differences in our framework. First, as introduced
in Section 3.1.2, the loss calculation of different inputs can be different due to the discrepancy of
the key neuron set N𝑐

𝑙−𝑝 in Formula 8. Second, during the fine-tuning process, not all synapse (or
connection) weights in the modelM𝑇 will be updated in back-propagation. Instead, only a subset
of synapses that are chosen in the model slicing is considered. These two optimizations will largely
benefit the effectiveness of our framework in practice. On the one hand, they restrain the model
tuning to a smaller scale, restraining the negative effects on the original model. On the other hand,
the tuning process will be more targeted, satisfying our requirement of strengthening the memory
of key input features for model performance improvement. As it will be shown in our empirical
evaluation, these strategies are indeed effective and yield much better results.
After model tuning, some connection weights in modelM𝑇 will be optimized. To make the

original modelM inherit the superiority from this process, our framework will synchronize those
optimized weights toM via simple value replacement. Since modelM𝑇 is an isomorphism toM,
this process is clear and straightforward.

4 TASK I: IMPROVING DL MODELS’ ROBUSTNESS – DARE

To evaluate the performance of our framework, we first adapt it to the task of DL models’ robustness
improvement. As discussed in the introduction, improving the robustness of DL models is critically
important in practice, especially in safety-critical application scenarios. Therefore, it can show the
practical value of our framework to study its performance in this task. Specifically, we propose a
novel data augmentation algorithm by following the paradigm proposed in Section 3.2 for adapting
the framework to this task, where we find the reference models from the training history for
training data construction. We have also implemented it in a tool, named Dare. Next, we will
introduce the details of the data augmentation algorithm in Section 4.1, and then evaluate the
performance of Dare in Sections 4.2 and 4.3.

4.1 Data Augmentation in Dare

As introduced in Section 3.2, the target of the data augmentation is to provide reference outputs for
the transformed regression model as reference during the training process. To meet the require-
ment of effectively improving the robustness of DL models’ robustness, we propose a novel data
augmentation algorithm by mining the model training history, which is inspired by traditional
delta debugging. The basis of our algorithm is, given an input sample, different historical models
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possibly produce diverse outputs, and the model producing the correct classification with the
highest confidence can be viewed as the gold reference since the higher confidence indicates better
understanding of input features of the input, and thus its output can be taken as the gold standard
for guiding the model tuning. Note that although this process does not generate completely new test
inputs but reuses the original training data, the labels of those collected inputs are actually newly
generated based on the historical models. Therefore, we also call this process “data augmentation”
to make it consistent with our framework.

Algorithm 1 Data augmentation by mining historical models in Dare
Require: M: a set of historical models,M: the model for robustness improvement, D: a set of input samples

𝑙 : targeted layer (a.k.a. the output layer of the transformed regression modelM𝑇 ).
Ensure: T : training data forM𝑇

1: for each input 𝜎 in D do

2: M𝑏𝑒𝑠𝑡 ← 𝑁𝑜𝑛𝑒 ⊲ Model with best prediction result
3: 𝑔𝑡 ← ground truth label of 𝜎

4: 𝑁
𝑔𝑡

𝑙
← key neurons at layer 𝑙 for class 𝑔𝑡

5: ⟨𝑙𝑎𝑏𝑒𝑙, 𝑐𝑜𝑛𝑓 ⟩ ← M .𝑝𝑟𝑒𝑑𝑖𝑐𝑡 (𝜎)
6: if not 𝑔𝑡 .𝑒𝑞𝑢𝑎𝑙𝑠 (𝑙𝑎𝑏𝑒𝑙) then
7: 𝑐𝑜𝑛𝑓 ← 0 ⊲ Minimal confidence if incorrect
8: end if

9: for each history modelM𝑖 inM do

10: ⟨𝑙𝑎𝑏𝑒𝑙𝑖 , 𝑐𝑜𝑛𝑓𝑖 ⟩ ← M𝑖 .𝑝𝑟𝑒𝑑𝑖𝑐𝑡 (𝜎)
11: if 𝑔𝑡 .𝑒𝑞𝑢𝑎𝑙𝑠 (𝑙𝑎𝑏𝑒𝑙𝑖 ) && 𝑐𝑜𝑛𝑓𝑖 > 𝑐𝑜𝑛𝑓 ) then
12: M𝑏𝑒𝑠𝑡 ←M𝑖 ⊲ Update model and confidence
13: 𝑐𝑜𝑛𝑓 ← 𝑐𝑜𝑛𝑓𝑖
14: end if

15: end for

16: ifM𝑏𝑒𝑠𝑡 is not 𝑁𝑜𝑛𝑒 then

17: 𝑌 𝑙 (𝜎) ← {𝑦𝑛 (𝜎) |𝑛 ∈ N𝑔𝑡

𝑙
} ⊲ Neuron outputs ofM𝑏𝑒𝑠𝑡

18: T ← T ∪
〈
𝜎,𝑌 𝑙 (𝜎)

〉
⊲ Add into training set

19: end if

20: end for

21: return T

Formally, suppose the historical models during the training of modelM are recorded asM =

{M1,M2, · · · ,M𝑡 }, whereM𝑖 represents the historical model in the 𝑖𝑡ℎ training iteration (e.g.,
epoch), and 𝑡 is the total number of training iterations, i.e.,M =M𝑡 . Specifically, to ensure the
reliability of the collected gold standard and avoid randomness due to the instability of pre-mature
models, Dare adopts the latest 𝑡/2 historical models inM, which can already make relatively stable
predictions (i.e., the accuracy and the loss nearly converge). Particularly, we useM𝑖 .𝑝𝑟𝑒𝑑𝑖𝑐𝑡 (𝜎) to
denote the output of modelM𝑖 when fed with input sample 𝜎 . The output is a pair ⟨𝑙𝑎𝑏𝑒𝑙, 𝑐𝑜𝑛𝑓 ⟩,
representing the predicted label 𝑙𝑎𝑏𝑒𝑙 with confidence 𝑐𝑜𝑛𝑓 . In particular, the confidence 𝑐𝑜𝑛𝑓
denotes the predicted probability of the given input to be label label, which is usually calculated
by a Softmax function [36, 62, 93, 99] in classification models. According to these definitions, we
present the detailed data augmentation process of Dare in Algorithm 1. When providing an input
sample 𝜎 , Dare compares the prediction results of different historical models, and records the
historical model if it can produce the desired result with the highest confidence (lines 9-15). If such
a best modelM𝑏𝑒𝑠𝑡 exists (line 16), a profiling process will be performed and the outputs of crucial
neurons in the targeted layer 𝑙 will be extracted for input 𝜎 (line 17). Finally, the input sample 𝜎
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Table 1. Basic information of subjects used to evaluate the performance of Dare

Model VGG16 VGG19 Alexnet
Dataset CIFAR10 SVHN FM CIFAR10 SVHN FM CIFAR10 SVHN FM

Size (MB) 256.9 256.9 245.8 297.7 297.4 256.7 73.6 73.6 63.0
Parameters 33.6M 33.6M 26.6M 39.0M 39.0M 33.6M 9.6M 9.6M 8.1M
Accuracy(%) 88.7 94.3 91.1 90.6 93.9 90.2 83 93.3 90.0

and corresponding neuron outputs will be collected (line 18) and returned (line 21). Specifically,
𝑌 𝑙 (𝜎) denotes the outputs of neurons in layer 𝑙 when fed with 𝜎 , they will play as the gold standard
outputs (i.e., 𝑦𝑛

𝑜𝑟𝑎𝑐𝑙𝑒
(𝜎)) used in Formula 8.

In this way, when providing a set of input samples D for the original classification modelM,
they will be automatically transformed into a set of training data T by Dare for the transformed
regression modelM𝑇 . Since the gold standard outputs for training samples in T can make some
historical modelM𝑖 produce the correct result with higher confidence, they are reasonably regarded
as a better representation of input features, and thus tend to provide good guidance during model
tuning for its isomorphic regression modelM𝑇 . Additionally, the specifically-designed loss function
enables a more fine-grained optimization target of feature extraction and promotes the consolidation
of the memories of crucial input features.

4.2 Experiment Setup of Dare

In this evaluation, we investigate the performance of Dare by answering the following research
questions.
• RQ1: How effective is Dare to improve model robustness?

• RQ2: How much does the model transformation contribute to the effectiveness of Dare?

• RQ3: How effective is the data augmentation algorithm in Dare?

• RQ4: How does Dare perform in terms of efficiency?

4.2.1 Dataset and Models. To evaluate the performance of Dare extensively, we employed 3
widely-used datasets from prior studies [17, 40, 44, 86, 110], i.e., CIFAR10 [61], SVHN [79] and
Fashion-MNIST [116]. Furthermore, to validate the generality of Dare, we employed 3 different
neural network architectures in the experiment. They are Alexnet [62], VGG16 [93] and VGG19 [93],
all of which are commonly used in previous studies [3, 101]. Particularly, in our experiment, each
network will be trained over the above three datasets, and thus we finally obtain 9 different models
for the subsequent study. More concretely, for each dataset, we evenly divide the training data into
two parts, one of which is used for model training (actual training data), while the other one is
used for model selection (validation data), then a grid search will be performed to obtain the best
models, which are the subjects for robustness improvement. We have listed the details of those
learned models in Table 1, including the size of learned models, the total number of parameters,
as well as the testing accuracy over the provided testing data associated with the corresponding
dataset.

4.2.2 Baseline Approaches. Since Dare targets to improve the robustness of DL models via an
offline training process, which is orthogonal to the online detection techniques. Therefore, we take
four widely-used adversarial training methods as the baselines, i.e., C&W (Carlini&Wagner) [11],
FGSM (Fast Gradient Sign Method) [28], JSMA (Jacobian-based Saliency Map Attack) [81] and PGD
(Project Gradient Descent) [74], which are state-of-the-art for improving adversarial robustness of
DL models [100] through offline training on adversarial examples. Note that we also employed BIM
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(Basic Iterative Methods) [64] in our previous paper [138] for comparison. In this paper, we omitted
it to save space as it is essentially the same as PGD but with a different initialization strategy [89].
It was also evident in our previous paper that BIM is much less effective than PGD. Additionally,
Usman et al. [106] recently proposed NNRepair, which leverages constraint solving to improve
the robustness of deep neural networks. We also compared our approach with it. However, we
failed to adapt it to our subjects due to configuration errors. To avoid implementation bias, we
adopted the experimental results of NNRrepair from its original paper [106] directly for comparison.
Specifically, the model architecture is a 15-layer CNN network with 890k trainable parameters,
the training dataset is CIFAR10, and the adversarial technique is FGSM. The reason we choose
CIFAR10 and FGSM is that they are both used by NNRepair and our study. In this way, it can ease
the comparison and reduce the implementation bias by reusing the results of NNRepair.

