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Abstract—With the growth of software systems, logs have
become an important data to aid system maintenance. Log-based
anomaly detection is one of the most important methods for such
purpose, which aims to automatically detect system anomalies
via log analysis. However, existing log-based anomaly detection
approaches still suffer from practical issues due to either de-
pending on a large amount of manually labeled training data
(supervised approaches) or unsatisfactory performance without
learning the knowledge on historical anomalies (unsupervised
and semi-supervised approaches).

In this paper, we propose a novel practical log-based anomaly
detection approach, PLELog, which is semi-supervised to get rid
of time-consuming manual labeling and incorporates the knowl-
edge on historical anomalies via probabilistic label estimation to
bring supervised approaches’ superiority into play. In addition,
PLELog is able to stay immune to unstable log data via semantic
embedding and detect anomalies efficiently and effectively by
designing an attention-based GRU neural network. We evaluated
PLELog on two most widely-used public datasets, and the
results demonstrate the effectiveness of PLELog, significantly
outperforming the compared approaches with an average of
181.6% improvement in terms of F1-score. In particular, PLELog
has been applied to two real-world systems from our university
and a large corporation, further demonstrating its practicability.

Index Terms—Log Analysis, Anomaly Detection, Deep Learn-
ing, Probabilistic Estimation, Label

I. INTRODUCTION

Over the years, software systems become much larger and
more complex, which largely aggravates the difficulty of main-
taining them [1]–[7]. As presented in the existing work [8]–
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[17], logs have become important data for maintaining large-
scale software systems (e.g., online service systems [18]),
which are produced during the running of systems in order
to record events and states of interest. Through examining
recorded logs, developers can check system status, detect
anomalies, and diagnose root causes. However, due to the large
scale of systems, log data are massive, and thus manual ex-
amination for logs is very difficult, even infeasible. Therefore,
there are a large amount of work focusing on automated log
analysis in the literature [11], [19]–[25].

Log-based anomaly detection is one of the most important
aspects in automated log analysis, which aims to automatically
detect system anomalies based on logs [26]–[34]. Almost all
the existing log-based anomaly detection approaches share
the same high-level steps: 1) extracting log events (i.e., the
templates of log messages) and log sequences (i.e., series
of log events that record specific execution flows) from log
messages, and 2) building an anomaly detection model through
a machine learning or data mining technique based on log se-
quences. According to the used machine learning or data min-
ing techniques, these existing approaches include supervised
approaches (e.g., LogRobust [18]), unsupervised approaches
(e.g., LogCluster [30]), and semi-supervised approaches (e.g.,
LogAnomaly [32]). Although they have been demonstrated
to be effective in their corresponding studies, these existing
approaches still suffer from the following practical issues:

• Supervised approaches are the most effective but rely on
a large amount of training data, which contain both pos-



itive instances (i.e., anomalous log sequences) and neg-
ative instances (i.e., normal log sequences). In practice,
it is easy to obtain normal log sequences, since when
a system is normally running without any alerts, all the
produced logs could be regarded as normal ones. However,
identifying anomalous log sequence is very difficult, since
when anomalies occur in a system, both anomalous and
normal log sequences can be produced and mixed together.
Since log data are massive and hard-to-understand, manual
labeling is very time-consuming and expensive, and thus
such supervised approaches are actually not practical.

• Unsupervised and semi-supervised (only knowing the labels
of a set of normal log sequences) approaches get rid of
the limitation of supervised approaches by using only part
of the normal log sequences for training. As a result, their
effectiveness tends to be worse than the latter due to lack
of the knowledge on historical anomalies. Moreover, as
presented in the existing work [18], [35], log data are
unstable due to frequent modification of log statements in
source code in practice, causing that some incoming log
events or log sequences do not appear in the training data.
Due to the neglect of unstable log data, the effectiveness of
existing unsupervised and semi-supervised approaches can
drop largely when coming across unseen log events or log
sequences in practice.

Therefore, it is still desired to propose a more practical log-
based anomaly detection approach.

Although both supervised approaches and unsupervised and
semi-supervised approaches suffer from practical issues, both
of them actually have complementary strengths. More specifi-
cally, the former has better effectiveness due to incorporating
the knowledge on historical anomalies while the latter gets rid
of time-consuming manual labeling. In particular, in this paper
we propose a more practical log-based anomaly detection
approach PLELog, which combines the above strengths via
Probability Label Estimation. To get rid of time-consuming
manual labeling, PLELog is a semi-supervised approach only
knowing the labels of a set of normal log sequences, which are
obtained from systems when they normally run without any
alerts. To incorporate the knowledge on historical anomalies,
PLELog uses the idea of PU learning (positive-unlabeled
learning) [36] for reference, which utilizes known positive
instances to estimate the labels of unlabeled instances for
subsequent model building. In our problem, a set of negative
instances (normal log sequences) are known and PLELog aims
to estimate the labels of a set of mixed anomalous and normal
log sequences.

In PLELog, there are two major challenges. The first one is
how to estimate the labels of unlabeled log sequences based
on known normal log sequences. To overcome this challenge,
PLELog adopts the clustering method (i.e., HDBSCAN [37])
to divide all log sequences in the training set into several
groups, and the log sequences in the same group tend to
share the same label. Therefore, according to whether a group
contains known normal log sequences, PLELog preliminarily
estimates the labels of unlabeled log sequences. However, it is

hard to produce perfect clustering results, and thus the second
challenge is how to reduce the influence of noise incurred by
clustering. To overcome this challenge, instead of assigning
a deterministic label, PLELog measures the probability that
an unlabeled log sequence belongs to each label based on
the clustering results (i.e., the uncertainty that the unlabeled
log sequence is divided into the corresponding group) and
then assigns a probabilistic label to it. In this way, noise can
be assigned less confident labels to reduce their influence to
some degree. Based on probabilistic label estimation, a labeled
training set is obtained, and then PLELog builds an anomaly
detection model through supervised machine learning, which
can bring supervised approaches’ superiority into play. Be-
sides, to make PLELog more practical, it is required to perform
well for unstable log data and detect anomalies efficiently and
effectively. Here, PLELog incorporates semantic embedding
for log sequences to satisfy the first criterion following the
existing work [18]. To satisfy the second criterion, we design
an attention-based GRU (Gate Recurrent Unit) [38] neural
network for anomaly detection model building in PLELog.

