
DESIL: Detecting Silent Bugs in MLIR Compiler Infrastructure
CHENYAO SUO, Tianjin University, China
JIANRONG WANG, Tianjin University, China
YONGJIA WANG, Tianjin University, China
JIAJUN JIANG, Tianjin University, China
QINGCHAO SHEN, Tianjin University, China
JUNJIE CHEN∗, Tianjin University, China

MLIR (Multi-Level Intermediate Representation) compiler infrastructure provides an e!cient framework for
introducing a new abstraction level for programming languages and domain-speci"c languages. It has attracted
widespread attention in recent years and has been applied in various domains, such as deep learning compiler
construction. Recently, several MLIR compiler fuzzing techniques, such as MLIRSmith and MLIRod, have been
proposed. However, none of them can detect silent bugs, i.e., bugs that incorrectly optimize code silently.
The di!culty in detecting silent bugs arises from two main aspects: (1) UB-Free Program Generation:
Generates programs that are free from unde"ned behaviors to suit the non-UB assumptions required by
compiler optimizations. (2) Lowering Support: Converts the given MLIR program into an executable form
with a suitable lowering path that reduces redundant lowering passes and improves the e!ciency of fuzzing.
To address the above issues, we propose DESIL. DESIL enables silent bug detection by de"ning a set of
UB-elimination rules based on the MLIR documentation and applying them to input programs. To convert
dialects in the MLIR program into executable form, DESIL designs a lowering path optimization strategy to
convert the dialects in the given MLIR program into executable form. Furthermore, DESIL incorporates the
di#erential testing for silent bug detection. It introduces an operation-aware optimization recommendation
strategy into the compilation process to generate diverse executable "les. We applied DESIL to the latest
revisions of the MLIR compiler infrastructure. It detected 23 silent bugs and 19 crash bugs, of which 17/16
have been con"rmed or "xed.

CCS Concepts: • Software and its engineering→ Software testing and debugging.
Additional Key Words and Phrases: Compiler Fuzzing, MLIR Compiler Infrastructure, Unde"ned Behavior

ACM Reference Format:
Chenyao Suo, Jianrong Wang, Yongjia Wang, Jiajun Jiang, Qingchao Shen, and Junjie Chen. 2025. DESIL:
Detecting Silent Bugs in MLIR Compiler Infrastructure. Proc. ACM Program. Lang. 9, OOPSLA2, Article 383
(October 2025), 27 pages. https://doi.org/10.1145/3763161

1 Introduction
The MLIR (Multi-Level Intermediate Representation) compiler infrastructure is a powerful and
extensible framework designed to facilitate compiler construction across diverse domains, including
machine learning, high-performance computing, and hardware accelerators [12]. By providing a
structured representation at multiple abstraction levels, MLIR enables e!cient transformations,
∗Junjie Chen is the corresponding author.

Authors’ Contact Information: Chenyao Suo, Tianjin University, Tianjin, China, chenyaosuo@tju.edu.cn; Jianrong Wang,
Tianjin University, Tianjin, China, wjr@tju.edu.cn; Yongjia Wang, Tianjin University, Tianjin, China, yongjiawang@tju.
edu.cn; Jiajun Jiang, Tianjin University, Tianjin, China, jiangjiajun@tju.edu.cn; Qingchao Shen, Tianjin University, Tianjin,
China, qingchao@tju.edu.cn; Junjie Chen, Tianjin University, Tianjin, China, junjiechen@tju.edu.cn.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).
ACM 2475-1421/2025/10-ART383
https://doi.org/10.1145/3763161

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 383. Publication date: October 2025.

https://orcid.org/0000-0001-5436-940X
https://orcid.org/0000-0002-8980-1634
https://orcid.org/0009-0007-3803-3157
https://orcid.org/0000-0003-1983-6572
https://orcid.org/0000-0002-6128-2123
https://orcid.org/0000-0003-3056-9962
https://doi.org/10.1145/3763161
https://orcid.org/0000-0001-5436-940X
https://orcid.org/0000-0002-8980-1634
https://orcid.org/0009-0007-3803-3157
https://orcid.org/0000-0003-1983-6572
https://orcid.org/0000-0002-6128-2123
https://orcid.org/0000-0003-3056-9962
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3763161
https://www.acm.org/publications/policies/artifact-review-and-badging-current

383:2 Chenyao Suo, Jianrong Wang, Yongjia Wang, Jiajun Jiang, Qingchao Shen, and Junjie Chen

optimizations, and target-speci"c code generation, making it a cornerstone of modern compiler
design. However, given its growing adoption in critical applications such as deep learning and
hardware synthesis, ensuring the correctness of MLIR is paramount. Particularly, bugs in MLIR
can propagate through the compilation pipeline, leading to incorrect program execution, degraded
performance, or even security vulnerabilities [19, 21]. Therefore, rigorous testing techniques
are essential, ensuring that MLIR remains a robust and trustworthy infrastructure for compiler
development and optimization.
Due to the unique characteristics of MLIR (such as its use of dialects to manage multi-level

IRs and its proprietary data structures and semantics), traditional compiler testing techniques
are largely inapplicable. Therefore, in recent years, some testing techniques tailored to the MLIR
compiler infrastructure have been proposed [19, 21]. For example, MLIRSmith [21] generates
MLIR programs based on its grammar for the testing purpose. MLIRod [19] mutates existing MLIR
programs for testing, guided by the diversity of operation dependencies within MLIR programs.
However, these techniques are limited to detecting crash bugs, failing to capture silent bugs (also
known as wrong code bugs [24]), which generate incorrect executable code without triggering
crashes. This limitation arises due to the challenging issue of unde"ned behavior (UB) — a scenario
where program execution lacks a well-de"ned outcome due to violations of language speci"cations,
leading to unpredictable execution results [24]. Note that silent compiler bugs pose a severe risk,
as they can go unnoticed during compilation and cause erroneous behaviors at runtime, potentially
leading to critical failures in real-world applications.