In addition,Dare incorporates the superiority of twomajor components. The first one is themodel
transformation (including model slicing and a finer-grained loss function) from our framework,
while the second one is the data augmentation algorithm specifically designed for robustness
improvement. To evaluate their effectiveness, we also compare the results with a set of variants of
Dare through an ablation study. The details of the variants are listed as follows.

Dare−𝑠 removes the model slicing process from Dare and updates all the connection (synapse)
weights between any neurons in the transformed modelM𝑇 . In this way, the loss function in
Formula 8 will degenerate to the traditional MSE loss because N𝑐

𝑙𝑟−𝑝
will include all neurons in

the layer 𝑙𝑙−𝑝 .
Dare−𝑠𝑙 further replaces the loss function inM𝑇 with the original loss inM on the basis of

Dare−𝑠 . Actually, Dare−𝑠𝑙 removes the model transformation component completely from
Dare, i.e.,M𝑇 is the same asM, but merely employs the same training data for model tuning.

Dare𝑙𝑎𝑠𝑡 is another variant for evaluating the effectiveness of our loss function. Dare𝑙𝑎𝑠𝑡 selects
the last output layer of the deep learning models as the target layer (i.e., 𝑝 = 0 in Formula 8). In
other words, Dare𝑙𝑎𝑠𝑡 computes the losses based on the predicted probability of the target label
for classification models in our experiment.

Dare𝑟𝑎𝑛𝑑 is the variant for evaluating the effectiveness of the data augmentation algorithm inDare.
It fully inherits the model transformation process in Dare, and then fine-tunes the transformed
model over the same number of randomly selected input samples as Dare. Specifically, the
process of lines 9-15 in Algorithm 1 will be replaced by a random selection.

4.2.3 Procedure and Measurement. Following previous studies [51, 101], we apply the four adver-
sarial training (attacking) algorithms explained in Section 4.2.2 to generate a set of input samples
according to the original model to mimic the unknown attacking inputs, and then the performance
of fine-tuned models will be evaluated on them. Specifically, each algorithm will generate 5000
input samples per model listed in Table 1 (9 models in total) as the corresponding testing data, and
we use the Empirical Robustness proposed byWang et al. [107] to measure model robustness, which
is defined as the testing accuracy over the attacking inputs. The existing study [113] also proposed
the metric of CLEVER score for robustness measurement. However, due to its heavy computation
cost (taking thousands of seconds to calculate a CIFAR10 example [140]), it is not suitable for such
a large-scale study. Particularly, to exhibit the universal robustness of DL models, every fine-tuned
model will be finally tested on all the attacking inputs generated by the four algorithms. Finally,
we have repeated all the experiments 9 times to reduce the effects of randomness in model training
and increase the reliability of the results. Then, we present the average value for comparison.

4.2.4 Implementation and Configuration. We have implemented our approach atop the widely-used
deep learning framework Keras 2.3.1 and Tensorflow 1.1.1 in Python. We conduced our experiment
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Table 2. Performance comparison between Dare and baselines regarding Empirical Robustness (i.e., test

accuracy/%) when attacking by different methods.

Model Dataset C&W FGSM JSMA PGD
Dare C&W FGSM JSMA PGD Dare C&W FGSM JSMA PGD Dare C&W FGSM JSMA PGD Dare C&W FGSM JSMA PGD

VGG16
CIFAR10 91.9 76.0 54.8 76.0 71.2 74.3 61.4 55.6 56.4 55.7 84.9 73.7 52.1 80.6 72.2 83.3 65.3 54.2 75.0 81.0
SVHN 94.5 81.6 82.7 77.4 83.6 81.3 61.0 74.1 61.6 67.4 83.7 65.1 73.1 72.0 73.6 85.7 71.2 79.8 74.1 80.5
FM 81.1 83.2 67.4 81.7 75.9 65.5 65.9 70.8 66.8 83.6 71.2 70.6 74.5 85.3 85.0 65.3 64.3 63.6 64.8 69.0

VGG19
CIFAR10 42.7 67.8 45.1 58.4 61.4 73.2 60.6 63.0 58.3 63.3 72.2 72.7 83.6 73.1 72.8 88.7 69.8 67.6 73.3 80.9
SVHN 83.1 61.6 58.7 57.0 60.7 86.3 61.5 72.6 63.5 67.5 87.6 69.2 69.3 68.4 71.1 89.6 67.6 79.7 74.1 80.4
FM 79.3 86.1 66.4 66.8 76.2 74.2 71.5 77.4 76.5 77.1 76.0 82.9 77.5 74.9 76.2 71.4 72.8 69.3 76.3 74.1

Alexnet
CIFAR10 46.5 34.1 39.5 36.9 36.6 67.8 52.7 55.5 55.2 54.4 61.3 56.5 56.1 63.4 63.9 82.4 60.9 62.8 67.4 69.0
SVHN 67.6 58.6 49.9 69.3 63.4 71.6 57.1 65.5 68.2 69.9 80.8 68.3 71.4 81.1 77.8 78.4 68.2 70.3 73.8 77.8
FM 76.7 54.6 80.7 86.1 86.8 71.4 66.2 63.6 61.8 66.1 85.2 79.9 55.5 81.0 80.7 85.0 80.8 54.7 68.9 80.2

on a server with Ubuntu 18.04, equipped with 128GB RAM and a processor of Intel(R) Xeon(R)
E5-2640 that has 10 cores of 2.40GHz.
Regarding the configuration of our framework in Dare, we perform the model slicing process

by classes, i.e., we identify the crucial neurons for different classification categories to reduce the
training effects over different classes. We set the default value of 𝑞% as 95% for model slicing via
a small pilot study. That is Dare will ignore 5% synapses (corresponding to the parameters of
connections) in the original model during parameter updating per each class. Note that though it is
a small percentage, the numbers of parameters involved are relatively large. According to the model
details shown in Table 1 the number of parameters ignored by Dare ranges from 0.4M to 1.95M. We
will investigate the effect of 𝑞% on the performance of Dare in our evaluation. Additionally, Dare
collects data for model tuning from the validation set of the original model (i.e., D in Algorithm 1),
while the competitors will generate adversarial samples by corresponding algorithms. Specifically,
each adversarial training method will generate the same number of samples as the original training
set, 10,000 of which are used for validation and testing (5,000 for each), while the remaining are left
for model tuning. Dare will correspondingly collect the same number of samples (if possible) from
the validation set and collect the reference output for each input sample according to Algorithm 1
for model tuning and validation. Finally, we have conducted an extensive model tuning process
for each baseline approach by a grid search and take their best configurations for the subsequent
experiment, where we set the learning rate 𝑟 ∈{1e-3, 1e-4, 1e-5, 1e-6} and batch size as 128 and
training epoch as 20 for balancing effectiveness and efficiency [2, 22, 121]. As an exception, during
the model tuning process, the model accuracy over the original testing data may dramatically drop,
to make the robustness improvement meaningful, we confine the decline of this accuracy to no
more than 10%, which is a reasonable constraint for practical use. The detailed configurations can
be found in our open-source repository.

4.3 Result Analysis of Dare

4.3.1 [Robustness] RQ1: Overall Effectiveness of Dare. As introduced, we evaluated the overall
effectiveness of Dare over 9 different models by comparing it with four state-of-the-art adversarial
training approaches. The results are presented in Table 2. In the table, the first two columns list the
architectures of models and datasets for model training, while the subsequent columns are divided
into four blocks, each of which represents the testing results corresponding to a certain adversarial
testing method for different model tuning approaches. For example, the first block lists the testing
accuracies for Dare and the four comparing adversarial training methods respectively (i.e., C&W,
FGSM, JSMA and PGD) over the testing samples generated by C&W. In particular, to ease the
presentation, we useM𝐴

𝐷 to represent the learned model of architecture 𝐴 over training set 𝐷 , such
asM𝑉𝐺𝐺16

𝐶𝐼𝐹𝐴𝑅10 , and call a “Testing Scenario” (TS for short) as testing a certain model (e.g.,M𝑉𝐺𝐺16
𝐶𝐼𝐹𝐴𝑅10 )
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Fig. 3. Model accuracy improvement (%) over the original testing data after fine-tuning by each method.

over a set of testing inputs generated by a particular attacking algorithm (e.g., C&W). As a result,
in total there are 36 TSs (9 models × 4 attacking algorithms). We also highlighted the best result
per each TS. As aforementioned, to reduce the effect of randomness involved by trained models,
we repeated our experiment 9 times on all 36 TSs. Please note that the results presented here are
the average values of the repeated experiments. From the table we can see that Dare significantly
outperforms all the baseline competitors. Specifically, Dare has achieved the highest accuracy
in 22/36 TSs, and the improvement ranges from 0.8% to 67.7%, and the average improvement is
22.3% over all the 22 TSs. While the second optimal, i.e., C&W, JSMA and PGD, only achieves the
highest accuracy in 4/36 TSs. Furthermore, we also performed the Wilcoxon signed-rank test [114]
at the significance level of 0.05 to investigate whether our results significantly differ from those
of the comparative baseline approaches in each TS. The results show that in the 22 TSs where
Dare outperforms all the baselines, the differences between our approach and the baselines are
statistically significant in 21/22 cases (except forM𝐴𝑙𝑒𝑥𝑛𝑒𝑡

𝑆𝑉𝐻𝑁 over the attacking inputs generated by
PGD since the p-value is 0.055.) with all p-values much smaller than 0.05, i.e., p-value<4e-03 for
all cases. However, Dare may also underperform the baselines in some cases. In particular, Dare
performs worse than all the baselines in 3/36 TSs, where the differences between our approach and
the baselines are statistically significant in 2/3 TSs (i.e.,M𝑉𝐺𝐺16

𝐹𝑀 over the attacking inputs generated
by FGSM andM𝑉𝐺𝐺19

𝐶𝐼𝐹𝐴𝑅10 over the inputs generated by JSMA) while the other one is not (i.e.,M𝑉𝐺𝐺19
𝐶𝐼𝐹𝐴𝑅10

over the attacking inputs generated by C&W). The detailed p-values for all the cases can be found in
our open-source repository. The experimental results demonstrate the superiority and significance
of our approach.
However, some approaches may also produce better results than Dare in some particular TSs.