To evaluate the performance of PLELog, we conducted
an empirical study based on two most widely-used public
datasets (i.e., HDFS [27] and BGL [39]) following the existing
work [19]. In particular, to make our study closer to the
practical scenario, we guaranteed that all log data in the
training set are produced before those in the test set, which is
ignored by almost all the existing studies and thus leads to the
absence of unstable log data in their studies. Our experimental
results demonstrate that PLELog significantly outperforms
the state-of-the-art unsupervised and semi-supervised log-
based anomaly detection approaches with the improvements
of 3.8%∼690.9% on HDFS and 30.2%∼332.6% on BGL in
terms of F1-score. Also, our results confirm the contribution
of each main component in PLELog. In particular, PLELog
has been successfully applied to two large-scale real-world
systems from two different organizations, i.e., the network
center of our university and one influential motor corporation
throughout the world (we hide its name due to the company
policy). In our work, we call them A and B. During the practi-
cal evaluation, PLELog achieves 0.947 and 0.984 F1-score for
A and B respectively, significantly outperforming the state-of-
the-art unsupervised and semi-supervised approaches with the
improvements of 8.1%∼234.6% on A and 7.0%∼18.6% on B.
The results further demonstrate the performance of PLELog
in practice.

Our work makes the following major contributions:
• We propose a practical and robust log-based anomaly de-

tection approach PLELog, which is semi-supervised and
incorporates the knowledge on historical anomalies via
probabilistic label estimation. Also, PLELog is able to stay
immune to unstable log data via semantic embedding and
detect anomalies efficiently and effectively by designing an
attention-based GRU neural network.

• We propose an effective method to estimate labels of unla-
beled log sequences based on known normal log sequences
through clustering. In particular, we design probabilistic
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Fig. 1: An illustrating example for log terminology

label estimation to reduce the influence of noise incurred
by clustering.

• We conduct an empirical study based on two most widely-
used public datasets, demonstrating the high performance
of PLELog. In particular, PLELog has been applied to two
real-world systems in our university and a large motor cor-
poration, further confirming the practicability of PLELog.

II. LOG TERMINOLOGY

In this section, we introduce log terminology used in our
paper based on an illustrating example shown in Figure 1.
The example of log data is selected from the public HDFS
dataset [27]. From this figure, a log message is a raw un-
structured sentence generated during system running, which
records system status of the time. A log message (e.g., Pack-
etResponder 1 for block blk -370867 terminating) consists of
a log event (e.g., PacketResponder * for block * terminating)
and log parameters (e.g., 1, blk -370867). The former is a
constant part in a log message, which is the template of a
log message designed by developers. The latter is a variable
part, which records some system attributes (e.g., IP address
and block id). Log events can be extracted from log messages
via log parsing, which is the first step of log-based anomaly
detection and has been widely studied in the literature [9], [18],
[19], [29]–[32], [40], [41]. A series of log messages form a log
message sequence. A log sequence is a series of log events
that record a specific execution flow, which can be obtained
by the task ID of each log message or some strategies like
sliding window. If a log sequence indicates system anomalies,
it is an anomalous log sequence; otherwise, it is a normal
log sequence.

III. APPROACH

A. Overview

In this paper, we propose a more practical log-based
anomaly detection approach, called PLELog, by combin-
ing the strengths of unsupervised/semi-supervised approaches
(getting rid of time-consuming manual labeling) and super-
vised approaches (incorporating the knowledge on historical
anomalies). More specifically, PLELog is a semi-supervised
approach only knowing the labels of a part of normal log

sequences in a training set, which are easy-to-obtain as
presented in Section I. Also, PLELog uses the idea of PU
learning [36] for reference to incorporate the knowledge on
historical anomalies, where PLELog estimates the labels of
unlabeled log sequences, mixing both normal and anomalous
ones in the training set, based on known normal log sequences
via probabilistic estimation. Finally, the estimated labeled data
will be used for subsequent supervised anomaly detection
model building.

Figure 2 shows the overview of PLELog. PLELog con-
sists of three stages, i.e., semantic embedding, probabilistic
label estimation, and anomaly detection model building. As
presented in Section I, log evolution is frequent in practice,
and thus it is required for a practical log-based anomaly
detection approach to be immune to such unstable log data. To
achieve this goal, following the existing work [18], PLELog
incorporates the semantic information of each log event during
vector representation, which is called semantic embedding and
is the first stage in PLELog (Section III-B). The second stage
in PLELog is probabilistic label estimation (Section III-C),
which is the core of PLELog. It solves a major challenge
in our problem (i.e., how to estimate the labels of unlabeled
log sequences in a training set based on known normal log
sequences) through clustering. Further, it solves a follow-
up challenge (i.e., how to reduce the influence of noise
incurred by clustering) through measuring the probability
that an unlabeled log sequence belongs to each label as the
estimated label of the log sequence instead of assigning a
deterministic label. Based on the training set including known
normal log sequences and estimated normal and anomalous
log sequences, PLELog builds an anomaly detection model
through supervised deep learning, which is the third stage in
PLELog (Section III-D). Besides the prediction effectiveness,
it is required for a practical log-based anomaly detection
approach to predict an incoming log sequence efficiently,
since log-based anomaly detection is expected to monitor a
system in real time. Therefore, we design an attention-based
GRU neural network for anomaly detection model building
by considering both prediction effectiveness and efficiency.
In particular, our attention-based GRU neural network could
further reduce the influence of noise incurred by clustering by
well handling temporal relations in log sequences. Finally, we
present the usage of PLELog in Section III-E.

B. Semantic Embedding

Instead of the widely-used one-hot representation [31],
PLELog transforms a log event to a vector (called semantic
vector) by extracting its semantic information in order to deal
with unstable log data well. It consists of three steps: log
parsing, word embedding, and TF-IDF based aggregation.

1) Log Parsing: As shown in Figure 1, raw log mes-
sages are unstructured data and contain variable log pa-
rameters, which could hinder automated log analysis [42],
[43]. Therefore, following the practice of log-based anomaly
detection [18], PLELog extracts log events from log messages
via log parsing since log events are structured, which facilitates
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Fig. 2: Overview of PLELog

log analysis. In particular, PLELog adopts the state-of-the-
art method Drain [42] for log parsing since it has been
demonstrated to be very effective and efficient in the existing
study [44].