In the literature, eliminating UB has been recognized as an important yet challenging task [13–
15, 24]. This challenge arises from the diverse root causes of UB — such as memory safety violations,
uninitialized variables, integer over$ows, and type mismatches — which can emerge at any stage
of compilation and propagate silently through optimizations. The unique characteristics of MLIR
further exacerbate this problem. Speci"cally, MLIR supports multiple dialects, each with its own
operations, attributes, and veri"cation rules, signi"cantly expanding the scope of potential UB.
Moreover, MLIR introduces dialect-speci"c UB root causes, such as shape inconsistency in memref
and linalg dialects, which require specialized runtime checks and analysis for e#ective detection
and elimination. Unlike traditional programming languages, MLIR lacks dedicated UB detection
tools, making even well-known UB issues more di!cult to identify and mitigate.
Assuming UB-free MLIR programs can be obtained, using them to detect silent bugs still faces

the compilation challenge — the process of transforming an MLIR program into an executable form
(i.e., solely represented by the llvm or spirv dialect). This challenge arises because MLIR programs
often require multiple lowering stages across di#erent dialects (especially their operations) before
reaching a fully executable representation. Speci"cally, an MLIR program may contain operations
from various dialects, each necessitating speci"c lowering passes to transition into an executable
representation. For ease of presentation, we call a sequence of lowering passes to transform a
dialect operation to the speci"ed executable dialect an operation-speci!c lowering path, and a
sequence of lowering passes to transform an MLIR program to the executable form a lowering path.
Furthermore, new dialects can be introduced dynamically during the lowering process, leading to
an expansive and evolving space of possible lowering paths. While an exhaustive enumeration of
all possible lowering sequences could theoretically ensure successful compilation, it would impose
a signi"cant e!ciency bottleneck — a crucial factor in compiler testing [8]. Therefore, determining
an appropriate lowering path is essential to balance compilation feasibility and testing e!ciency,
enabling more e#ective detection of silent bugs.
To bridge the gap in detecting silent MLIR bugs, we propose DESIL (DEtecting SILent bugs),

a novel technique that jointly generates UB-free programs and determines an optimal lowering
path for each program to facilitate e#ective bug detection. Speci"cally, to tackle the "rst challenge,

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 383. Publication date: October 2025.

DESIL: Detecting Silent Bugs in MLIR Compiler Infrastructure 383:3

DESIL designs a set of MLIR program transformation rules to eliminate UB in UB-prone operations.
For example, to address the UB-prone operation of copying a memref variable to another when both
have dynamic shapes, DESIL introduces a transformation rule that replaces the source memref value
with one that deterministically matches the destination variable’s shape. Compared to existing
tools like Csmith [24] that address UBs speci"c to C, we design targeted UB-elimination rules
for MLIR’s diverse dialects, ensuring well-de"ned tests without losing semantic integrity. Unlike
Csmith, which integrates UB avoidance into the code generation process, DESIL tackles the UB issue
through post-processing of already-generated MLIR programs, making it orthogonal to all existing
MLIR testing techniques. This allows DESIL to be seamlessly combined with them, enhancing the
detection of silent bugs and demonstrating its practicality. To tackle the second challenge, DESIL
determines an optimal lowering path that prevents redundant or circular application of lowering
passes, ensuring e!cient compilation to an executable representation. Speci"cally, DESIL "rst
builds a mapping between lowering passes and dialect operations based on MLIR documentation,
recording an operation-speci"c lowering path for each operation. Then, given an MLIR program,
DESIL determines its optimal lowering path by performing topological sorting on the lowering
passes derived from the operation-speci"c lowering paths of the program’s operations. Note that
our lowering-path optimization is essential for sequencing passes and generating executable tests,
given the intricate interactions among MLIR dialects and its complex lowering pipelines, which is
an innovation beyond the single-language scope of existing works (such as Csmith [24]).
With these UB-elimination rules and the lowering-path optimization algorithm, DESIL can

e#ectively and e!ciently compile a UB-free MLIR program into an executable form. However, it
is hard to directly determine whether the executable program is as expected. Therefore, to make
DESIL self-contained, we incorporate the di#erential testing mechanism into DESIL. Speci"cally,
DESIL introduces operation-aware optimization recommendation, which speci"es optimization
passes according to the operations in the given MLIR program, and obtains a set of executable
programs produced by di#erent optimization passes for di#erential testing. Any inconsistent result
produced by their executions are regarded as a silent bug detected by DESIL.

To evaluate the e#ectiveness of DESIL, we applied DESIL to test the latest versions (from adbf21

to b6d5fa) of the MLIR compiler infrastructure over approximately four months. Speci"cally, we
integrated DESIL with MLIRSmith and MLIRod to process their generated MLIR programs, naming
them DESILsmith and DESILod, respectively. In total, DESIL detected 42 previously unknown bugs,
including 23 silent bugs and 19 crash bugs, of which 26 have been "xed and 33 con"rmed by develop-
ers. We further compared DESIL with two enhanced state-of-the-art techniques, MLIRSmithenhanced
and MLIRodenhanced (since neither of them can transition MLIR programs into executable forms to
detect silent bugs), through "ve repeated 12-hour fuzzing sessions. The results show that DESILsmith
and DESILod detected 29 and 38 bugs, respectively, outperforming MLIRSmithenhanced (20) and
MLIRodenhanced (25), while also signi"cantly reducing false positives in silent bug detection. The
latter techniques su#ered from extremely high false positive rates (97.33% and 96.96%) due to the
UB issue. Additionally, our ablation study con"rmed the essential contributions and practicality of
DESIL’s lowering path optimization and operation-aware optimization recommendation strategies.
For evaluating lowering path optimization strategy, we replaced this strategy with a random lower-
ing pass selection strategy and designed two variants: DESILw/o lowersmith and DESILw/o lowerod . Through
"ve repeated 12-hour fuzzing sessions, neither DESILw/o lowersmith nor DESILw/o lowerod successfully lowered
any MLIR program within 50 lowering passes. In contrast, DESILsmith and DESILod required only 21
lowering passes on average to lower an MLIR program. These results demonstrate the e#ectiveness
of the lowering path optimization strategy. For evaluating operation-aware optimization recom-
mendation strategy, we replaced it with a random optimization selection strategy and designed

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 383. Publication date: October 2025.