For example, the modelM𝑉𝐺𝐺16
𝐹𝑀 after fine-tuning by the adversarial approach C&W achieved a

higher accuracy than Dare (83.2% vs 81.1%) over the attacking inputs generated by C&W. However,
it is not hard to find that most of them are cases where the fine-tuning method shares the same
algorithm with the attacking method, such as the aforementioned case (both fine-tuning and testing
with C&W). The results partially confirm the effectiveness of adversarial training methods for
model robustness improvement. On the other hand, the results also demonstrate their unsatisfactory
universal robustness since they tend to achieve much worse robustness when dealing with unknown
attacking inputs (i.e., generated by a different attacking algorithm). On the contrary, Dare performs
stably well in the face of different attacking algorithms.
Regarding the performance of Dare in different TSs, Dare is not sensitive to different model

architectures as it stably performs well on VGG16, VGG19, and Alexnet. However, Dare performs
slightly worse with the training data of FM compared with the other datasets. One possible reason
may be the simplicity of input samples from FM, where all samples are grayscale article images,
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Table 3. Model accuracy (%) over different testing data before and after fine-tuning.

Model Original Model Fine-tuned Model
Test Data Train Test Train Test Adv-Train Adv-Test

NNRepair Interm. 87.25 81.04 87.30 80.93 34.61 36.30
Last. 87.25 81.04 87.00 80.77 34.76 36.23

Dare 88.50 81.30 88.87 81.87 66.43 58.71

In the table, we present the results of NNRepair under different repair strategies. “Interm” repre-
sents Intermediate-layer repair while “Last” represents Last-layer repair. Train/Test: represents
testing on the original training/testing data. Adv-Train/Adv-Test: represents testing on adversarial
samples generated by FGSM based on the original training/testing data.

while both the other two datasets include color images of complex objects, e.g., animals or street-
view numbers. Consequently, the key features are much easier to learn by the model. Under these
circumstances, additional seeded noises may have a higher potential to improve the robustness of
the model. Nevertheless, the performance achieved by adversarial training approaches on FM is
still limited since usually the best performance is achieved when the attacking algorithm is the
same as the one used for training data generation, i.e., existing approaches still suffer from weak
universal robustness. In other words, Dare complements existing adversarial training methods.
Moreover, improving the robustness of DL models should not largely sacrifice the overall per-

formance of the original models. Therefore, we further compare the model performance over the
original testing data without seeding attacking features. Figure 3 presents the average relative
improvement of test accuracy over the normal testing data after fine-tuning by different approaches
(negative number denotes the accuracy after tuning decreases). According to the results, Dare still
preserves the performance of the original well-trained models. Specifically, Dare slightly improves
the accuracy of 5/9 models after fine-tuning, while slightly decreases the accuracy of the others.
Compared with the competitors, Dare also significantly outperforms the others (p-value<0.03
at the significance level of 0.05) and achieves the highest accuracy in most circumstances. The
reason is Dare aims at improving the universal model robustness by enhancing the memory
of crucial features without breaking the normal distribution of input features. On the contrary,
traditional adversarial training methods in theory suffer from a higher risk of affecting the feature
distribution. This again explains the superiority of Dare against the baseline approaches from
another perspective, and demonstrates the effectiveness of Dare for practical use.

Finally, as introduced in Section 4.2.2, we compare our approach with the latest NNRepair [106]
over the commonly used CIFAR10 dataset and reuse the experimental results of NNRepair reported
in the corresponding paper. Table 3 presents the details. In particular, we present the model
performance (i.e., accuracy) when testing over different datasets. Specifically, when testing over
the Adv-Train, Dare achieved model accuracy as 66.43% after fine-tuning, while NNRepair only
achieved model accuracies as 34.61% and 34.76% respectively when taking the two different repair
strategies, i.e., Intermediate-layer repair and Last-layer repair. Similarly, over the Adv-Test, Dare
achieved model accuracy as 58.71%, while NNRepair only achieved lower than 37%. The results
present the effectiveness of our approach. However, the results also show that both NNRepair and
Dare can preserve the accuracy of the original model, further demonstrating their effectiveness.

4.3.2 [Robustness] RQ2: Contribution of Model Transformation. In this research question, we
explore the contribution of model transformation in Dare. Specifically, we conducted an ablation
study with three variants of Dare, i.e., Dare−𝑠 , Dare−𝑠𝑙 and Dare𝑙𝑎𝑠𝑡 , which have been introduced
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Fig. 4. Average relative improvement of variants Dare−𝑠 , Dare−𝑠𝑙 and Dare𝑙𝑎𝑠𝑡 on Empirical Robustness

compared with Dare.

(a) C&W (b) FGSM (c) JSMA (d) PGD

Fig. 5. Performance of Dare with different configurations of 𝑞 for model slicing.

in Section 4.2.2. The results are shown in Figure 4. In the figure, we present the average relative
improvement of the variants compared with the originalDare in terms of Empirical Robustness. We
separately present the results for different attacking methods. According to the figure, without the
aid of model transformation (model slicing & loss function), the overall performance of Darewould
dramatically drop. More concretely, after removing model slicing, the testing accuracy of Dare−𝑠
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Table 4. Results when employing different data augmentation algorithms by Dare (Accuracy/%).

Model Dataset C&W FGSM JSMA PGD Model Acc After Tuning
Dare Dare𝑟𝑎𝑛𝑑 Dare Dare𝑟𝑎𝑛𝑑 Dare Dare𝑟𝑎𝑛𝑑 Dare Dare𝑟𝑎𝑛𝑑 Dare Dare𝑟𝑎𝑛𝑑

CIFAR10 91.9 84.6 74.3 69.0 84.9 76.0 83.3 76.6 88.9 85.4
SVHN 94.5 92.0 81.3 70.3 83.7 74.8 85.7 71.4 93.7 75.0VGG16
FM 81.1 28.1 65.5 34.1 71.2 31.1 65.3 37.5 90.8 90.1
CIFAR10 42.7 - 73.2 - 72.2 - 88.7 - 90.4 -
SVHN 83.1 83.8 86.3 83.4 87.6 87.3 89.6 89.5 93.8 73.6VGG19
FM 79.3 25.2 74.2 25.0 76.0 27.5 71.4 26.7 91.4 88.2
CIFAR10 46.5 31.1 67.8 46.7 61.3 44.3 82.4 53.7 83.6 82.0
SVHN 67.6 18.2 71.6 25.4 80.8 33.4 78.4 38.4 94.5 89.7Alexnet
FM 76.7 26.3 71.4 56.5 85.2 64.6 85.0 76.1 91.7 89.8

on average drops 1.7%, and the largest decline is about 17.3% over Dare. By further removing
the loss function in Dare−𝑠 , the decline of testing accuracy over Dare ranges from 3.8% to 63.9%,
where the average value is 27.4%. In addition, when we take the output prediction probability at
the last layer to compute the losses (i.e., Dare𝑙𝑎𝑠𝑡 ), the decline of testing accuracy ranges from
5.4% to 57.4%, and the average value is 25.6%. The result indicates that the model transformation
component in our framework significantly contributed to the effectiveness of Dare. Moreover, the
results also prove that the selected layer for loss calculation in Dare is indeed effective.

By further investigating the impact of each process in model transformation, we can find that the
loss function contributes much more than the model slicing process. The reason is due to the design
targets. The model slicing process identifies the crucial neurons that take the most responsibility
for reflecting the key input features, and also reduces the training effects over different classes. In
this way, the well-trained model performance will not be degraded. However, it provides limited
information boosting robustness improvement. On the contrary, the loss function is dedicated to
perceiving small perturbations for better compression and consolidating the memory of key input
features. In other words, the loss function is expected to be more effective for model robustness
improvement.

As explained above, the target of the model slicing is to preserve the superiority of the originally
well-trained model, we additionally studied its impact on the performance of Dare with different
configurations of 𝑞% (𝑞 ∈ [75, 100] with the interval of 5). Figure 5 visualizes the trend of model
robustness over different datasets per each attacking method for Alexnet (due to the experiment
cost, we take Alexnet as the representation). From the figure, we can see that the configuration of 𝑞
may slightly affect the performance of Dare, but the effect is relatively small when 𝑞 ∈ [90, 100],
where Dare always outperforms the baseline approaches (i.e., achieving the highest Empirical
Robustness in the most TSs). However, when 𝑞 < 90, the model will suffer a relatively larger
performance drop, the major reason is that too many crucial neurons and synapses are eliminated
and the model cannot be sufficiently fine-tuned.

4.3.3 [Robustness] RQ3: Contribution of Data Augmentation in Dare. This research question inves-
tigates the performance of our data augmentation algorithm in Dare. Specifically, we compare
with the variant Dare𝑟𝑎𝑛𝑑 of Dare, which shares the same model transformation component but
performs a random sampling of training data for model tuning (see Section 4.2.2). Table 4 shows
the detailed results for Dare and Dare𝑟𝑎𝑛𝑑 , including the corresponding Empirical Robustness as
well as the model accuracy over the original testing inputs. By randomly sampling training data,
the accuracy on the original testing set ofM𝑉𝐺𝐺19

𝐶𝐼𝐹𝐴𝑅10 after fine-tuning dramatically drops, and no
model satisfies our constraint regarding the model accuracy (no more than 10% drop). We use “-”
to represent the missing data.
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Table 5. Time cost for each method (in minutes)

Model Dataset C&W FGSM JSMA PGD Dare
Generate Train Generate Train Generate Train Generate Train Augment Slice Train

CIFAR10 3,439 51 103 42 489 54 1,978 52 160 140 40
SVHN 4,109 22 63 12 402 19 2,060 18 176 165 60VGG16
FM 3,165 5 135 8 572 5 1,856 8 188 45 15
CIFAR10 5,928 20 64 28 425 68 2,676 65 160 170 60
SVHN 5,206 20 65 3 481 3 2,589 3 241 190 80VGG19
FM 5,062 4 171 10 730 9 2,313 10 205 50 35
CIFAR10 918 <1 13 5 42 4 956 4 43 40 20
SVHN 1,997 4 54 20 239 20 896 20 42 45 25Alexnet
FM 1,033 <1 33 1 117 3 451 2 40 20 20

According to the table, Dare always outperforms Dare𝑟𝑎𝑛𝑑 regardless of the attacking algorithm
(p-value<3e-09 at the significance level of 0.05). More specifically, the data augmentation algorithm
in Dare contributes on average 61.2% higher Empirical Robustness by comparing with Dare𝑟𝑎𝑛𝑑 ,
and the highest improvement is as high as 271.3%. Additionally, the model accuracy can also be
better preserved when employing our data augmentation algorithm, indicating the effectiveness of
it.