2) Word Embedding: To extract semantic information of
log events, PLELog regards each log event as a sentence in
natural language. Since log events are designed by developers
to record the running status of a system, most tokens in a
log event are English words, which have their own semantics.
Also, there are non-character tokens (e.g., delimiters, oper-
ators, punctuation marks, and number digits) and composite
tokens that are concatenations of words (e.g., NullPointerEx-
ception) due to the programming practice. Therefore, follow-
ing the existing work [18], PLELog first pre-processes log
events by removing non-character tokens and stop words and
splitting composite tokens into individual words according to
Camel Case [45]. Then, PLELog adopts the pre-trained word
vectors based on Common Crawl Corpus using the FastText
algorithm [46] (which can effectively capture the intrinsic
relationship among words in natural language), to extract the
semantic information from each word in a processed log event.
That is, PLELog adopts the pre-trained word2vec model to
transform each word in a processed log event to a d-dimension
vector (denoted as v), where d is 300 in FastText word vectors.

3) TF-IDF based Aggregation: After transforming a word
to a d-dimension vector via word embedding, PLELog further
transforms a log event to a semantic vector by aggregating
all word vectors in the log event. Here, PLELog adopts TF-
IDF [47], a widely-used method in information retrieval, for
aggregation with considering the importance of each word,
which can be effectively measured by TF-IDF. TF (Term
Frequency) measures how frequently a word w occurs in a log
event, which is calculated by TF(w) = #w

#N where #w is the
number of the occurrence of w in the log event and #N is the
total number of words in the log event. IDF (Inverse Document
Frequency) measures how common or rare a word w is in all
log events, which is calculated by IDF(w) = log( #L

#Lw
) where

#L is the total number of log events and #Lw is the number
of log events containing w. The weight (denoted as ω) of

a word can be calculated by TF×IDF. Finally, the semantic
vector (denoted V ) of a log event can be produced by summing
up all word vectors in the log event with TF-IDF weights as
V = 1

N

∑N
i=1 ωi · vi.

In this way, PLELog represents log events as semantic
vectors, which effectively incorporates their semantic infor-
mation, facilitating to identify semantically similar log events
and distinguish different log events. Therefore, PLELog is able
to be immune to unstable log data to some degree.

C. Probabilistic Label Estimation

After semantic embedding, PLELog further estimates the
labels of unlabeled log sequences in the training set based
on known normal log sequences by using the idea of PU
learning for reference, so that the strength of supervised
approaches can be incorporated. Intuitively, log sequences with
similar semantics are more likely to share the same label.
With this intuition, PLELog first adopts advanced clustering
to identify the log sequences with similar semantics to the
same group. However, it is hard to produce perfect clustering
results, and thus instead of assigning a deterministic label,
PLELog assigns a probabilistic label for each unlabeled log
sequence by measuring the probability that an unlabeled log
sequence belongs to each label in order to reduce the influence
of noise incurred by clustering. In the following, we present
log sequence clustering in Section III-C1 and label probability
measurement in Section III-C2 in details.

1) Log Sequence Clustering: As a log sequence contains
a series of semantic vectors, to enable the clustering of
log sequences, PLELog produces a vector for each log se-
quence (called log-sequence semantic vector) by aggregating
all semantic vectors in the log sequence via summation.
Here, PLELog adopts the HDBSCAN algorithm (Hierarchi-
cal Density-Based Spatial Clustering of Application with
Noise) [48] to cluster all log sequences (including known
normal log sequences and unlabeled log sequences) in the
training set to different groups, each of which is more likely to
contain the log sequences with similar semantics. The reasons
why choosing HDBSCAN are threefold: (1) It is hard to know
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Fig. 3: Visualization of main stages in HDBSCAN clustering by sampling 100 log sequences in the HDFS dataset [27]

the number of clusters in advance, and thus the clustering
algorithms required to pre-define the number of clusters cannot
be applicable, e.g., the widely-used K-means algorithm [49].
HDBSCAN is a density-based clustering algorithm, which
groups the data points that are closely packed together, and
thus it does not need to pre-define the number of clusters. (2)
HDBSCAN has been demonstrated to be effective and efficient
and has been widely used in many domains [50]–[53]. (3)
HDBSCAN has a small number of parameters and is robust
to parameter selection [37], and thus it is more easy-to-use in
practice.

To clearly illustrate the clustering process for log sequences
via HDBSCAN, we made visualization for main steps by
sampling 100 log sequences in the HDFS dataset [27], which
is shown in Figure 3. First, it builds a weighted graph,
in which vertices are the data points (log-sequence seman-
tic vectors) and weights of edges between vertices are the
corresponding mutual reachability distances [48]. Second, it
builds the minimum spanning tree of the weighted graph via
Prim’s algorithm [54]. According to the minimum spanning
tree, a hierarchy of connected components is constructed by
ranking tree edges in the ascending order of distances and
iterating via creating a new merged cluster for each edge.
Then, it condenses down the large cluster hierarchy into
a smaller tree based on the defined minimum cluster size
(a parameter in HDBSCAN). Finally, it extracts the stable
clusters from the condensed tree by calculating the stability
score of each cluster. In this way, log sequences in the training
set are divided into several groups in order to identify the log
sequences with similar semantics.

In particular, with the number of data points and the
vector dimension increasing, HDBSCAN could become less
efficient and thus it tends to be used together with dimension
reduction methods in the literature [50]. Therefore, PLELog
also conducts dimension reduction before clustering in order to
make the clustering process efficient. Here, PLELog adopts the
FastICA algorithm [55], which aims to find independent com-
ponents and facilitate to find underlying factors by maximizing
negative entropy [56] for dimension reduction following the
existing work using HDBSCAN [50].

2) Label Probability Measurement: Through clustering, log
sequences with similar semantics are divided to the same
group, indicating they share the same label. Thus, according
to whether there exist known normal log sequences in a group

or not, PLELog preliminarily estimates the labels of the log
sequences in the group. That is, if a group contains known
normal log sequences, the log sequences in the group are
more likely to have the same label with them (i.e., normal log
sequences); Otherwise, they are more likely to be anomalous.
However, it is hard to produce perfect clustering results, thus
if we directly label each unlabeled log sequence as normal or
anomalous based on preliminary estimation, the noise incurred
by clustering could undermine the effectiveness of PLELog.