383:4 Chenyao Suo, Jianrong Wang, Yongjia Wang, Jiajun Jiang, Qingchao Shen, and Junjie Chen

two variants: DESILw/o optsmith and DESILw/o optod . We conducted "ve repeated 12-hour fuzzing sessions.
The results show that DESILsmith and DESILod detected 29 and 38 bugs, respectively, signi"cantly
outperforming DESILw/o optsmith (21) and DESILw/o optod (31). These "ndings demonstrate the e#ectiveness
of the operation-aware optimization recommendation strategy.

In this paper, we make the following main contributions:
• We propose DESIL, the "rst testing technique designed to detect silent bugs in the MLIR
compiler infrastructure.

• We design a set of MLIR program transformation rules to eliminate UB-prone operations in
any given MLIR program, enabling the feasible generation of UB-free MLIR programs for
e#ective silent bug detection.

• We introduce a lowering-path optimization strategy by performing topological sorting on the
lowering passes associated with the operations in a given MLIR program, identi"ed through
MLIR documentation analysis. This strategy ensures e!cient compilation into an executable
form, optimizing the lowering process by eliminating redundant lowering.

• We evaluate DESIL on the latest versions of the MLIR compiler infrastructure, uncovering
42 previously unknown bugs, of which 26/33 have been "xed/con"rmed by developers.
Notably, we have publicly released our experimental data and implementation at our project
homepage [2] and our artifact [20].

2 Background and Motivation
2.1 Terminology
MLIR (Multi-Level Intermediate Representation) is a versatile and extensible intermediate rep-
resentation designed to support multiple levels of abstraction and facilitate the development of
various domain-speci"c compilers. To enable e!cient compilation and optimization across di#er-
ent hardware and software targets, MLIR introduces the concept of dialects, which are modular
and extensible units that de"ne custom operations, types, and attributes for speci"c domains or
abstraction levels. An operation in MLIR is a fundamental unit of computation or transformation,
representing a speci"c task or behavior within a dialect. It takes as input a list of operands and
attributes, performs a de"ned action, and produces one or more results as output.
For example, Figure 1(a) illustrates an example of an MLIR program. The program performs

the following operations: (1) De"nes a constant integer value %1 via arith.constant opera-
tion (Line 1). (2) Reads a vector %v from a memref value %m with a beginning position %idx9

via affine.vector_load operation (Line 2). (3) Extracts an element from the vector value via
vector.extract operation (Line 3). (4) Performs arithmetic calculations via arith operations (Lines
4-6). Speci"cally, the arith.addi operation takes as input two i32 type operands (%0 and %1), and
produces a result of an i32 type value (%2) in line 5 in Figure 1(a). Particularly, the attributes of
an operation in MLIR actively participate in the computation process. For example, the attribute
value=1:i32 in the arith.constant operation de"nes the literal value of the constant %1 (Line 1
in Figure 1(a)).
An MLIR program typically comprises operations from multiple dialects. To compile it into an

executable representation, these operations must be transformed into those within target-speci!c
dialects (e.g., the llvm and spirv dialects, referred to as executable dialects for clarity in this paper).
This transformation enables program execution, which is essential for detecting silent bugs. To
achieve the transformation, MLIR provides a collection of lowering passes. Speci"cally, a lowering
pass is a transformation that converts operations from one dialect to another, typically moving
from higher-level abstractions to lower-level representations. For example, the “-convert-arith-to-
llvm” pass converts an arith operation into an llvm operation shown in Figure 1(b). Additionally,

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 383. Publication date: October 2025.

DESIL: Detecting Silent Bugs in MLIR Compiler Infrastructure 383:5

(a) An example of MLIR program

(b) Lowered MLIR program (for lines 4-6 in Figure 1(a)) by applying “-convert-arith-to-llvm”

(c) Optimized MLIR program (for lines 4-6 in Figure 1(a)) by applying “-arith-unsigned-when-equivalent”

(d) MLIR program after utilizing unde"ned behavior elimination (for lines 2-3 in Figure 1(a))

(e) Lowered MLIR program (for lines 10-11 in Figure 1(b)) by applying “-lower-a!ne”

(f) Lowered MLIR program (for lines 10-11 in Figure 1(b)) by applying “-convert-vector-to-llvm”

Fig. 1. Motivating example.

MLIR provides a diverse set of optimization passes, each designed to enhance an MLIR program
by improving performance, reducing resource consumption, or simplifying its structure while
preserving its semantics. These passes operate at various levels of abstraction and can be applied
before or after lowering passes to re"ne the program and optimize execution e!ciency. For example,
the “-arith-unsigned-when-equivalent” pass optimizes the program by replacing signed arith
operations to equivalent unsigned arith operations. For instance, in Figure 1(a), the signed division
operation arith.divsi in line 6 is replaced by the unsigned division operation arith.divui, as
both operands are positive, as shown in Figure 1(c). Note that in our work, specifying lowering
passes for a given MLIR program aims to compile it into an executable representation, ensuring

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 383. Publication date: October 2025.

383:6 Chenyao Suo, Jianrong Wang, Yongjia Wang, Jiajun Jiang, Qingchao Shen, and Junjie Chen

successful execution. In contrast, specifying optimization passes facilitates cross-optimization
di"erential testing by generating multiple executable versions of the same MLIR program under
di#erent optimization strategies, helping to expose silent bugs.
Compiler bugs are generally categorized into two main types: crash bugs and silent bugs (also

known as wrong code bugs) [24]. Currently, no existing testing techniques are capable of detecting
silent bugs in the MLIR compiler infrastructure, primarily due to the challenge posed by unde"ned
behavior. Unde!ned behavior (UB) refers to program constructs that result in unpredictable
execution outcomes due to violations of a language’s semantics or underlying constraints [24].
Unlike traditional programming languages, MLIR is an extensible compiler infrastructure with
diverse dialects, each enforcing speci"c rules on operations, memory management, and data $ow.
UB can arise from various sources, such as uninitialized or out-of-bounds memory accesses, invalid
type conversions, or violations of dialect-speci"c constraints (e.g., shape mismatches in tensor
operations). For example, the affine.vector_load operation in line 2 of Figure 1(a) demonstrates
unde"ned behavior. In this case, the remaining space in %m starting from index %idx9 (value == 9)
is 5, which is insu!cient to accommodate the required vector size of 6. These issues present a major
obstacle to silent bug detection in MLIR, as they can lead to non-deterministic behavior, masking
actual compiler bugs or causing false positives during di#erential testing. Therefore, addressing UB
is crucial to ensuring the reliability of MLIR-based compilation work$ows and enabling e#ective
silent bug detection.