4.3.4 [Robustness] RQ4: Efficiency of Dare. Table 5 presents the time cost for each method. Specif-
ically, for adversarial training methods, we report the time spent on training data generation
(Generate) and model tuning (Train), while for Dare we report the time for data augmentation
(Augment), model slicing (Slice), and tuning. Note that compared with the baseline approaches,
Dare requires to record the historical models during the training process of the original model.
However, the model saving process is so efficient (i.e., in seconds) that can be ignored in the
comparison. According to the table, we can see that Dare generally performs efficiently. Dare
spent much less time on almost every model compared with all the baselines except for FGSM.
However, since the whole process is performed offline, the time costs of all approaches can be
acceptable. Furthermore, we can also observe that the time cost of slicing is closely related with the
parameter number in the models, where smaller models tend to spend less time (refer to Table 1).
Particularly, from the table we can find that Dare tends to spend more time on the model tuning
process (Train), the reason is clear as it depends on a finer-grained loss function that can perceive
small perturbations and thus requires more time to converge. That also explains the effectiveness
of Dare from a different perspective – it performs a more comprehensive model tuning. In general,
Dare is not only effective but also efficient.

5 TASK II: IMPROVING DL MODELS’ FAIRNESS – FMT

To evaluate the generalizability of our framework for improving DL models’ performance from
different perspectives, we further adapt our framework to the task of improving the fairness of DL
models, which is a very important property especially in those ethically sensitive applications, such
as the aforementioned AI judge [96, 105], loaning [77] and so on. Specifically, the target of fairness
improvement can be briefly summarized as making the prediction result of the model not to be
affected by a certain input feature, which is called a privileged feature (or protected attribute), such
as the race and gender of human beings. To fit this target, we also design a novel data augmentation
algorithm atop our framework and implement it in a tool named FMT. Particularly, the basic idea
of the data augmentation algorithm in FMT is to generate pairs of training inputs having the same
features except for the privileged one. By assigning the same prediction results for paired inputs,
the trained models are expected to understand that the privileged feature should be ignored when
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making decisions. This application is completely new to this paper compared with our previous
paper [138]. Before introducing the details of the data augmentation algorithm in FMT, we first
define some notions that will be used in the following presentation. If the assigned value of a
privileged feature is considered advantageous or beneficial in a particular context, we call it a
privileged value. For example, in a job application process [7], being male of the privileged feature
gender might be considered a privileged value since men may be preferred over women for certain
roles. Similarly, if the predicted outcome is considered desirable or positive in a given situation, the
outcome is called a favourable label. For instance, in a loan approval process [77], being approved
for a loan might be considered a favourable label. In real practice, the definitions of privileged value
and favourable label depend on specific situations. In our experiment, we used the default definition
in the studied dataset (refer to Section 5.2.1).

Algorithm 2 Data augmentation by mutant in FMT
Require: D: a set of input training samples,M: the source model for fairness improvement, 𝑖𝑑𝑥 : the index of

the privileged attribute, 𝑙 : targeted layer (a.k.a. the output layer of the transformed regression modelM𝑇 )
Ensure: T𝑠 , T𝑑 : training data for fine-tuning modelM𝑇 .
1: 𝐷𝑖𝑠𝑡𝑟 ← 𝑎𝑛𝑎𝑙𝑦𝑧𝑒𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛(D) ⊲ Get the distribution of attributes in training data
2: T𝑠 ,T𝑑 ← ∅
3: for 𝑖 from 1 to 𝑠𝑖𝑧𝑒 (D) do
4: 𝜎 ← 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 (𝐷𝑖𝑠𝑡𝑟 ) ⊲ Randomly assign values for attributes in 𝜎 based on 𝐷𝑖𝑠𝑡𝑟

5: 𝜎′ ← 𝜎

6: 𝜎 [𝑖𝑑𝑥] ← privileged value ⊲ Assign the privileged value
7: 𝜎′ [𝑖𝑑𝑥] ← unprivileged value ⊲ Assign the unprivileged value to form a pair with 𝜎

8: ⟨𝑙𝑎𝑏𝑒𝑙, 𝑐𝑜𝑛𝑓 ⟩ ← M .𝑝𝑟𝑒𝑑𝑖𝑐𝑡 (𝜎) ⊲ Get the prediction of generated input 𝜎
9: ⟨𝑙𝑎𝑏𝑒𝑙 ′, 𝑐𝑜𝑛𝑓 ′⟩ ← M .𝑝𝑟𝑒𝑑𝑖𝑐𝑡 (𝜎′)
10: if 𝑐𝑜𝑛𝑓 < 𝑐𝑜𝑛𝑓 ′ then
11: 𝜎, 𝜎′ ← 𝜎′, 𝜎 ⊲ Make 𝜎 store the input producing the higher prediction confidence
12: end if

13: 𝑌 𝑙 (𝜎) ← {𝑦𝑛 (𝜎) |𝑛 ∈ N𝑔𝑡

𝑙
} ⊲ Neuron outputs ofM in the layer of 𝑙 for the input 𝜎

14: T𝑠 ← T𝑠 ∪
〈
𝜎′, 𝑌 𝑙 (𝜎)

〉
⊲ Store input and the desired neuron outputs

15: T𝑑 ← T𝑑 ∪
〈
𝜎′, 𝑌 𝑙 (𝜎)

〉
∪
〈
𝜎,𝑌 𝑙 (𝜎)

〉
⊲ Store both inputs

16: end for

17: return T𝑠 , T𝑑

5.1 Data Augmentation in FMT

In order to adapt our framework to the task of improving the fairness of DL models, we also design
a new data augmentation algorithm, which takes the responsibility of providing the training data
for the transformed regression model. As aforementioned, the target of the fairness improvement
task is to make the model produce fair (or the same) prediction results for inputs whose attributes
are the same except for the privileged one. According to the characteristics of this task, the basic
idea of our algorithm is straightforward: producing pairwise inputs meeting the above condition
and forcing the model to produce the same results for them. Additionally, since the original model
is naturally well-trained with high accuracy for practical use, to make the improved model inherit
this superiority, we set the output with higher confidence as the gold standard (i.e., the reference
model is just the one to be improved). That is, for a pair inputs ⟨𝜎, 𝜎 ′⟩, we will force the output of
𝜎 to be the same as 𝜎 ′ if the model produces higher confidence for 𝜎 ′. In this way, the accuracy of
the original model can be preserved as much as possible while improving fairness.
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We present the details of the data augmentation algorithm in Algorithm 2. Similarly, we use
M .𝑝𝑟𝑒𝑑𝑖𝑐𝑡 (𝜎) to obtain the output of modelM for the input 𝜎 , which is a pair of ⟨𝑙𝑎𝑏𝑒𝑙, 𝑐𝑜𝑛𝑓 ⟩,
representing the predicted label label and the corresponding confidence conf , which is the same as
that introduced in Section 4.1. Additionally, we define the function analyzeAttributeDistribution(D)

to return the distribution of all attributes (i.e., feature values) in the given data set D, and the
function generateAttributes(Distr) to generate an input by randomly assigning a value for each
attribute according to its value distribution. Therefore, when given the training data D of the
original model M, FMT first analyzes the distribution of all attributes (line 1) and repeatedly
generates a set of new training data according to D with the expected outputs conforming to the
transformed modelM𝑇 (lines 3-16). Specifically, each time FMT generates a pair of inputs with the
same attribute values except for the appointed privileged one (i.e., 𝜎 [𝑖𝑑𝑥]), whose value will be
set oppositely, e.g., female for privileged and male for unprivileged or vice versa (lines 4-7). Then,
according to the prediction results of the paired inputs, FMT will collect the neuron outputs of
the input with higher prediction confidence at the targeted layer (lines 10-15), which will play
as the ground truth for subsequent model tuning (Slicing details in FMT will be introduced in
Section 5.2.4). Particularly, we employ two strategies to construct the training data: (1) using a
single one of the pairwise inputs (line 14) and (2) using both of the pairwise inputs (line 15). We use
T𝑠 and T𝑑 to store the training data accordingly. In our evaluation, we will explore the performance
of these two strategies empirically.

In summary, when providing the training data D for modelM, two sets of training data T𝑠 and
T𝑑 will be automatically generated by FMT with the aim of improving the fairness of modelM.
According to the construction algorithm, the training data in both T𝑠 and T𝑑 will force the model to
produce the same prediction results for paired inputs, while the accuracy of the original model will
not be largely affected. In this way, the fairness of the model can be improved with the guidance of
the finer-grained loss function in the transformed regression model by strengthening the memory
of crucial input features and reducing the effects of privileged features on the prediction.

5.2 Experiment Setup of FMT

Similar to the evaluation of Dare, to investigate the performance of FMT, we aim to answer the
following research questions in this evaluation.
• RQ5: How effective is FMT to improve DL models’ fairness?

• RQ6: How much does the model transformation contribute to the effectiveness of FMT?

• RQ7: How effective is the data augmentation algorithm in FMT?

• RQ8: How does FMT perform in terms of efficiency?

5.2.1 Benchmark Datasets. In our evaluation, we employ four widely-used datasets with different
protected attributes, which have been extensively used in previous research for fairness improve-
ment and integrated into the AI Fairness 360 (AIF360) toolkit [4]. We briefly introduce them as
follows.
• Adult is used for predicting whether the annual income of individuals exceeds $50K. It contains
more than 45K instances constituting 14 distinct attributes, two of which are regarded as privileged
attributes, i.e., sex and race.
• Bank is used for predicting whether the client will subscribe to a term deposit. It includes more
than 41K instances of 20 input attributes, where the attribute of age is the privileged one.
• Compas is used for assessing the likelihood that a criminal defendant will be an offender again.
It includes more than 7K instances with 49 attributes, where sex and race are privileged.
• German is used for predicting the risk of individual credit. It includes 1K instances with 20
attributes. The privileged attributes of this dataset include sex and age.
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Table 6 presents the details of the datasets used in our evaluation. Particularly, we filtered the
instances that involve unknown features (i.e., the values are missing) from the first three datasets.
Additionally, following previous work [18], we consider one privileged attribute each time for
fairness improvement. Therefore, we finally have seven different datasets corresponding to all the
privileged attributes, e.g., Adult-Sex and Bank-Age. Then, for each privileged attribute, we build a
feed forward DL model for fairness improvement by following previous studies [97, 131]. Table 7
presents the details of the trained models that will be used as the subjects in our experiment. In the
table, we listed the sizes, parameter numbers, and the accuracy of the trained models. Also, we
listed the model fairness regarding three fairness metrics (i.e., SPD, AAOD, and EOD) that will be
introduced in Section 5.2.3.