Instead of assigning a deterministic label (1 representing
“anomalous”, 0 representing “normal”), PLELog assigns a
probabilistic label to each unlabeled log sequence by mea-
suring the probability that the unlabeled log sequence belongs
to each label to reduce the influence of noise. In this way, even
though PLELog has preliminarily estimated a wrong label for a
noisy log sequence in a group, PLELog can make the prelimi-
narily estimated label less confident through such probabilistic
labeling. Therefore, during the model building process with
our attention-based GRU neural network (Section III-D), the
importance of noisy log sequences can be effectively reduced
so that the influence of noise can be also effectively reduced.

More specifically, PLELog measures the probability that
an unlabeled log sequence belongs to each label based on
clustering results. With HDBSCAN, each log sequence in a
group is assigned a score, which reflects the uncertainty that
the log sequence belongs to the group. The score ranges from
0 to 1, the closer to 0 the score is, the more confidence can be
gained to cluster a log sequence to the corresponding group.
Even though the uncertainty may be large for a log sequence
in a group, it is still more confident for dividing it to this group
compared with dividing it to other groups, and thus making a
label probabilistic is required to meet the major premise of the
preliminarily estimated label. Based on this major premise and
the scores produced by HDBSCAN clustering, we transform
each preliminarily estimated label to a probabilistic label as
P (anomalous) = 1− score

2 and P (normal) = score
2 .

D. Anomaly Detection Model Building

Based on the set of labeled training data through probabilis-
tic label estimation, we design an attention-based GRU neural
network (shown in Figure 2) to build an effective and efficient
anomaly detection model.

1) GRU Neural Network: GRU, a kind of Recurrent Neural
Network (RNN), has been demonstrated to be effective to



handle temporal relations in sequential data [57], [58]. In our
problem, a log sequence consists of a series of log events
that are continuously produced during system running and
closely related within a short period. Therefore, we employ
GRU to build an anomaly detection model in PLELog. A
typical GRU includes an update gate to decide how much
information from a previous state passing to a new state, and
a reset gate to decide how much information from the past
should be forgotten. That is, both gates together determine the
influence of past log events in a log sequence on the future.

For a log sequence S = {e1, e2, . . . , en}, where et (1 ≤ t ≤
n) is the tth log event and n is the number of log events in S,
the input of GRU at the tth time step is the semantic vector of
et denoted as Vt. According to the hidden state Ht−1 at the
(t− 1)th time step, the update gate zt and reset gate rt at the
tth time step can be calculated by Formula 1.

zt = σ(WzVt + UzHt−1)

rt = σ(WrVt + UrHt−1)
(1)

where σ is the logistic sigmoid function, and Wz , Wr, Uz and
Ur are network parameters. Then, the hidden state Ht at the
tth time step can be calculated based on Ht−1 by Formula 2.

Ht = ztHt−1 + (1− zt)H̃t

H̃t = tanh(WVt + U(rt �Ht−1))
(2)

where W and U are also network parameters, and � is an
element-wise multiplication. In particular, before the startup
time step (i.e., t = 0), no log event comes and thus the
hidden state H0 is a zero vector. All network parameters can
be learned during training.

2) Attention-Based Mask Strategy: The output of GRU at
the tth time step is mainly decided by the current log event
(i.e., Vt) and the last hidden state Ht−1. When a log sequence
comprises too many log events, it could suffer from the long
dependency issue, which could be harmful to the anomaly
detection effectiveness. Moreover, the noisy log events in
a log sequence can also undermine the anomaly detection
effectiveness. To tackle them, PLELog further incorporates an
attention-based mask strategy in our GRU neural network.

Intuitively, a log event that has larger correlation with the
anomaly detection result, is more important in a log sequence.
That is, the larger the correlation between the hidden state
Hi (corresponding to a log event ei at the ith time step) and
the anomaly detection result, the larger the weight of Hi,
indicating that ei is possibly an indicator of anomalies. In
this way, important log events can be highlighted by assigning
them larger weights while noisy log events can be masked
by assigning them smaller weights. Here, we assemble the
attention vector HA

t at the tth time step by HA
t =

∑t
i=1 λtiHi,

where λti is the learned weight of Hi at the tth time step and
λti is calculated by softmax function [18].

Finally, PLELog takes HA
n as the input of GRU and

leverages a non-linear layer (Formula 3) to predict the final
result for a log sequence, which employs tanh as the activation
function. Wn is a weight matrix learned during training.

P (normal, anomalous) = tanh(WnH
A
n ) (3)

E. Usage of PLELog

After building an anomaly detection model through
PLELog, the model can be deployed to monitor the system in
real time. When there is an incoming log message sequence,
PLELog first conducts log parsing and semantic embedding
to obtain semantic vectors, and then the model can predict
whether it is anomalous or normal. If an anomaly is detected,
an alert would be timely produced and sent to the operators in
order to start the process of mitigation and diagnosis earlier.

IV. EVALUATION

In our study, we address the following research questions:
• RQ1: How does PLELog perform in terms of effectiveness?
• RQ2: Does each main component contribute to PLELog?
• RQ3: How does different PLELog configurations impact the

effectiveness of PLELog?
• RQ4: How does PLELog perform in terms of efficiency?

A. Datasets

In our study, we used two most widely-used public datasets
to evaluate PLELog, i.e., HDFS (Hadoop Distributed File
System) dataset [27] and BGL (Blue Gene/L supercomputer)
dataset [39], which have been widely used in the existing work
on log-based anomaly detection [18], [26], [31], [32], [59]–
[61]. For ease of presentation, we call them HDFS and BGL
directly.

HDFS contains 11,175,629 log messages produced through
running Hadoop-based MapReduce jobs on more than 2,000
Amazon’s EC2 nodes for 38.7 hours. According to block id
in its log messages, log sequences can be directly extracted. In
total, there are 575,062 log sequences in HDFS, among which
about 2.9% log sequences indicate system anomalies that were
manually labeled by Hadoop domain experts.