2.2 A Motivating Example
Figure 1(a) illustrates anMLIR programwith unde"ned behavior. Speci"cally, In Line 2, the operation
affine.vector_load attempts to read a value of type vector<6xi32> from a memory reference
value (memref<14xi32>) %m, starting at position %idx9 (value == 9). Unde"ned behaviors may
occur when the affine.vector_load operation encounters either of the following two conditions:
(1) Invalid index for the %idx9: If %idx9 exceeds the bounds of %m, unde"ned behavior will occur.
(2) Insu!cient remaining space for the %m: If the remaining space in %m, starting from %idx9, is
insu!cient to accommodate the vector being loaded (%v), unde"ned behavior will also occur. In
this case, the operation requires space for 6 elements, but only 5 elements remain from %idx9

in %m. This out-of-bounds access leads to unde"ned behavior, causing the loaded vector %v to
contain unreliable values. These unreliable values propagate through subsequent operations (e.g.,
vector.extract in Line 3), ultimately a#ecting the execution result (assuming %p is printed).
Such unde"ned behavior makes all existing testing techniques hard to detect silent bugs due to
unreliable execution results stemming from genuine optimization errors or unde"ned behaviors.
To detect silent bugs, it is essential to remove all unde"ned behavior in the MLIR programs. Hence,
DESIL is proposed. It solved this question by eliminating all unde"ned behavior and the updated
program is shown in Figure 1(d), where modi"ed code sections are highlighted in red. Speci"cally,
DESIL begins by inserting runtime checkers (marked by ✁ in Figure 1(d)) that verify the volume
of problematic memref %m. These checks calculate both the memref’s volume Volume(%m) and
required vector space Volume(vector<6xi32>), then compare them with the $attened index after
index-bounding (%BoundedFlattenIdx) to validate su!cient capacity. When insu!cient space
is detected, the system generates a safe operand (marked by ✂ in Figure 1(d)) by allocating and
initializing a properly-sized %new-m; otherwise, it preserves the original %m (Lines 3–4). Finally
(marked ✃), all unsafe operands are replaced with their veri"ed versions. DESIL achieves this
by replacing problematic operands %m with %m1, and applying index bounding through modulo
arithmetic (%idx9 mod m1.dim(0)) to ensure memory safety while maintaining program semantics.
Through the above steps, DESIL eliminates the unde"ned behavior, producing a UB-free MLIR
program. This updated program is now suitable for di#erential testing.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 383. Publication date: October 2025.

DESIL: Detecting Silent Bugs in MLIR Compiler Infrastructure 383:7

After obtaining the UB-free program, another challenge is to lower the MLIR program into
an executable form by converting all dialects in the program into their executable forms. Since
numerous operations may coexist within an MLIR program, and new dialects or operations can be
generated during the lowering process, it is crucial for DESIL to select an appropriate lowering path
tailored to the given MLIR program. For instance, consider the operations affine.vector_load
and vector.extract in Figure 1(a): while vector.extract can be directly lowered to llvm us-
ing “-convert-vector-to-llvm”(shown as Figure 1(e)), affine.vector_load "rst requires conver-
sion via “-lower-a!ne” followed by “-convert-vector-to-llvm”. That is, applying passes in the
wrong order creates ine!ciencies. Speci"cally, prematurely using “-convert-vector-to-llvm” leaves
affine.vector_load unresolved (shown as Figure 1(f)), forcing redundant pass reapplications.
The optimal approach "rst converts affine.vector_load to vector.load form using “-lower-
a!ne”, then handles all vector (i.e., vector.load and vector.extract) operations in a single
“-convert-vector-to-llvm” pass. To "nd a suitable lowering path for given MLIR program, DESIL
further optimizes the lowering process by introducing a lowering-path optimization algorithm to
convert all dialect in the given MLIR program into an executable form, which "nally supports the
di#erential testing.

3 Approach
In this section, we introduce the methodology of our approach, named DESIL. It is the "rst technique
that is specially designed for detecting silent bugs in the MLIR compiler infrastructure as far as we
are aware. As introduced in Section 1, DESIL incorporates two major innovative components, i.e.,
Unde!ned Behavior Elimination (Section 3.1) and Lowering Path Optimization (Section 3.2),
to address the challenges of unde"ned behaviors and ine!ciency of dialect lowering for generating
executable MLIR programs.
Figure 2 presents the overall work$ow of our approach. Speci"cally, DESIL comprises a set of

unde"ned behavior elimination rules, which e#ectively eliminate unde"ned behaviors for diverse
UB-prone MLIR operations under certain conditions. Subsequently, to achieve lowering path
optimization, we have de"ned a set of operation-speci!c lowering paths in DESIL for e#ectively
transforming each dialect operation into the executable form through analyzing the corresponding
documentation. By following this, DESIL performs the lowering process via dynamically performing
topological sorting over all involved passes required by the dialect operations in the current MLIR
program, thereby exploring the optimal lowering path for e!cient transformation. Particularly, to
evaluate whether the MLIR program is correctly compiled by the MLIR compiler, DESIL leverages
di"erential testingmechanism to detect inconsistent checksum values of the same MLIR program
across di#erent optimization passes. We will introduce the detailed process in Section 3.3. Finally,
we will outline the complete bug detection process in Section 3.4.

3.1 Undefined Behavior Elimination
Unde"ned behaviors (UBs) in MLIR programs for testing the MLIR compiler infrastructure can
lead to unpredictable execution results, making it di!cult to accurately detect silent bugs since
it is hard to determine whether the unexpected execution results of the MLIR programs are
induced by their inherent UBs or the silent bugs in the compiler. Therefore, eliminating the
unde"ned behaviors is essential. However, ensuring that the generated MLIR programs are UB-
free is challenging due to the diverse root causes of such behaviors, especially those that are
speci"c to MLIR programs. For instance, MLIR programs may easily cause UBs that are due to
the shape (or dimensions) inconsistency while involving array-like values (e.g., tensor), requiring
e#ective UB elimination methods tailored to handle such cases. To address this challenge, we
conducted a comprehensive analysis of those operations that are supported and frequently used by

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 383. Publication date: October 2025.