Table 6. Benchmarks for evaluating the performance of FMT regarding fairness improvement.

Name Privileged attribute(s) #Features Original size Final size

Adult Sex, Race 14 48842 45222
Bank Age 20 41188 30488

Compas Sex, Race 49 7214 6167
German Sex, Age 20 1000 1000

5.2.2 Baseline Approaches. To demonstrate the effectiveness of our approach, we compare FMT
with four state-of-the-art approaches for fairness improvement, which include pre-processing
(i.e., optimizing the training data before model training), in-processing (i.e., optimizing the model
training process) and post-processing techniques (i.e., optimizing the learned models). In particular,
to investigate whether the simple removal of the privileged attribute for model building can improve
the fairness of DL models, we also compare our approach with another baseline method named
SUPP (i.e., suppressing/ignoring the privileged attribute). The details of the baseline approaches
are introduced as follows. In our experiment, we employ the open-source implementation in the
AIF360 toolkit for the first three approaches and the implementation published by the authors of
CARE, respectively. Note that we do not compare with the latest NeuronFair [141] because we
failed to replicate their results using their open-source implementation.
• REW (Reweighing) [56] is a pre-processing approach that improves model fairness by pre-
computing the weights of training samples in each (group, label) combination to mitigate the
effects of bias in training data. The basic idea is to assign higher weights to instances that belong
to unprivileged groups and lower weights to instances that belong to privileged groups, which
was done by computing the inverse frequency of each group in the training set. Finally, these
weights will be used in the training phase to optimize fairness.

Table 7. Basic information of subjects used to evaluate the performance of FMT.

Dataset Adult-Race Adult-Sex Bank-Age Compas-Race Compas-Sex German-Age German-Sex

Size (KB) 158.1 158.1 127.4 385.4 385.4 128.1 128.1
Parameters 9.1K 9.1K 6.5K 28.5K 28.5K 6.6K 6.6K
Accuracy(%) 85.2 85.2 89.5 65.5 65.5 77.0 77.0

SPD 0.096 0.191 0.086 0.176 0.189 0.071 0.220
AAOD 0.050 0.096 0.028 0.154 0.179 0.023 0.290
EOD 0.051 0.110 0.033 0.107 0.129 0.025 0.175
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• ADV (Adversarial Debiasing) [126] is an in-processing approach that leverages adversarial
techniques to reduce the effects of the privileged attribute to the prediction result so as to the
change of this attribute will not change the result as expected. In particular, it maintains two
independent models, one of which aims at producing fair predictions (named predictor) while
the other aims at identifying the sensitive attributes that cause fairness issues in the predictions.
By simultaneously competing, the predictor model will be forced to produce fairer predictions
and thus reduce bias.
• ROC (Reject Option Classification) [57] is a post-processing technique that assigns favorable
outcomes to unprivileged groups with higher possibility while tends to assign unfavorable
outcomes to privileged groups. Specifically, it combines cost-sensitive learning and threshold-
moving techniques for minimizing overall classification error but confining fairness constraints
by adjusting decision thresholds. In particular, A customizable parameter enables users to balance
accuracy and fairness based on their preferences.
• CARE [97] is the latest research for improving the model fairness in a post-training way. It
leverages causal inference to first identify a set of model parameters that may closely related to
the bias on targeted privileged features, and then adopts PSO (Particle Swarm Optimization)
algorithm to search the optimal model parameters under the guidance of a fitness function that
considers both model accuracy and fairness.
• SUPP ignores the privileged attribute during both the model training and testing processes while
keeping the other configurations the same as the original model. It aims to investigate whether
the removal of the privileged value can improve the fairness of the trained models.

Additionally, to evaluate the performance of the model transformation from our framework and
the data augmentation algorithm specifically designed for this task, we further design four variants
of FMT for comparison. The details are listed below.

FMT
−𝑠 removes the model slicing process from FMT and updates all the connection weights

between any neurons in the transformed modelM𝑇 .
FMT

−𝑠𝑙 removes the complete model transformation component from FMT, i.e., FMT−𝑠𝑙 performs
post model training over the original model ofM, but employs the same training data obtained
by our data augmentation algorithm shown in Algorithm 2.

FMT
𝑙𝑎𝑠𝑡 denotes the variant that takes the last output layer of the deep learning models as the

target layer for loss function design (i.e., 𝑝 = 0 in Formula 8). It is similar to Dare𝑙𝑎𝑠𝑡 , which
computes the losses based on the predicted probability of the target label.

FMT
𝑟𝑎𝑛𝑑 is the variant for evaluating the effectiveness of our data augmentation algorithm in FMT,

i.e., Algorithm 2. Specifically, FMT𝑟𝑎𝑛𝑑 generates attribute values randomly without considering
the distribution of them in the original training data (line 4 in the algorithm).

5.2.3 Fairness Metrics. Following previous work [5, 6, 12, 13, 18, 39, 128], we employ all the
three widely-used metrics for measuring the fairness of models, i.e., SPD, AAOD, and EOD, all of
which have been integrated into the AIF360 toolkit. Formally, let 𝐴 be a privileged (or protected)
attribute, and 𝐴 = 1 represents the instance that belongs to the privileged group while 𝐴 = 0
to the unprivileged group. We use 𝑌 and 𝑌 to denote the expected and actual prediction labels,
respectively, with 1 as the favorable label and 0 as the unfavorable label. We use 𝑃 to represent the
probability of model prediction. Then, the definitions of the above metrics are defined as follows.

• SPD (Statistical Parity Difference) measures the difference of probabilities that the unprivileged
and privileged groups receive favorable outcomes:

𝑆𝑃𝐷 = 𝑃 [𝑌 = 1|𝐴 = 0] − 𝑃 [𝑌 = 1|𝐴 = 1] . (9)
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• AAOD (Average Absolute Odds Difference) measures the average of absolute difference of
false-positive rate and true-positive rate for unprivileged and privileged groups:

𝐴𝐴𝑂𝐷 =
1
2
( |𝑃 [𝑌 = 1|𝐴 = 0, 𝑌 = 0] − 𝑃 [𝑌 = 1|𝐴 = 1, 𝑌 = 0] |

+|𝑃 [𝑌 = 1|𝐴 = 0, 𝑌 = 1] − 𝑃 [𝑌 = 1|𝐴 = 1, 𝑌 = 1] |) .
(10)

• EOD (Equal Opportunity Difference) measures the difference of true-positive rate for unprivileged
and privileged groups:

𝐸𝑂𝐷 = 𝑃 [𝑌 = 1|𝐴 = 0, 𝑌 = 1] − 𝑃 [𝑌 = 1|𝐴 = 1, 𝑌 = 1] . (11)

According to the definitions of the fairness metrics, the smaller the value of the metric is, the
more fair the model will be, i.e., 0 denotes absolutely fair.

5.2.4 Implementation and Configuration. The same as the evaluation of Dare, we also have imple-
mented our approach FMT atop the widely-used deep learning framework Keras and Tensorflow in
Python, and conducted this experiment on a server with Ubuntu 18.04, equipped with 128GB RAM
and a processor of Intel(R) Xeon(R) E5-2640 that has 10 cores of 2.40GHz.
Regarding the configuration of FMT, different from Dare where we perform model slicing by

classes, FMT performs model slicing by privileged values. That is, it computes the importance of
neurons by feeding two groups of inputs with opposite privileged attribute values, e.g., female
vs male when considering the attribute of sex. The reason is evident since the target of FMT is
to mitigate the effects of the privileged attribute to the model prediction. Therefore, we should
identify the most important neurons that are closely correlated to that attribute. Finally, we set the
default value of 𝑞% as 80% for model slicing according to a small pilot study. Note that this value
is smaller than that (i.e., 𝑞%) in Dare. The reason is that the DL models in this study are much
smaller than those for Dare (refer to the parameters in Table 1 and Table 7). As a result, to make the
model slicing take effects, i.e., identifying actual crucial neurons by filtering sufficient less-relevant
ones, the value of 𝑞% should be smaller so that more neurons can be filtered. Furthermore, in our
experiment, we perform a grid search for all approaches to obtain the best results of them, where
we set the learning rate 𝑟 ∈{1e-5, 1e-4,1e-3} and batch size 𝑑 ∈{16, 32, 64, 128}. Finally, we repeat 10
times of the experiment per each tool for comparison to mitigate the randomness.

5.3 Result Analysis of FMT

5.3.1 [Fairness] RQ5: Overall Effectiveness of FMT. As introduced in Section 5.2, we evaluate the
effectiveness of FMT over four datasets involving seven different privileged attributes and compare
the results with four state-of-the-art fairness improvement approaches and the simple SUPP.
Particularly, we employed both the two training data construction strategies for FMT as shown in
Algorithm 2. The first set of training data includes only a single one from each paired inputs (i.e., T𝑠
in line 14), while the second set of training data includes both of the paired inputs (i.e., T𝑑 in line 15).
We call the corresponding implementations of FMT as FMT𝑠 and FMT𝑑 , respectively. The detailed
comparison results between our approaches and the baseline approaches are shown in Table 8. We
also calculate the p-values by leveraging the Wilcoxon signed-rank test at the significance level
of 0.05 to investigate whether our approaches statistically differ from the baseline approaches. In
particular, We use the bold font to highlight the results where our approach and the corresponding
baseline approach are statistical different (i.e., p-value<0.05). In addition, Figure 6 presents the
average relative improvement regarding the three fairness metrics (i.e., SPD, AAOD, and EOD)
over the original model among our repeated experiments. That is, a positive value indicates that
the method can improve the model fairness, and a negative value indicates that the fairness of the
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Table 8. Detailed comparison between our approaches (i.e., FMT𝑠 and FMT𝑑 ) and baselines. The value in

each cell denotes the average absolute difference (i.e., |𝐴 − 𝐵 | × 100) between our approach (𝐴) and the

baseline approach (𝐵) regarding corresponding metrics. Additionally, we use down arrows (↓) to denote that

our approach achieved lower values compared with the baseline regarding corresponding metrics, and use up

arrows (↑) to denote that our approach achieved higher values. In particular, the arrows of green color (↑↓)
represent our approach outperformed the baseline, and the arrows of red color (↓↑) represent our approach
underperformed the baseline (Higher Accuracy and lower SPD/AAOD/EOD are preferred). In addition, we

use the bold font to represent that the results of our approach are statistically different from those of the

corresponding baseline under the significance level at 0.05 by using the Wilcoxon signed-rank test [114]. That

is, our approach statistically outperforms the baseline if the color of the arrow is green, and vise versa if the

color of the arrow is red. For detailed p-values, please refer to the open-source repository of our project.