BGL contains 4,747,963 log messages that were produced
by the Blue Gene/L supercomputer, which consists of 128K
processors and was deployed at the Lawrence Livermore
National Laboratory, with a time span of 7 months. Each log
message in BGL was manually labeled to be either anomalous
or normal by BGL domain experts. In total, 348,460 log
messages are anomalous. Unlike HDFS, BGL does not have
obvious tags such as block id to help extract log sequences,
and thus similar to the existing work [31], [32] we extracted
log sequences through the strategy of splitting windows with
the size of 120. In particular, during log sequence extraction,
we ranked all log messages according to their generation
timestamps and considered the node on which each log mes-
sage was produced. If a log sequence contains at least one
anomalous log message, it is regarded as an anomalous log
sequence. Finally, we obtained 49,274 normal log sequences
and 36,303 anomalous log sequences in BGL.

Similar to the existing work [18], [23], [26], [30]–[32], we
also split each dataset into a training set, a validation set for
parameter tuning, and a test set with the ratio of 6:1:3, to
evaluate the performance of a log-based anomaly detection
approach. However, the splitting methods used in the existing
work [18], [31], [32] shuffle all log sequences before splitting,



which can avoid the occurrence of unstable log data. Different
from them, we split a dataset in chronological order of log
sequences so as to guarantee that all log sequences in the
training set are produced before the log sequences in the test
set, which is much closer to the practical scenario. Also, the
influence of dataset splitting methods has been investigated
in the area of predicting software development practices [62]
and it suggests to split a dataset in chronological order to
avoid data leakage. In particular, with our splitting method,
unstable log data indeed occur especially on BGL, since
its time span of log data is longer. To evaluate our semi-
supervised approach PLELog, we sampled 50% of training
data as known normal log sequences and the remaining log
sequences in the training data as unlabeled log sequences, to
simulate the semi-supervised scenario.

B. Compared Approaches

1) Existing Log-based Anomaly Detection Approaches: As
PLELog is a semi-supervised approach, we compared PLELog
with the state-of-the-art semi-supervised and unsupervised log-
based anomaly detection approaches:
• Deeplog [31] treats a log sequence as a natural language

sequence and adopts a deep neural network (LSTM) to learn
normal log patterns from normal log sequences. During
anomaly detection, Deeplog predicts the next log event, and
if the real log event is not included in the top prediction
results, an anomaly is regarded to be detected.

• LogAnomaly [32] is similar to Deeplog to learn normal log
patterns from normal log sequences. The main difference is
that the former represents a log sequence by considering
semantic information instead of one-hot representation used
in the latter in order to improve prediction effectiveness.
Moreover, LogAnomaly also counts log events during rep-
resentation in order to detect the anomalies reflected by
anomalous log event numbers.

• LogCluster [30] first represents a log sequence by con-
sidering the weights of log events, and then adopts the
Agglomerative Hierarchical clustering algorithm [63] to
cluster log sequences. In each cluster, it selects its centroid
as the representative log sequence. For an incoming log
sequence, it identifies whether it is normal or anomalous by
measuring the distances between the incoming log sequence
and all the representative log sequences.

• PCA (Principal Component Analysis) is a popular algorithm
for dimension reduction [64]. For its application on log-
based anomaly detection, it first represents a log sequence
by counting log events, and then projects log sequences
into two spaces, i.e. normal space and anomalous space, by
considering the first k principal components and remaining
principal components. Then, for an incoming log sequence,
it can be identified to be normal or anomalous according to
the space the log sequence belonging to after projection.
Besides, PLELog tries to incorporate the strength of su-

pervised approaches via probabilistic label estimation, and
thus it is interesting to investigate how much the gap be-
tween PLELog and the state-of-the-art supervised log-based

anomaly detection approach, i.e., LogRobust [18]. Thus,
we also compared PLELog with LogRobust, which builds a
classifier via LSTM based on the manually labeled training
set after representing a log sequence by considering semantic
information.

2) Variants of PLELog: In RQ2, we aim to investigate the
contributions of three main components to PLELog, includ-
ing making label estimation probabilistic, incorporating an
attention mechanism, and reducing semantic-vector dimension.
Thus, we constructed three variants of PLELog accordingly:

• PLELognoP removes the component of making label es-
timation probabilistic from PLELog. That is, it directly
assigns a deterministic label to each unlabeled log sequence
based on the clustered groups.

• PLELognoA removes the component of incorporating an
attention mechanism from PLELog. That is, it uses a GRU
neural network without the attention mechanism to build an
anomaly detection model based on the training set with our
estimated probabilistic labels.

• PLELognoR removes the component of reducing semantic-
vector dimension from PLELog. That is, it directly uses
the original semantic vectors for the subsequent steps after
semantic embedding.

3) Different PLELog Configurations: To answer RQ3, we
investigated the impact of three main parameters in PLELog,
including the number of GRU layers, the size of GRU hidden
states, and the number of components in FastICA. Regarding
the number of GRU layers, we studied 1, 2, 3, 4, 5. Regarding
the size of GRU hidden states, we studied 50, 100, 150, 200,
250, 300. Regarding the number of components in FastICA,
we studied 50, 100, 150, 200, 250.

C. Implementations and Environments

We implemented PLELog based on Python 3.8.3 and Py-
torch 1.5.1 [65]. We adopted the implementations of HDB-
SCAN and FastICA provided by hdbscan 0.8.26 [66] and
sklearn [67] respectively. For parameters in PLELog, we
determined them through grid search based on validation sets.
More specifically, we set the size of GRU hidden states to be
100, the number of GRU layers to be 1, learning rate to be
0.002, the number of components in FastICA to be 100, the
number of epochs to be 20. In particular, we investigated the
impact of parameter settings on PLELog in RQ3. Also, we
set min cluster size to be 100 and min samples to be 100 in
HDBSCAN. As demonstrated by the existing work [37], [50],
HDBSCAN is robust to parameter selection.

Regarding the existing log-based anomaly detection ap-
proaches, we adopts their public implementations [68], [69]. In
particular, we determined their parameters by first reproducing
the results in their corresponding studies [18], [31], [32] and
further conducting grid search based on validation sets, in
order to obtain the best parameter settings for them.

We conducted all the experiments on a Linux server with
Intel(R) Xeon(R) Silver 4214 2.20GHz CPU, 128GB memory,
RTX2080Ti with 11GB GPU memory and operating system



version is Ubuntu 18.04. In particular, our tool and experi-
mental data are available in our project homepage1.