383:8 Chenyao Suo, Jianrong Wang, Yongjia Wang, Jiajun Jiang, Qingchao Shen, and Junjie Chen

Table 1. Undefined behavior elimination rules for di!erent operations under certain conditions.

Operation Type Example Conditions UB Elimination Rules

UBs from Shape Inconsistency †

affine.yield. affine.for

iter_args(%arg0=%m)

affine.yield %m1

The operand (%m1) shape di#ers from ar-
gument (%m) shape of parent operation
(affine.for).

Replace %m1 with a new value that
has the same shape as %m.

linalg.broadcast. linalg.broadcast

ins(%0) outs(%1)

dimensions=[1]

The shapes of the two operands (%0 and %1)
are not same, except for the dimensions in
dimensions.

Replace %0 with a new tensor that
has the same shape as %1, except for
the dimensions in dimensions.

linalg.generic. linalg.generic {

iterator_types =

[!p!, !r!] } ins(%1,

%2, %3) outs(%4)

C1: The shapes of ins operands (%1, %2, %3) dif-
fer. C2: The dimension sizes of ins operands
(%1, %2, %3) speci"ed as p in iterator_types dif-
fer from the outs operand (%4).

For C1, ensure shapes of %1, %2, and
%3 are same. For C2, replace %1, %2,
and %3 with new tensors that have
same shape as %4 except for dimen-
sions marked as r.

linalg.matmul. linalg.matmul

ins(%1, %2)

outs(%3)

C1: The 2nd dimension of 1st ins operand
(%1) di#ers from the 1st dimension of 2nd ins

operand (%2). C2: The 1st dimension of 1st ins
operand (%1) di#ers from the 1st dimension
of outs operand (%3). C3: The 2nd dimension
of 2nd ins operand (%2) di#ers from the 2nd
dimension of outs operand (%3).

Replace %1 and %2 with new tensors.
For C1, ensure the 2nd dimension
of %1 equals to 1st dimension of %2.
For C2, ensure the 1st dimension of
%1 equals to 1st dimension of %3. For
C3, ensure the 2nd dimension of %2
equals to 2nd dimension of %3.

linalg.transpose. linalg.transpose

ins (%1) outs (%2)

permutation=[1, 0]

The dimension of the ins operand (%1) di#ers
from the corresponding dimension of the outs

operand (%2) as speci"ed in permutation.

Replace %1 with a new tensor that
has the same dimension as %2 speci-
"ed in permutation.

Cast Operations (2). %m1 = memref.cast

%m0 : memref<?xi32>

to memref<10xi32>

The static dimension of result (%m1) di#ers
from corresponding runtime dynamic dimen-
sion size of operand (%m0).

Replace %m0 with new memref with
dynamic dimension equals to corre-
sponding static dimension of %m1.

Operations with
same shape
operands (3).

linalg.copy ins(%0)

outs(%1)

The shapes of two operands (%0 and %1) di#er. Replace %0with new tensor that has
the same shape as %1.

UBs from Index Out-of-Bounds
Scalar Value Load
and Store Operation
(8)

affine.store %0,

%m[%idx1, %idx2]

Any index (%idx1, %idx2) exceeds the dimen-
sions of the array-like operand (%m).

Con"ne the index values to the di-
mensions of %m using index.remu.

Dim Operations (2) tensor.dim %t, %0 The index (%0) exceeds the rank of array-like
value (%t).

Con"ne %0 within the rank of %t.

Array-Like Value
Store and Load
Operations (2) †

affine.vector_store

%o,%c[%idx0,%idx1]

C1: Any index (%idx0, %idx1) exceeds the di-
mensions of the data container (%c). C2: The
remaining space in container (%c) starting
from position (%idx0, %idx1) is insu!cient to
load/store the object (%o).

For C1, con"ne the index to the
dimensions of %c using index.remu

operation. For C2, replace the con-
tainer (%c) with a new one with suf-
"cient space.

UBs from Invalid Memory References
memref.

assume_alignment.†
memref.assume_

alignment %m, 4

The alignment attribute (4) di#ers from the
original alignment information of the operand
(%m).

Replace alignment attribute with
alignment information of %m, or de-
fault value if %m has no information.

memref.realloc. %m1 = memref.

realloc %m0

The original memref value (%m0) is used after
this operation.

Replace the use of %m0 after this op-
eration with a new memref value.

Memory Allocation

Operations.
%0 = memref.alloca

() : memref<1xi32>

Directly use the value in the result memref
value without initialization.

Initialize the content of memref
value with linalg."ll.

UBs from Scalar Calculations
Shift Operations (6). index.shrui %1, %2 The 2nd operand (%2) exceeds the bit width of

the 1st (%1).
Replace %2 with a random constant
value within the bit width of %1.

Signed Integer Divi-
sion Operations (6)

index.divs %1, %2 C1: The 2nd operand (%2) is zero. C2: The
1st operand (%1) is INT_MIN (speci"c to its
bitwidth), and the 2nd operand (%2) is -1.

For C1, make %2 unequal to 0. For
C2, make %2 unequal to -1.

Unsigned Integer Di-
vision (4) and Re-
mainder Operations
(4)

index.divu %1, %2 The 2nd operand (%2) is zero. Replace %2 with nonzero random
signed or unsigned integer value
(according to the type of %2).

† The conditions and elimination rules of these unde"ned behaviors are MLIR-speci"c.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 383. Publication date: October 2025.

DESIL: Detecting Silent Bugs in MLIR Compiler Infrastructure 383:9

3. 1 Undefined
Behavior Elimination

3. 2 Lowering Path Optimization 3. 4 Bug Detection by DESIL

3. 3 Differential Testing

UB-Prone
Program

!

UB-Free
Program

!