Baseline Metric Adult-Race Adult-Sex Bank-Age Compas-Race Compas-Sex German-Age German-Sex
FMT𝑠 FMT𝑑 FMT𝑠 FMT𝑑 FMT𝑠 FMT𝑑 FMT𝑠 FMT𝑑 FMT𝑠 FMT𝑑 FMT𝑠 FMT𝑑 FMT𝑠 FMT𝑑

REW

Accuracy 0.51 ↑ 0.02 ↑ 0.49 ↑ 0.20 ↑ 0.92 ↑ 0.84 ↑ 1.05 ↑ 0.30 ↑ 0.91 ↓ 0.76 ↓ 2.83 ↑ 3.00 ↑ 3.50 ↑ 3.53 ↑
SPD 3.16 ↑ 1.44 ↑ 2.19 ↑ 3.26 ↑ 3.82 ↑ 4.00 ↑ 12.44 ↑ 9.47 ↑ 0.67 ↑ 3.46 ↑ 0.44 ↑ 0.20 ↓ 4.29 ↑ 7.14 ↑

AAOD 0.07 ↑ 0.35 ↓ 3.33 ↓ 4.64 ↓ 2.75 ↓ 3.27 ↓ 12.50 ↑ 8.90 ↑ 1.04 ↑ 4.14 ↑ 7.45 ↓ 6.92 ↓ 7.49 ↑ 11.37 ↑
EOD 2.65 ↓ 2.30 ↓ 8.55 ↓ 11.99 ↓ 6.08 ↓ 7.43 ↓ 9.27 ↑ 9.94 ↑ 0.37 ↓ 0.41 ↑ 4.16 ↓ 4.47 ↓ 0.48 ↑ 1.56 ↑

ADV

Accuracy 2.06 ↑ 1.57 ↑ 0.32 ↑ 0.03 ↑ 0.04 ↓ 0.12 ↓ 0.62 ↑ 0.13 ↓ 0.30 ↓ 0.15 ↓ 2.63 ↑ 2.80 ↑ 3.13 ↑ 3.17 ↑
SPD 5.62 ↑ 3.90 ↑ 6.22 ↑ 7.29 ↑ 2.26 ↑ 2.44 ↑ 9.35 ↑ 6.38 ↑ 11.91 ↓ 9.12 ↓ 14.43 ↓ 15.07 ↓ 12.20 ↓ 9.35 ↓

AAOD 1.08 ↓ 1.49 ↓ 7.87 ↓ 9.18 ↓ 4.27 ↓ 4.79 ↓ 8.96 ↑ 5.35 ↑ 12.04 ↓ 8.94 ↓ 15.71 ↓ 15.18 ↓ 12.28 ↓ 8.39 ↓
EOD 4.97 ↓ 4.63 ↓ 17.41 ↓ 20.84 ↓ 8.00 ↓ 9.35 ↓ 6.77 ↑ 7.44 ↑ 10.52 ↓ 9.73 ↓ 14.39 ↓ 14.69 ↓ 10.54 ↓ 9.46 ↓

ROC

Accuracy 4.04 ↑ 3.55 ↑ 3.48 ↑ 3.19 ↑ 5.89 ↑ 5.81 ↑ 0.39 ↑ 0.36 ↓ 0.50 ↓ 0.35 ↓ 1.93 ↑ 2.10 ↑ 1.10 ↑ 1.13 ↑
SPD 8.02 ↓ 9.75 ↓ 17.18 ↓ 16.11 ↓ 13.57 ↓ 13.39 ↓ 2.34 ↑ 0.63 ↓ 7.18 ↓ 4.39 ↓ 0.40 ↓ 1.04 ↓ 0.65 ↑ 3.50 ↑

AAOD 5.64 ↓ 6.06 ↓ 9.87 ↓ 11.18 ↓ 8.48 ↓ 9.00 ↓ 2.66 ↑ 0.95 ↓ 7.46 ↓ 4.36 ↓ 2.93 ↓ 2.40 ↓ 0.18 ↑ 4.06 ↑
EOD 3.60 ↓ 3.26 ↓ 5.04 ↓ 8.48 ↓ 4.73 ↓ 6.08 ↓ 0.32 ↑ 0.99 ↑ 4.60 ↓ 3.82 ↓ 2.71 ↓ 3.02 ↓ 1.77 ↑ 2.85 ↑

CARE

Acc. 0.69 ↑ 0.20 ↑ 0.55 ↑ 0.26 ↑ 2.03 ↑ 1.94 ↑ 1.38 ↑ 0.63 ↑ 0.20 ↑ 0.35 ↑ 1.81 ↑ 1.98 ↑ 2.18 ↑ 2.22 ↑
SPD 2.25 ↑ 0.53 ↑ 4.08 ↑ 5.15 ↑ 3.10 ↑ 3.28 ↑ 10.18 ↑ 7.21 ↑ 0.91 ↓ 1.88 ↑ 1.46 ↑ 0.82 ↑ 8.23 ↑ 11.08 ↑

AAOD 0.43 ↑ 0.02 ↑ 0.74 ↓ 2.06 ↓ 0.30 ↑ 0.22 ↓ 9.71 ↑ 6.10 ↑ 1.39 ↓ 1.71 ↑ 0.26 ↑ 0.79 ↑ 12.31 ↑ 16.19 ↑
EOD 1.29 ↓ 0.95 ↓ 0.29 ↓ 3.72 ↓ 0.44 ↑ 0.92 ↓ 6.49 ↑ 7.16 ↑ 1.03 ↓ 0.24 ↓ 1.66 ↑ 1.35 ↑ 4.32 ↑ 5.40 ↑

SUPP

Acc. 0.73 ↑ 0.24 ↑ 0.11 ↓ 0.40 ↓ 0.03 ↑ 0.06 ↓ 0.91 ↑ 0.16 ↑ 0.09 ↑ 0.24 ↑ 4.23 ↑ 4.40 ↑ 4.63 ↑ 4.67 ↑
SPD 1.19 ↓ 2.92 ↓ 6.97 ↓ 5.90 ↓ 1.18 ↓ 1.01 ↓ 1.38 ↑ 1.59 ↓ 14.36 ↓ 11.57 ↓ 2.21 ↓ 2.84 ↓ 2.16 ↓ 0.69 ↑

AAOD 2.14 ↓ 2.55 ↓ 4.56 ↓ 5.87 ↓ 1.68 ↓ 2.20 ↓ 1.50 ↑ 2.11 ↓ 14.57 ↓ 11.46 ↓ 5.14 ↓ 4.61 ↓ 1.31 ↓ 2.57 ↑
EOD 4.01 ↓ 3.67 ↓ 4.57 ↓ 8.00 ↓ 1.17 ↓ 2.53 ↓ 0.26 ↓ 0.40 ↑ 12.79 ↓ 12.01 ↓ 2.20 ↓ 2.51 ↓ 1.93 ↓ 0.86 ↓

model after applying the corresponding approaches drops. From the table and the figure, we can see
that overall our approaches slightly outperform the baseline approaches REW, ADV and ROC while
being slightly worse than CARE. Specifically, compared with the first three baselines, FMT𝑠 and
FMT𝑑 respectively achieve on average 3.7% and 6.4% improvement in terms of the three fairness
metrics. Additionally, FMT𝑠 and FMT𝑑 perform consistently well over the datasets of Adult-Race,
Adult-Sex, Compas-Sex, and German-Age, while performing less effectively over the other datasets,
i.e., Bank-Age, Compas-Race and German-Sex. From the table and the figure we can also see that
the performance of FMT𝑠 and FMT𝑑 is very close to each other, indicating that our framework
improves the fairness of DL models indeed by strengthening the memory of crucial features but
not simply balancing the number of training inputs of opposite privileged attribute values (T𝑑 is
balanced while T𝑠 is not). In addition, the unsatisfactory results of SUPP also demonstrate that
simply removing the privileged value for model building does not help much for improving the
fairness of the trained models. The reason is that the bias may also be implicitly introduced by
other attributes even though the privileged one is removed since different attributes may have
inherent correlations, which has been proved by prior studies [68]. Particularly, CARE slightly
outperforms FMT𝑠 by on average 12.5% but is slightly worse than FMT𝑑 by on average 23.0% over
all the datasets. However, as it will be shown in Figure 8, CARE improves fairness by significantly
decreasing the accuracy of the models.

When comparing the results in terms of different fairness metrics, we can see that our approaches
are much less effective regarding SPD, which reflects the tendency that themodel produces favorable
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outcomes for unprivileged groups over the privileged groups (see Formula 9). We argue that this
metric is less representative compared with the other two metrics since it only considers the
model output but ignores the correctness of the output. As we will present later, most of the
baseline approaches improve the fairness of the model by largely sacrificing the model accuracy
(see Figure 8). On the contrary, our approaches perform much better than baseline approaches in
most cases when comparing the results of AAOD and EOD, both of which take the model accuracy
factor into consideration (see Formulas 10 and 11). Specifically, when only comparing AAOD and
EOD, FMT𝑠 achieves on overage 14.16% and 12.87%, and FMT𝑑 achieves on averag 16.57% and
19.35% improvement compared with all the baselines over all the datasets. Therefore, although our
approaches do not completely outperform the baseline approaches over all datasets regarding all
metrics, the overall performance of our approaches is relatively better. Figure 7 shows the value
distribution of fairness metrics for different approaches in the repeated experiment (we omit ROC
in the figure because its output is deterministic and free from randomness). Note that the smaller
value in the figure indicates better results. From the figure, we can see that both our approaches
(i.e., FMT𝑠 and FMT𝑑 ) and CARE perform more stable than the others, while the performance of our
approaches and CARE is comparable, indicating the effectiveness of our approaches even though
our framework is not specifically designed for improving model fairness.