D. Measurements

Log-based anomaly detection is actually a binary classifi-
cation problem, and thus following the existing work [18],
[31], [32], we adopted Precision, Recall, and F1-score to
measure the effectiveness of log-based anomaly detection
approaches. Precision is compuited by TP

TP+FP while Recall
is computed by TP

TP+FN , where TP, FP, and FN refer to
the number of true positives (a log sequence is predicted to
be anomalous and its ground truth is also anomalous), false
positives (a log sequence is predicted to be anomalous but its
ground truth is normal), and false negatives (a log sequence is
predicted to be normal but its ground truth is anomalous),
respectively. F1-score considers both Precision and Recall,
which is calculated by 2·(Precision·Recall)

Precision+Recall . Besides, for LogRobust
and PLELog, the effectiveness of their built classifiers could be
affected by the threshold used to distinguish the two classes,
and thus it is also necessary to measure their effectiveness
under different thresholds. Therefore, we drew the Receiver
Operating Characteristic (ROC) [70] curve with thresholds
from 0 to 1 with the step of 0.1 and then calculated its Area
Under Curve (AUC) value. The larger the AUC value is, the
better effectiveness the classifier has.

Besides, a log-based anomaly detection approach is de-
ployed to monitor systems in real time, and thus the time
spent on online predicting a log sequence is also important.
Therefore, we recorded the time spent on online predicting a
log sequence to measure the efficiency of a log-based anomaly
detection approach. We also recorded the time spent on offline
building an anomaly detection model based on a training set
for each approach. We call the former prediction time and the
latter training time.

E. Results and Analysis

1) Effectiveness of PLELog: Table I shows the effectiveness
comparison results among all the studied approaches in terms
of Precision, Recall, and F1-score. We found that PLELog is
able to perform well on both HDFS and BGL in terms of
all the three metrics. For example, F1-score of PLELog is
0.957 and 0.982 on HDFS and BGL, respectively. The results
demonstrate the effectiveness of PLELog.
Comparison with existing semi-supervised and unsuper-
vised approaches. From Table I, PLELog largely outper-
forms all the compared semi-supervised and unsupervised
approaches on both HDFS and BGL in terms of all the
three metrics (except LogCluster in Precision). Even though
LogCluster achieves better Precision, its Recall and F1-score
are significantly worse than those of PLELog. In particular, for
anomaly detection, Recall is a much more important metric
than Precision since missing to detect anomalies could lead
to huge economic loss and other serious consequences. In
terms of F1-score, the improvements of PLELog over all the

1https://github.com/YangLin-George/PLELog

TABLE I: Experiment results of studied approaches on HDFS
and BGL

Dataset Method Precision Recall F1-score

HDFS

DeepLog 0.945 0.900 0.922
LogAnomaly 0.860 0.898 0.878
LogClustering 1.000 0.836 0.911
PCA 0.347 0.073 0.121
PLELog 0.950 0.963 0.957
LogRobust 0.999 0.995 0.997

BGL

DeepLog 0.138 0.63 0.227
LogAnomaly 0.179 0.998 0.303
LogClustering 0.914 0.642 0.754
PCA 0.448 0.333 0.382
PLELog 0.965 0.999 0.982
LogRobust 0.999 0.998 0.999

compared semi-supervised and unsupervised approaches range
from 3.8% to 690.9% on HDFS and from 30.2% to 332.6%
on BGL.

Besides, we found that almost all the compared semi-
supervised and unsupervised approaches perform worse on
BGL than HDFS. For example, F1-score of the state-of-the-art
semi-supervised approach Deeplog largely drops from 0.922
on HDFS to 0.227 on BGL. This is because there are more
unstable data in BGL due to its longer time span compared
with HDFS. More specifically, about 7.4% log events in the
test set of BGL do not appear in its training set, while
there is no such new log events on HDFS. As the state-of-
the-art semi-supervised approaches Deeplog and LogAnomaly
aim to predict the next log event in a log sequence, they
can only predict the log events appearing in their training
sets and are easy to treat unseen log events as anomalies,
leading to bad effectiveness. Regarding LogCluster, since it
adopts one-hot representation for log sequences and then
clusters vectors, when coming across unseen log events it
directly ignores them during representation. Moreover, the log
sequences containing unseen log events are usually normal
in BGL, and thus its effectiveness is better than Deeplog and
LogAnomaly. Faced with such unstable log data, PLELog still
performs well due to its semantic embedding and the capability
of incorporating the knowledge on historical anomalies. Please
note that the effectiveness of these compared semi-supervised
and unsupervised approaches is worse than that reported in
their corresponding studies, since our data splitting method
avoids data leakage and incurs practical unstable log data.

Comparison with the state-of-the-art supervised approach.
Even though PLELog is a semi-supervised approach, it tries
to incorporate the strength of supervised approaches through
probabilistic label estimation, and thus it is interesting to
explore how much gap between PLELog and the state-of-the-
art supervised approach LogRobust. From Table I, although
PLELog performs worse than LogRobust, their gap in terms
of various metrics is actually quite small, indicating the
success of incorporating the strength of supervised approaches
via probabilistic label estimation. Moreover, as LogRobust
depends on a large amount of manually labeled training data,



PLELog has greater usability in practice. As presented in
Section IV-D, AUC is also an important metric for such
classifiers of LogRobust and PLELog, and thus we further
compared them in terms of this metric. More specifically, AUC
of PLELog is 0.981 on both HDFS and BGL while that of
LogRobust is 0.998 on both HDFS and BGL. We found that
AUC of PLELog is very high, even competitive with that of
LogRobust, further demonstrating its stable effectiveness.