Executables Results

Lowering
Passes

Optimization Passes

Execute

Crash Bugs

Crash

Inconsistency

Silent Bugs

…

Checksum
Calculation

 Dialect
Operations

Information

MLIR Documents Operation-specific
Lowering Paths

Dynamic
Topological Sorting

Checksumed
Program

UB
Prevention

Undefined Behavior
Elimination Rules

Fig. 2. Overview of DESIL

existing MLIR fuzz techniques and summarized the potential UBs they may induce by carefully
examining their usage documentation. We refer to operations that may cause unde"ned behaviors
as UB-prone operations. Speci"cally, DESIL supports 127 operations across 10 dialects covered
by the state-of-the-art MLIR test generator, MLIRSmith. They are core dialects for MLIR-based
compilation, as identi"ed in prior work [19, 21]. Based on the conditions that trigger potential UBs
for each UB-prone operation, we manually de"ned a set of unde"ned behavior elimination rules to
modify programs and ensure that UBs cannot be triggered. Based on the UB identi"cation process
mentioned above (i.e., performing a systematic review of o!cial documentation for each supported
operation in core dialects), these UB-elimination rules target common UBs in practice.

The details of the unde"ned behavior elimination rules are presented in Table 1. In this table, we
list the types of UB-prone operations, followed by an example to clearly present the conditions
for triggering potential UBs, and then we summarized the unde"ned behavior elimination rules to
eliminate the trigger of the UBs. In particular, one operation type may involve multiple UB-prone
operations, which share similar root causes and unde"ned behavior elimination rules. The number
in the brackets shown in the "rst column indicates the number of involved operations belonging to
the speci"c operation type. For clarity, we only present one representative example in the table to
aid the understanding and illustration. The complete operations and their associated unde"ned
behavior elimination rules can be found at our project’s homepage [2].
Consequently, given an MLIR program for testing MLIR compilers, DESIL "rst identi"es all

UB-prone operations within it. For each identi"ed operation, DESIL applies the corresponding
unde"ned behavior elimination rule to generate the correct program. It is important to note that
since the lowering process (as discussed in Section 3.2) should maintain the semantics of the MLIR
program, i.e., UB-free programs should not encounter any UBs after the transformation. As a
consequence, the "x process is a one-o# task for each MLIR program. By su!ciently "xing all
potential UBs in the initial MLIR programs, our approach ensures comprehensive mitigation and
ensures that UBs cannot be triggered in the target executable programs. In the following, we will
provide a proof-of-concept introduction of these unde"ned behavior elimination rules. The detailed
implementations for "xing each UB can be found in our open-source repository.

3.1.1 Undefined Behaviors from Shape Inconsistency. This type of UBs is typically due to the
calculation related to vector-like values, such as matrices or tensors that are usually involved in
deep learning programs. These UBs are usually triggered because the shapes of two tensors (or
dimensions of matrices) do not match each other. Actually, this type of UBs is typically speci"c to
MLIR programs due to their frequent use of array-like values. In contrast, traditional programming

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 383. Publication date: October 2025.

383:10 Chenyao Suo, Jianrong Wang, Yongjia Wang, Jiajun Jiang, Qingchao Shen, and Junjie Chen

languages typically decompose such operations into loops and scalar value computations, and thus
are free from this type of UBs. For example, two tensor values [1,2] and [1,2,3] cannot perform
multiplication since their shapes (or dimensions) are unmatched. Speci"cally, we summarized three
situations where the shape inconsistency may cause potential UBs: (1) shape inconsistency between
arguments and return values, such as the operation of linalg.matmul ins(%1,%2) outs(%3)

requiring the dimensions of arguments (i.e., %1 and %2) and the return value (i.e., %3) to match
each other; (2) Shape inconsistency in a speci"ed dimension, such as the argument dimension in
linalg.transpose is inconsistent with the output dimension speci"ed by permutation=[1,0];
(3) Shape inconsistency between source and target operand, such as linalg.copy should not
change the value dimension during copying.

To address these inconsistencies, our approach will insert shape-related runtime checking code as
the checker of memory allocation explained above, and generate suitable operands for replacement
if any inconsistency was found. It is important to note that, in general, DESIL avoids modifying
the shape of the return value of operations, as it tends to a#ect all follow-up uses of the result
value, and thus increases the risk of the modi"ed MLIR program being rejected by the MLIR
front-end due to checks related to shape. As a consequence, DESIL will always update the shapes
of the others except for the return value. Di#erent from the above situations, the tensor.empty
operation is commonly used by some MLIR fuzz testing techniques (e.g., MLIRSmith) for generating
MLIR programs. However, as explained in the corresponding documentation, this operation may
cause unpredictable results since its values are unpredictable. To avoid UBs induced by it, DESIL
replaces all appearance of tensor.empty with either tensor.from_elements or tensor.splat
for initializing new tensors.

3.1.2 Undefined Behaviors from Index Out-of-Bounds. This type of UBs is prevalent across various
programming languages, occurring when an MLIR program attempts to access a memory location
exceeding the bound of a valid range. This UB is critical as it always results in unreliable execution
results and execution crashes, and thus should be eliminated. Like many other programming
languages, this kind of UBs in MLIR programs usually happen in two scenarios: (1) accessing an
array-like value with the speci"ed index (e.g., tensor.dim), (2) and storing an object to a data
container without su!cient available memory space (e.g., affine.store). For the "rst scenario,
our straightforward idea for "xing is to check whether the given index exceeds the range of the
array-like value, and then replace the index with a valid value within the range. For the second
scenario, the unde"ned behavior elimination rule is to allocate another memory to ensure the
available space is su!cient for storing the object. It is important to note that this scenario is speci"c
to MLIR programs due to its high-level abstraction of data types [1].

In particular, checking whether the remaining memory is su!cient is not statically doable since
the memory will be dynamically allocated and consumed during the running of the MLIR program.
Therefore, to ensure the "x is valid and e#ective, sometimes we are expected to insert new code logic
for dynamically checking the triggering conditions of certain UBs and eliminating them on demand.
For example, as shown in Table 1, the operation (affine.vector_store %o,%c[%idx0,%idx1])
is designed to store a vector object (i.e., %o) into the data container %c starting from position
[%idx0,%idx1]. In this case, to ensure the store operation is correctly performed, our approach
will insert multiple lines of code for dynamically checking the size of %o and the available memory
of %c, and allocate additional memory if needed. In this way, memory is guaranteed to meet the
requirement during the execution of the MLIR program, and thus the unde"ned behavior can be
avoided.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 383. Publication date: October 2025.