As mentioned above, the fairness improvement should not largely sacrifice the performance of
the original model, we further present the results regarding the model accuracy. Figure 8 shows the
improvement of accuracy after applying different fairness improvement approaches. The negative
value denotes the decline in accuracy. Similarly, Figure 9 shows the distribution of accuracy after
improving in our repeated experiment. From the figure, we can see that our approaches FMT𝑠
and FMT𝑑 significantly outperform the baselines as they can still preserve the model accuracy as
much as possible after improving the fairness, while the baseline approaches tend to decrease the
accuracy. For example, the model accuracy will drop more than 5.75% after applying ROC on the
dataset of Bank-Age. Specifically, FMT𝑠 and FMT𝑑 outperform the baseline approaches with higher
accuracy over six out of seven datasets (i.e., except Compas-Sex), and the average improvement
compared with the baseline approaches is 1.96% and 1.72%, respectively for FMT𝑠 and FMT𝑑 over
different datasets. It is worth mentioning that although CARE achieved good fairness performance,
it tends to sacrifice accuracy. Its average decline of accuracy is about 1.5%. The results demonstrate
that our approaches are relatively stable.

To sum up, although our post-training framework is not specifically designed for improving the
fairness of DL models, it is indeed effective in this task according to the experimental results of
FMT𝑠 and FMT𝑑 since they improve the fairness without largely sacrificing the model accuracy.
Particularly, the performance of our approaches is relatively stable, indicating the reliability of our
approaches for practical use.

5.3.2 [Fairness] RQ6: Contribution of Model Transformation. In order to investigate how much the
model transformation in our framework contributes to the effectiveness of FMT, we conducted
an ablation study with the variants of FMT−𝑠 , FMT−𝑠𝑙 and FMT𝑙𝑎𝑠𝑡 , which have been introduced
in Section 5.2.2. Specifically, we present the relative improvement over all the datasets for each
metric compared with the original FMT in Figure 10 and Figure 11. Similar to the last research
question, we conducted this experiment under two different data augmentation strategies, i.e.,
FMT𝑠 and FMT𝑑 . From the figures, we can conclude that the model transformation component in
our framework largely contributed to the effectiveness of FMT (i.e., FMT𝑠 and FMT𝑑 ) since the
removal of it significantly reduces the performance of both accuracy and fairness. Specifically,
compared with FMT𝑠 and FMT𝑑 , the accuracy of FMT𝑠−𝑠 and FMT𝑑−𝑠 drops by 0.96% and 0.33%
respectively while the accuracy of FMT𝑠−𝑠𝑙 and FMT𝑑−𝑠𝑙 drops on average by 0.40%. Similarly, the
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Fig. 6. Fairness improvement after applying different approaches.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2023.



A Post-Training Framework for Improving the Performance of Deep Learning Models via Model Transformation 1:29

SPD AAOD EOD0.00

0.05

0.10

0.15

0.20

0.25

0.30

(a) Adult-Race

SPD AAOD EOD0.00

0.05

0.10

0.15

0.20

0.25

0.30

(b) Adult-Sex

SPD AAOD EOD0.00

0.09

0.18

0.27

0.36

0.45

0.54

0.63

(c) German-Age

SPD AAOD EOD0.00

0.09

0.18

0.27

0.36

0.45

0.54

0.63

(d) German-Sex

SPD AAOD EOD0.00

0.05

0.10

0.15

0.20

0.25

0.30

(e) Bank-Age

SPD AAOD EOD0.00

0.09

0.18

0.27

0.36

0.45

(f) Compas-Race

SPD AAOD EOD0.00

0.09

0.18

0.27

0.36

0.45

(g) Compas-Sex

SPD AAOD EOD0.00

0.05

0.10

0.15

0.20

0.25

0.30
REW
ADV
CARE
SUPP
FMTs

FMTd

Fig. 7. Value distribution regarding different fairness metrics after applying different approaches.
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decline of fairness can be up to 101.94% and 99.27% respectively when removing the model slicing
and complete model transformation component. In other words, the components in our framework
tend to contribute more to the fairness than the accuracy of the models. It is reasonable because our
data augmentation algorithm constructs the training data based on the model itself, and thus it is
expected that the constructed data should be unlikely to affect the accuracy of the models regardless
of the training process. Similarly, compared with FMT𝑠 and FMT𝑑 , the fairness of FMT𝑠𝑙𝑎𝑠𝑡 and
FMT𝑑𝑙𝑎𝑠𝑡 also suffer from a large decline, i.e., on average up to 23.32% and 16.11% respectively.
However, both FMT𝑠𝑙𝑎𝑠𝑡 and FMT𝑑𝑙𝑎𝑠𝑡 can slightly improve the model accuracy (about 0.24%). The
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Fig. 9. Accuracy distribution after applying different approaches.

reason is that the output of the last layer directly decides the correctness of the predictions, making
the training more targeted and guiding the improvement of accuracy. In summary, the model
transformation component in our framework significantly contributed to the effectiveness of FMT
for improving the fairness of DL models.
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Fig. 10. Relative improvement of accuracy.
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5.3.3 [Fairness] RQ7: Contribution of Data Augmentation in FMT. To investigate the performance
of our specifically designed data augmentation algorithm (i.e., Algorithm 2), we compare the results
of FMT with the variant of FMT𝑟𝑎𝑛𝑑 , whose results also are presented in Figures 10 and 11. From
the figures, we can see that if we ignore the distribution of the attributes in the training data during
training data augmentation, the performance of FMT will be significantly affected. Specifically,
our data augmentation algorithm in FMT𝑠 and FMT𝑑 contributed on average 0.41% higher model
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Table 9. Time cost of each method for improving model fairness (in seconds).

App. Adult-Race Adult-Sex Bank-Age Compas-Race Compas-Sex German-Age German-Sex Average

REW 68.8 235.3 152.9 22.9 67.9 7.2 34.3 84.2
ADV 116.4 209.2 27.2 39.5 13.4 1.9 5.4 59.0

ROC 150.6 149.8 77.8 33.2 28.6 7.3 7.4 65.0
CARE 395.5 282.3 586.8 426.7 375.3 343.6 108.0 359.7
FMT 216.4 343.3 83.9 57.3 28.9 5.7 11.0 106.6

accuracy and 179.73% higher fairness (i.e., smaller fairness values) in terms of the three fairness
metrics, demonstrating the contribution and effectiveness of the algorithm in FMT. Similarly, the
reason that FMT𝑟𝑎𝑛𝑑 did not largely affect the model accuracy is that the training data is constructed
based on the model itself (i.e., the label is determined by the original model).

5.3.4 [Fairness] RQ8: Efficiency of FMT. Finally, we explore the efficiency of FMT and the baseline
approaches. Table 9 presents the time cost of each approach for improving the fairness of DL
models. Please note that SUPP introduces no extra execution overhead except for the normal
model training process, and thus we omit the time cost of it in the Table. Particularly, we use the
time of FMT𝑑 to represent that of FMT since it doubles the training inputs compared with FMT𝑠
and thus will consume more time. In the table, we highlight the results of the highest efficiency.
From the table, we can observe that FMT is less efficient than the first three baseline approaches,
i.e., REW, ADV and ROC, while is much more efficient than the latest CARE. The reason is that
CARE depends on the PSO search algorithm, which tends to spend more time compared with the
back propagation optimization. However, the reasons for the low efficiency of FMT are twofold.
First, FMT incorporates the model slicing process to identify the crucial neurons, which is costly.
Second, since FMT depends on a finer-grained loss function in the transformed regression model
for optimization, the training process also tends to be less efficient compared with the original
classification model. Nevertheless, the overall time cost of all approaches is relatively low, i.e., less
than six minutes on average. It can be acceptable in practice, especially for those approaches that
work offline, like FMT and CARE.

6 RELATEDWORK

6.1 Model Repair

Like traditional software [48–50, 66, 111, 112, 117], deep learning (DL) programs also have bugs.
Particularly, besides those bugs that are caused by vulnerable source code [42, 43, 46, 71, 78, 98, 135–
137]. DL systems have a special type of bugs, calledmodel bugs [70], which cause the learned model
to produce unsatisfactory results on certain test inputs, e.g., misclassifying a car as a cat, thus
reducing the accuracy of learned models and thus their usability [129]. In order to repair model
bugs, many approaches have been proposed [9, 29, 58, 65, 85, 94, 103, 106] and the typical method is
optimizing the training data, such as performing data selection [27] or data augmentation [70]. For
example, Fahmy et al. [26] proposed to leverage heatmaps to capture the relevance of neurons, and
then retained the model for accuracy improvement. Similarly, Ma et al. [70] employed an analogical
heatmap to aid the selection of retraining data and proposed MODE. Analogously, Yu et al. [122]
proposed a style-guided data augmentation method for repairing DL models in the operational
environment, which employed clustering techniques to guide the generation of failure data for
model training. Sohn et al. [94] proposed a search-based repair approach named Arachne, which
utilized the gradient loss and the forward impact to localize the weights that are responsible for
the misclassification behaviors but less related to correct behaviors for fixing. Based on Arachne,
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Tokui et al. [103] proposed NEURECOVER, which incorporated the difference between the past
and the current model to guide fixing regression faults of deep learning systems. Zhang et al. [127]
proposed APRICOT, which divided the training set into subsets to train sub-models, and then
dynamically adjusted the weights of the model according to the weights of sub-models. Recently,
Usman et al. [106] proposed NNRepair, which leveraged constraint solving for neural network
repair. Their experiments demonstrated that NNRepair could be used for improving both model
robustness and accuracy. Henriksen et al. [37] proposed I-REPAIR to improve the accuracy of the
model with only limited data for fixing. Specifically, I-REPAIR utilizes gradients of each parameter
in the deep learning model to measure its influence on the misclassification and then performs back-
propagation to adjust the parameters for fixing. Sotoudeh et al. [95] proposed a model structure
named Decoupled DNNs to facilitate repairing each layer of deep learning models. Wu et al. [115]
proposed GenMuNN to repair models by directly mutating the model weights guided by a genetic
algorithm.
However, as studied by Pham et al. [84] models may have large overall accuracy differences

even among identical training. Therefore, it is still a big challenge to ensure the performance of DL
models theoretically. Our work aims at proposing a general post-training framework for improving
the performance of DL models from different aspects, such as the robustness and fairness. Indeed,
our approach can also be used to improve the accuracy of DL models potentially, we leave it as our
future work.