2) RQ2: Contribution of Main Components in PLELog:
Table II shows the effectiveness comparison results between
PLELog and its variants. From this table, PLELog outper-
forms PLELognoP and PLELognoA in terms of effective-
ness, confirming the contribution of making label estimation
probabilistic and incorporating an attention mechanism to
the overall effectiveness of PLELog. More specifically, the
improvement of PLELog over PLELognoP in terms of F1-
score is 66.7% on HDFS and 19.0% on BGL while that of
PLELog over PLELognoA is 11.5% on HDFS and 10.8%
on BGL, demonstrating that the component of making label
estimation probabilistic contributes more. Also, we found that
PLELognoP performs much worse on HDFS (0.574) than BGL
(0.825) in terms of F1-score. This is because the clustering
effectiveness on HDFS is worse than that on BGL. Even
so, the effectiveness of PLELog is similar on both HDFS
and BGL, indicating that our probabilistic label estimation
does effectively reduce the influence of noise incurred by
clustering (no matter how much noise is incurred). Besides,
even though the clustering effectiveness in PLELog may be
not very high (e.g., 0.808 F1-score on HDFS), its final clas-
sification effectiveness can be excellent (e.g., 0.957 F1-score
on HDFS), further confirming the importance of probabilistic
label estimation and also our attention-based GRU network.

From Table II, PLELog cannot guarantee to outperform
PLELognoR stably in terms of effectiveness. For example, with
dimension reduction, F1-score of PLELog on BGL is largely
improved from 0.888 to 0.982 but that on HDFS is slightly
decreased from 0.988 to 0.957. On average, this component
is still helpful to the overall effectiveness of PLELog since
HDBSCAN has been demonstrated to be not very effective
for high-dimensional data [48], [50]. In particular, through
dimension reduction, the clustering and training efficiency
of PLELog can be largely improved, which is its another
important contribution to PLELog.

In summary, both making label estimation probabilistic and
incorporating an attention mechanism contribute to the overall
effectiveness of PLELog, and the component of reducing
semantic-vector dimension contributes to both effectiveness
and efficiency of PLELog.

3) RQ3: Impact of Different PLELog Configurations:
Figure 4 shows the effectiveness of different PLELog con-
figurations (introduced in Section IV-B3) in terms of AUC.
We found that although there exists small perturbation under
different configurations, the overall effectiveness is stable, i.e.,
the deviation of AUC is smaller than 0.05 across all the
configurations, indicating PLELog is insensitive to different
configurations and thus robust in practice.

TABLE II: Experiment results between variants of PLELog

Dataset Method Precision Recall F1-score

HDFS

PLELog 0.950 0.963 0.957
PLELognoP 0.997 0.402 0.574
PLELognoA 0.998 0.753 0.858
PLELognoR 0.981 0.995 0.988

BGL

PLELog 0.965 0.999 0.982
PLELognoP 0.702 0.998 0.825
PLELognoA 0.878 0.895 0.886
PLELognoR 0.799 0.998 0.888

TABLE III: Time cost of studied approaches

Method HDFS BGL
Training Testing Training Testing

PLELog 43m 42s 24m 10s
LogAnomaly 4h 40m 47m 4h 20m 39m
LogRobust 1h 20m 49s 30m 15s
DeepLog 1h 50m 20m 44m 7m
LogCluster 19m 23s 41s 40s
PCA 18m 1s 8s 1s

4) RQ4: Efficiency of PLELog: Table III presents the
training time and prediction time of PLELog on HDFS and
BGL, respectively. In general, all the approaches are effi-
cient with very short prediction time (e.g., taking at most
17ms to predict one log sequence in HDFS). In particular,
our GRU-based classifier is more efficient than the LSTM-
based classifier of LogRobust, demonstrating that our GRU
network is more helpful to support timely anomaly detection
than the widely-used LSTM network. In terms of training
time, PLELog performs better than the state-of-the-art semi-
supervised approaches (i.e., Deeplog and LogAnomaly) and
the state-of-the-art supervised approach (i.e., LogRobust), but
performs worse than LogCluster and PCA, which only utilize
simple clustering or projection. Since the training process is
offline, the training time of PLELog (i.e., less than one hour)
is still acceptable. To sum up, PLELog is efficient with very
short prediction time and acceptable training time.

V. PRACTICAL EVALUATION

We have successfully applied PLELog to two large-scale
real-world distributed online systems from two different orga-
nizations, i.e., the network center of our university and one
influential motor corporation throughout the world (we hide
its name due to the company policy). Here, we call them A
and B respectively. Since both systems are large-scale and
complex and in the meanwhile the number of operators is
limited, it is hard for them to manually analyze and label
massive logs. PLELog is designed to conduct automated log-
based anomaly detection without manually labeling anomalous
logs, admirably satisfying their demands. Indeed, they largely
appreciated the performance of PLELog on their systems.
Here, we report the practical evaluation results based on two
datasets from the two real-world systems to show the practical
effectiveness of PLELog. For the dataset A there are 6,148,033
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Fig. 4: AUC value of various PLELog configurations.

TABLE IV: Practical evaluation results of studied approaches
on real-world datasets

Dataset Approach Precision Recall F1-score

A

DeepLog 0.883 0.833 0.858
LogAnomaly 0.791 0.981 0.876
LogCluster 0.165 0.998 0.283
PCA 0.882 0.829 0.854
PLELog 0.900 1.000 0.947

B

DeepLog 0.794 0.982 0.878
LogAnomaly 0.789 0.983 0.875
LogCluster 0.897 0.945 0.920
PCA 0.743 0.939 0.830
PLELog 0.978 0.991 0.984

log messages, among which 4,833 are anomalous, while for
the dataset B there are 334,567 log messages, among which
15,394 are anomalous. The number of log events are 25 and
243 for A and B respectively.

Table IV shows the effectiveness of all the studied semi-
supervised and unsupervised approaches on the two real-world
datasets. From this table, PLELog performs stably well on
both datasets in terms of Precision, Recall, and F1-score. For
example, F1-score of PLELog is 0.947 and 0.984 for A and
B respectively, and in the meanwhile its Recall is 1.000 and
0.991. The results demonstrate that PLELog hardly misses
to detect anomalies with very few false positives in the two
real-world systems. Besides, PLELog still outperforms all the
compared semi-supervised and unsupervised approaches on
both datasets. For example, the improvements of PLELog over
all the compared approaches range from 8.1% to 234.6% on
A and from 7.0% to 18.6% on B in terms of F1-score. By
combining the results in Tables I and IV, all the compared
approaches perform sensitively on different datasets (i.e., the
standard deviation of these compared approaches across all
the four datasets ranges from 0.248 to 0.309 in terms of
F1-score), while PLELog performs very stably regardless
of the used datasets (i.e., its standard deviation across all
the four datasets is only 0.016 in terms of F1-score). The
results further demonstrate the generality and practicability of
PLELog. Through an informal interview, developers indeed
confirmed the usefulness of PLELog in practice.