DESIL: Detecting Silent Bugs in MLIR Compiler Infrastructure 383:11

3.1.3 Undefined Behaviors from Invalid Memory References. This type of UBs is primarily caused
by the invalid references to memory, and the associated operations are commonly from the mem-
ref dialect. Similarly, these UBs may cause crashes during running the MLIR program or pro-
duce unpredictable results. In summary, the root causes of these UBs are twofold: (1) con$ict
between actual memory alignment and speci"ed alignment assertions by using the operation
memref.assume_alignment; (2) reference to invalid memory, such as accessing uninitialized or
reallocated memory by memref.realloc. Regarding the "rst root cause, DESIL will update the
speci"ed alignment attribute in the assertion operation and make it align with the actual value. Re-
garding the second root cause, DESIL incorporates a de"ne-use chain analysis [6, 11] for identifying
the invalid memory access, and then updates the invalid references to a valid one or initializes the
referenced memory directly. In particular, to avoid out-of-memory crashes caused by the memory
allocation operations (e.g., memref.alloc and memref.alloca) during continuously allocating
memory space, DESIL restrains the dimensions of an array-like operand not exceeding 4↑32.
3.1.4 Undefined Behaviors from Scalar Calculations. This type of UBs is primarily caused by the
operations related to scalar value calculations. In particular, it mainly includes three root causes –
shift over$ow (e.g., index.shrui), signed integer over$ow (e.g., index.divs), and division by zero
(e.g., arith.ceildivsi). E#ectively eliminating this kind of UBs is crucial since they always cause
crashes or unpredictable execution results while executing the compiled MLIR program, disabling
the precise detection of silent bugs. To address these UBs, we have de"ned a viable unde"ned
behavior elimination rule for each kind of root cause (as presented in Table 1). For example, in the
division operations (e.g., arith.ceildivsi), unde"ned behavior will arise due to division by zero
or signed division over$ow (e.g., dividing the minimum signed integer value by -1). To "x this, we
"rst check whether the divisor operand in this operation is zero or not through either static or
dynamic analysis, and then replace zeros with a randomly generated integer value unequal to zero.
Similarly, in shift operations (e.g., index.shl and arith.shli), if the second operand (i.e., the bits
of shifting) exceeds the bitwidth of the initial value (i.e., the "rst operand), an unpredictable value
will be returned. In this case, the unde"ned behavior elimination rule is to con"ne the value of the
second operand within the bitwidth of the "rst operand. In this way, the UBs can be e#ectively
avoided. Di#erent from existing methods (e.g., Csmith), typically adopting prede"ned safe wrapper
functions, for avoiding UBs from scalar calculations, DESIL directly seeds the UB checking and
elimination logic into the initial MLIR program. As a consequence, our approach can e#ectively
reduce the code size compared to existing methods by solely generating relevant elimination logic
for used bitwidths, which signi"cantly improves the lowering e!ciency (will be introduced in
Section 3.2) by avoiding much irrelevant code involved by prede"ned wrapper functions.

3.1.5 UB-Irrelevant Fix for Normal Compilation. Besides preventing unde"ned behaviors presented
above, there is another unique case – 0-dimension objects – that arises from MLIR’s rich semantics
supporting 0-dimensional constructs some array-like data types such as tensors and memrefs.
This may cause the dialect lowering process (i.e., compilation) failed since some low-level dialects
(e.g., vector) do not support the dimension of objects to be zero. As a consequence, DESIL further
incorporates an additional unde"ned behavior elimination rule for such cases. Speci"cally, DESIL
replaces 0-dimension objects with non-0-dimension objects to ensure the MLIR program can be
successfully transformed into the executable ones.
UB Elimination Algorithm: Based on the unde"ned behavior elimination rules introduced

above, given an MLIR test program, DESIL tries to "x all potential UBs in it by following the
process presented in Algorithm 1. In general, the algorithm takes an MLIR program that may
contain UB-prone operations as the input, and outputs a new MLIR program that is expected
to be UB-free by applying the necessary unde"ned behavior elimination rules explained above.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 383. Publication date: October 2025.

383:12 Chenyao Suo, Jianrong Wang, Yongjia Wang, Jiajun Jiang, Qingchao Shen, and Junjie Chen

Algorithm 1: Unde"ned Behavior Elimination
Input :Program: an MLIR program that may contain UB-prone operations
Output :Program: a UB-free MLIR program after applying unde"ned behavior elimination rules

1 Function FixUB(𝐿𝑀𝑁𝑂𝑀𝑃𝑄):
/* Collect all UB-prone operations from the top level operation of Program. */

2 UBProneOps = CollectUBProneOps(Program.TopLevelOp)
3 foreach op in UBProneOps do

/* Eliminate potential UBs in each operation by applying the associated undefined behavior

elimination rule. */

4 𝑅𝑀𝑁𝑂𝑀𝑃𝑄 = 𝑆𝑇𝑈𝑉𝑊𝑄𝑊𝑋𝑃𝑌𝑊𝑁𝑋𝑍𝑁𝑀𝑎𝑅 (𝑅𝑀𝑁𝑂𝑀𝑃𝑄,𝑁𝑅)
5 end

/* Conduct UB-Irrelevant fix for normal compilation. */

6 𝑅𝑀𝑁𝑂𝑀𝑃𝑄 = 𝑆𝑇𝑏𝑀𝑀𝑐𝑉𝑐𝑑𝑃𝑋𝑌𝑍𝑊𝑒 (𝑅𝑀𝑁𝑂𝑀𝑃𝑄)
7 return Program
8 Function UBEliminationForOp(𝑅𝑀𝑁𝑂𝑀𝑃𝑄, 𝑁𝑅):

/* Insert runtime checkers to the MLIR program for detecting and avoiding potential UBs. */

9 𝑅𝑀𝑁𝑂𝑀𝑃𝑄 = 𝑏𝑋𝑓𝑐𝑀𝑌𝑔𝑕𝑋𝑌𝑊𝑄𝑐𝑖𝑗𝑐𝑘𝑙 (𝑅𝑀𝑁𝑂𝑀𝑃𝑄,𝑁𝑅)
/* Generate the safe version of operands that eliminate the UB based on the runtime checker. */