6.2 Robustness Improvement

As introduced in the introduction, DL models are fragile in the face of adversarial attacks [81].
In order to improve the adversarial robustness of DL models, many approaches have been put
forward in the last decade, which can be classified into two distinct categories: model retraining and
adversarial sample detection, where the former is more widely explored. Existing studies [28, 41]
have also shown that injecting adversarial examples into the training set (also called adversarial
training) could increase the robustness of DL models combating adversarial examples, and many
approaches have been proposed [28, 72, 75, 89, 92]. One of the key differences among this kind
of approaches lies in the strategies adopted for data augmentation. For example, Zantedeschi et
al. [123] proposed to augment training data with examples perturbed using Gaussian noise; Tramèr
et al. [104] introduced a technique that augments training data with perturbations transferred from
other models; Engstrom et al. [24] proposed a data augmentation method by robust optimization and
test-time input aggregation; While Gao et al. [27] proposed to a mutation-based fuzzing technique
for such a purpose. Besides simply augmenting or filtering training data, Papernot et al. [82] and
Xu et al. [118] further respectively proposed to optimize the labels and input features of training
data via model distillation and feature squeezing to improve model robustness. However, different
from these existing techniques, our approach improves the adversarial robustness of DL models
via model transformation, which introduces an isomorphic neural network for parameter tuning
rather than training the original model.
Regarding the latter category, i.e., adversarial sample detection, Zhong et al. [142] proposed

two techniques (a black-box and a white-box) via leveraging the properties of local robustness of
neighbor inputs, which help identify inputs with poor robustness, thereby providing real-time
feedback to the end-user. On the contrary, Zhao et al. [140] proposed to detect adversarial examples
based on a predefined robustness difference of input examples. Zhang et al. [139] proposed slicing
deep neural networks based on data flow analysis, and identified adversarial examples by comparing
the slices calculated by benign examples and adversarial examples. These approaches are orthogonal
to ours and can be combined to further improve the robustness of DL models.
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Recent researches also have conducted various studies to investigate the performance of adver-
sarial training in different aspects. Kurakin et al. [63] investigated the performance of adversarial
training on large models, and provided guidelines on how to successfully scale adversarial training
to large models and datasets, and Madry et al. [72] explored the adversarial robustness of neural
networks through the lens of robust optimization, assisting the design of reliable and universal
methods for model training. Furthermore, Yokoyama et al. [120] conducted an empirical study on
the performance of data-augmentation-based model robustness improvement in real industrial
scenarios. The results indicate data-augmentation-based approaches can indeed help improve the
robustness of DL models, confirming the effectiveness of our approach.

6.3 Fairness Improvement

Besides the robustness issue, due to the wide application of DL models in practice, especially in
ethically sensitive areas, the fairness of DL models has become a critically important property,
which can easily cause performance bugs of DL models by producing unfair prediction results.
Recently, many approaches have also been proposed with the aim of improving DL models’ fair-
ness, including pre-processing, in-processing and post-processing methods, such as the baseline
approaches introduced in Section 5.2.2. In the following, we briefly introduce the related research.
The pre-processing methods aim at reducing the bias in the training data before model training

so as to the learned model can produce fair predictions. For example, besides the Reweighing
(REW) [56] compared in our evaluation, Burnaev et al. [8] proposed to leverage imbalance ratios to
measure the training data, based on which they optimize the training data by removing or adding
new data. Similarly, Cui et al. [20] proposed a data sampling method, which balances different
classes in the training data by resampling. Additionally, Chawla et al. [14] proposed SMOTE, which
aims at debiasing the training data by generating new data for minority classes of inputs. Different
from them, Li et al. [68] proposed to identify the biased features of inputs and remove them
during the training of the model, based on which they proposed LTDD. As for the in-processing
methods, they modify the models and optimize training algorithms in different ways to mitigate
the bias in the model predictions, such as the method of Adversarial Debiasing (ADV) [126] in our
evaluation. Additionally, Du et al. [23] proposed CREX, which leverages the model regularization to
reduce the effects of privileged (or sensitive) attributes to the final prediction results. Most recently,
Chen et al. [18] proposed an ensemble method MAAT, which ensembles an accuracy-based and
another fairness-based model. The results show it can effectively trade off the accuracy and fairness.
However, different from them, our approach improves the model fairness by post training, which is
orthogonal to the above approaches and can be further combined with them.

The post-processing methods aim at optimizing the learned models for fairness improvement, e.g.,
Reject Option Classification (ROC) [57] that has been compared in our evaluation. This category
is the most similar approach to ours since FMT improve fairness by post model training. The
most latest approach NeuronFair was proposed by Zheng et al. [141], which aims at generating
more diverse training data for model optimization according to the interpretability of DL models.
Additionally, Sun et al. [97] proposed CARE, which employs PSO (Particle Swarm Optimization)
algorithm to optimize the neurons identified by causality analysis under the guidance of a novel
fitness function. In our evaluation, we also have compared our approach with it. Different from
these approaches that fine tune the learned models without changing the structure of the model, our
approach transforms the classification model into an isomorphic regression model for optimization,
and the results also demonstrate the stably good performance of our approaches.
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Table 10. Performance comparison betweenDare and Knowledge Distillation regarding Empirical Robustness

(%) when attacking by JSMA and PGD. The model accuracy before and after tuning is also presented.

Model DataSet JSMA PGD Original Model Acc. Model Acc. After Tuning
Dare Distill. Dare Distill. Dare Distill. Dare Distill.

VGG16
CIFAR10

84.9 82.7 83.7 79.4 88.7 88.3 88.9 85.9
VGG19 88.5 85.6 89.8 88.3 90.6 90.4 90.4 87.5
Alexnet 62 70.6 82.1 76.9 83 80.1 83.6 79.1

7 DISCUSSION

7.1 Comparison with Knowledge Distillation

Knowledge distillation [38, 59, 87] was originally proposed for reducing the size of deep learning
models so that less storage and computing resource will be required for their practical use, e.g.,
on portable devices like mobile phones [30]. The basic idea of knowledge distillation is to train a
lightweight model under the guidance of a well-trained model, where the output probability vectors
of the well-trained model can play as the reference for model training. Although our approach
is similar to knowledge distillation since they both change the discrete classification labels into
finer-grained continuous values, they are still different in several aspects: (1) Knowledge distillation
is model-centric but our approach is data-centric. In other words, the former selects a constant (i.e.,
the original) model as the training reference. On the contrary, ours aims at finding inputs that
can produce a higher prediction probability (i.e., confidence), while the reference models can vary.
(2) Our approach incorporates model slicing to identify the crucial neurons for fine-tuning, while
knowledge distillation does not. Based on the above discussion, we believe that our approach is
significantly different from knowledge distillation.
Additionally, to compare the performance of knowledge distillation and our approach, we

further conducted an experimental study. In particular, we compared our approach with knowledge
distillation only on the application of robustness improvement since existing distillation-based
fairness improvement methods all target image classification tasks [53] and cannot deal with our
tabular data. Specifically, we adopted the latest robustness improvement method proposed by
Papernot et al. [83] as the representative baseline. Moreover, we used the dataset CIFAR10 and set
the attacking method as JSMA for a fair comparison, which was also used by Papernot et al. [83].
Besides, we also used PGD for attacking because it was effective based on the results shown in
Table 2. In the experiment, we adopted the same configurations as Papernot et al. [83] did and
set the temperature 𝑇 = 10 to balance the effectiveness and efficiency since larger 𝑇 will cause
unaffordable time cost (Distillation took ∼9 hours on average per each model in our experiment).
The experimental results are shown in Table 10. The results show that our approach slightly

outperformed the distillation method by 1.3% on average regarding Empirical Robustness. However,
our approach can better preserve the model accuracy after fine-tuning. In summary, the results
further demonstrate that our approach is effective.

7.2 Limitation and Future Work

Limitation: Though our framework was proved to be effective for improving both the robustness
and fairness of DL models, it still has limitations. First, Dare is designed for classification models,
while it does not conform to regression models due to its underlying model transformation process.
However, the data augmentation algorithms and model training process can still be applied to
improving regression model robustness as long as the model adopts CNN structures due to the
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limit of NNSlicer [139]. Second, as shown in our experimental results, our framework is more
suitable for “hard-to-handle” tasks, where the model inputs originally involve perturbations, e.g.,
numbers in the natural scene (SVHN). On the contrary, the improvement will be slightly restrained
if the crucial input features are apparently distinctive (e.g., FM) for DL models. Nevertheless, our
framework still outperforms the baselines.
Future Work: In this work, we have evaluated the generalizability of our framework in two

emerging tasks, i.e., robustness and fairness improvement. The reason is that they are critically
important in practice and have been widely studied by existing research. However, according
to the introduction of our framework in Section 3, our framework is general and not designed
for specific tasks. In the future, we plan to study its effectiveness in more application scenarios,
e.g., accuracy improvement and fairness improvement on image classification models. However,
designing effective data augmentation algorithms is still challenging, especially for complex inputs.
For example, in the task of improving the fairness in image classification, the data augmentation
algorithm in FMT will not apply. In such cases, more advanced data augmentation algorithms may
be required and should be developed.

8 THREATS TO VALIDITY

The threats to validity mainly lie in the model/data selection and experiment construction. To
mitigate the selection bias in our evaluation, we have adapted our framework to two distinct
performance improvement tasks, i.e., robustness and fairness improvement. Additionally, we also
employed diverse network architectures and datasets, all of which are commonly used by existing
studies and cover both complex (e.g., CIFAR10 and VGG19) and simple ones (e.g., FM and Alexnet).
Specifically, the datasets adopted are different in multiple aspects, such as different image sizes,
different color modes (colored and grayscale), and different scenarios (numbers and objects) in the
evaluation of robustness task, while in the fairness task, the privileged attributes are also different
from diverse applications (e.g., sex in income prediction and age in credit prediction). Consequently,
we believe the results are representative. Regarding the experiment, in order to obtain the best
performance of baseline approaches, we have conducted an extensive model-tuning process. Finally,
our experimental data is publicly accessible for replication and for promoting future studies in this
research area.

9 CONCLUSION

In this paper, we have proposed a novel post model training framework that incorporates a novel
model transformation process. Specifically, it transforms a classification model into an isomorphic
regression model for performance improvement, which can effectively perceive input perturbations
for suppression and effectively consolidate the memory of crucial input features. To evaluate the
effectiveness of our framework, we have adapted it into two emerging DL tasks by proposing
two data augmentation algorithms for training data construction. We have implemented the
corresponding approaches in tools Dare and FMT respectively for improving the robustness and
fairness of DL models, and conducted extensive studies by comparing them with existing state-of-
the-art approaches. The results demonstrate that our framework is indeed effective and general as it
can be applied to improve the performance of DL models from different perspectives. In particular,
the stable performance of our approaches also reflects the high reliability of our framework for
practical use.
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