VI. DISCUSSION

A. Lessons Learned

Logs Evolution. In practice, logs evolve frequently especially
for the companies adopting Continuous Delivery or Deploy-
ment [71], [72]. For example, as observed in the existing

study [73], in their studied projects there are 20%∼45% log
statements evolved throughout their lifetime. Also, there are
hundreds of new log statements that are added to the source
code every month for four systems in Google [74]. Log
evolution could bring many new log events and log sequences.
Therefore, handling such unstable log data is a capability es-
sential to an log-based anomaly detection approach in practice
and PLELog indeed possesses it as demonstrated in our study.
Anomaly Interpretability. In practice, accurate anomaly de-
tection is helpful to mitigate and diagnose anomalies earlier,
which could reduce the influence of anomalies. Moreover,
recent studies have presented that making software analytics
models interpretable to software practitioners is as important
as achieving accurate prediction [75]–[77]. Thus, to further
facilitate the mitigation and diagnosis of anomalies, opera-
tors expect to receive interpretable anomaly detection results.
Otherwise, they still have to spend much time to identify root
causes of anomalies. In particular, PLELog, besides effectively
and efficiently detecting anomalies, also provides interpretable
results to some extent through its attention mechanism. More
specifically, PLELog provides the importance of each log event
in an anomalous log sequence, which makes operators more
clearly identify relevant log events to the detected anomaly so
as to provide hints for subsequent root cause diagnosis. In the
future, incorporating more advanced interpretability analysis
in PLELog is necessary.

B. Extensions of PLELog

We plan to further improve PLELog from two aspects in the
future. First, the anomaly detection effectiveness of PLELog
relies on the effectiveness of our clustering to some degree.
However, our used HDBSCAN could be costly for high-
dimensional data and in the meanwhile dimension reduction
could lose accuracy to some degree, and thus we plan to
incorporate a more effective and efficient clustering method
for high-dimensional data to improve PLELog. Second, as
demonstrated in our study, PLELog still has a little gap with
the state-of-the-art supervised approach (i.e., LogRobust) in
terms of effectiveness. In the future, we can add a feedback
process after operators mitigate/diagnose an anomaly, in order
to incrementally update our model with the newly confirmed
anomalous log data by operators. In this way, our model could
perform stably and well over time to some degree.

C. Threats to Validity

The internal threat to validity mainly lies in the implemen-
tations of PLELog and compared approaches. To reduce this



threat, we implemented PLELog based on popular libraries
(presented in Section IV-C) and two authors have carefully
checked the source code. Regarding compared approaches, we
adopted their open-source implementations directly.

The external threat to validity mainly lies in the used
datasets. In our study, we used two widely-used pub-
lic datasets, i.e., HDFS and BGL, following the existing
work [26], [29], [30], [32], [39]. To further investigate the
generality and practicability of PLELog, we applied PLELog
to two industrial datasets from the network center of our
university and an influential motor corporations respectively.
In the future, we will evaluate PLELog on more datasets.

VII. RELATED WORK

Supervised Log-based Anomaly Detection. With the help
of labeled training data, supervised approaches perform rel-
atively well for detecting anomalies [20], [28], [78]–[81].
For example, Liang et al. [80] explored four classifiers, i.e.,
RIPPER (a rule-based classifier), Support Vector Machines,
a traditional Nearest Neighbor, and a customized Nearest
Neighbor, for predicting failure events via logs. Bodik et
al. [81] used a logistic regression model to identify previously
seen performance crises in a datacenter. To further improve
the performance of log-based anomaly detection, advanced
deep learning techniques have been incorporated [18], [21],
[31], [32], [41]. For example, besides the state-of-the-art
supervised approach LogRobust (introduced in Section IV-B1),
Vinayakumar et al. [41] proposed a stacked-LSTM model for
accurate log-based anomaly detection.

Different from them, our work proposes a semi-supervised
log-based anomaly detection approach PLELog, only requiring
to know the labels of a set of easy-to-obtain normal log
sequences, to get rid of time-consuming manual labeling,
which is the practical limitation of supervised approaches.
In particular, the effectiveness of PLELog is even close to
that of the state-of-the-art supervised approach LogRobust as
demonstrated in our study.
Unsupervised and Semi-supervised Log-based Anomaly
Detection. Due to less depending on labeled data for model
training, unsupervised and semi-supervised approaches tend to
be more practical [16], [40], [59], [82]–[85]. Beside Deeplog,
LogAnomaly, LogCluster, and PCA that have been introduced
in Section IV-B1, Lou et al. [29] proposed Invariant Mining
(IM) that detects anomalies by checking the violations against
a set of execution flow invariants mined from previous log
sequences. He et al. [59] proposed Log3C that utilizes the
Hierarchical Agglomerative Clustering algorithm [86] to group
similar log sequences, and identifies the correlations between
logs and system KPIs (Key Performance Indicators).

Our proposed approach PLELog is also a semi-supervised
approach only knowing the labels of a part of normal log
sequences that are easy-to-obtain as presented in Section I.
Different from them, PLELog further incorporates the strength
of supervised approaches (i.e., learning the knowledge on
historical anomalies) via probabilistic label estimation instead

of manual labeling in order to largely improve the effectiveness
of unsupervised and semi-supervised approaches.

VIII. CONCLUSION

Over the years, many log-based anomaly detection ap-
proaches have been proposed, but these existing approaches
still suffer from practical issues due to either relying on a
large amount of manually labeled training data (supervised ap-
proaches) or unsatisfactory performance without learning the
knowledge on historical anomalies (unsupervised and semi-
supervised approaches). In this paper, we proposed a practical
semi-supervised (without time-consuming manual labeling)
approach PLELog, which learns the knowledge on historical
anomalies via probabilistic label estimation so that the strength
of supervised approaches can be incorporated. Also, PLELog
can stay immune to unstable log data via semantic embed-
ding and detect anomalies efficiently and effectively with
an attention-based GRU neural network. Our experimental
results on two most widely-used public datasets demonstrate
the effectiveness of PLELog. In particular, PLELog has been
applied to two real-world systems from our university and
an influential motor corporation, further demonstrating its
practicability.
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