10 𝑅𝑀𝑁𝑂𝑀𝑃𝑄, 𝑓𝑃𝑚 𝑐𝑎𝑅 = 𝐿𝑀𝑐𝑅𝑃𝑀𝑐𝑛𝑃𝑚 𝑐𝑎𝑅𝑐𝑀𝑃𝑋𝑜𝑓 (𝑅𝑀𝑁𝑂𝑀𝑃𝑄,𝑁𝑅)
/* Replace the old UB-prone operands with corresponding UB-free operands. */

11 𝑅𝑀𝑁𝑂𝑀𝑃𝑄 = 𝑔𝑐𝑅𝑉𝑃𝑘𝑐𝑎𝑉𝑜𝑎𝑅𝑐𝑀𝑃𝑋𝑜𝑝𝑊𝑌𝑗𝑆𝑇𝑍𝑀𝑐𝑐 (𝑅𝑀𝑁𝑂𝑀𝑃𝑄, 𝑓𝑃𝑚 𝑐𝑎𝑅)
12 return Program
13 Function CollectUBProneOps(𝑁𝑅𝑐𝑀𝑃𝑌𝑊𝑁𝑋):
14 UBProneOps = [];

/* Recursively collect the UB-prone operations if the operation has Block. */

15 if operation.hasBlock() then
16 for o in operation.getBody() do
17 UBProneOps = UBProneOps

⋃
CollectUBProneOps(o)

18 end
19 end

/* Collect UB-prone operations that may cause UBs according to their operation type. */

20 if IsUBProneOpType(operation) then
21 UBProneOps.add(operation)
22 end
23 return UBProneOps

Speci"cally, given the input MLIR Program, DESIL "rst collects all UB-prone operations in it (Line
2). In particular, an MLIR program comprises a set of operations, which are typically structured as
recursively nested code regions like traditional programming languages (e.g., While statements
usually include other statements in a Java or C++ program). That is, an operation may have one or
multiple nested regions (known as Blocks) [5], each of which will also consist of a list of operations.
By following this structure, DESIL recursively traverses the MLIR program in a top-down fashion
(Program.TopLevelOp indicates the outmost operation in the program) for collecting all UB-prone
operations within the program (Lines 15-22). Then, for each UB-prone operation (Line 3), DESIL
tries to eliminate the potential UBs by applying the associated unde"ned behavior elimination
rules (Line 4) by calling the function of UBEliminationForOp() (Lines 8-12). Speci"cally, DESIL
inserts necessary runtime checkers into the MLIR program for checking whether any conditions
associated to the UB-prone operation are satis"ed during the MLIR program execution (Line 9),
and then generates safe operands based on the checking results and the associated unde"ned

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 383. Publication date: October 2025.

DESIL: Detecting Silent Bugs in MLIR Compiler Infrastructure 383:13

behavior elimination rules (Line 10) for replacing the original operands used in the operation (Line
11). For example, to "x the potential UBs from index-out-of-bounds errors caused by operation
affine.vector_store %o,%c[%idx0,%idx1], DESIL inserts several lines of code (i.e., runtime
checker) to the MLIR program for check whether the available memory in %c is su!cient to store
the object %o. If it is insu!cient, DESIL inserts new operand (e.g., %d) with su!cient memory in
the MLIR program. Finally, DESIL replaces the original operand %c with %d. The overall process
concludes with the unde"ned behavior-irrelevant "xes for normal compilation, as introduced in
Section 3.1.5. In this way, the modi"ed MLIR program will include those runtime checkers that can
e#ectively avoid the trigger of potential UBs during the execution of the MLIR program.

3.2 Lowering Path Optimization
Given an MLIR program, after eliminating the unde"ned behaviors in it presented above, the next
process is to transform the program into executable form. As aforementioned, this transformation
process is indeed challenging because MLIR programs usually contain operations from diverse
dialects at di#erent levels, and each dialect operation may require a speci"c sequence of lowering
passes – operation-speci!c lowering path – before reaching a fully executable form. Furthermore,
new dialect operations will be dynamically produced during the lowering process, aggravating the
di!culty of this process. However, exhaustively enumerating all possible sequences of lowering
passes is impractical since it would impose a signi"cant e!ciency bottleneck, and thus a#ect the
e#ectiveness of silent bug detection.
To address this challenge, DESIL incorporates an innovative lowering-path optimization al-

gorithm that dynamically determines the optimal lowering pass based on the dialect operations
included in the MLIR program. Speci"cally, DESIL "rst builds a mapping between lowering passes
and dialect operations based on the MLIR documentation, recording an operation-speci!c lowering
path for each operation. Then, given an MLIR program, DESIL determines its optimal lowering
path by performing topological sorting on the lowering passes derived from the operation-speci"c
lowering paths of the program’s operations. In this way, DESIL can e!ciently transform a given
MLIR program into the executable form by avoiding the circular application of the same lowering
passes. In summary, the MLIR program compilation (or lowering path optimization) process in
DESIL consists of two key stages which are presented as follows:

(1) Operation-Speci!c Lowering Path Construction: To ensure that every operation in the
MLIR program can be successfully transformed into the executable form, DESIL builds the
mapping between each dialect operation and a sequence of lowering passes, which can
transform the associated operation into the executable form. Speci"cally, we call such a
sequence of lowering passes operation-speci!c lowering path. Formally, it is de"ned as a
tuple of ↓𝑁, 𝐿,𝑔↔, where 𝐿 = {𝑅1, 𝑅2, · · · , 𝑅𝐿} is a set of lowering passes that are needed to
transform the operation 𝑁 into the executable form, and 𝑔 = {𝑅𝑀 ↗ 𝑅 𝑁 |𝑅𝑀 , 𝑅 𝑁 ↘ 𝐿} de"nes the
partial order between two lowering passes, specifying the pass 𝑅𝑀 in 𝐿 should be executed
before 𝑅 𝑁 for transforming 𝑁 . Figure 3 presents an example of the lowering process for the
dialect operation affine.for, which will be transformed into the executable llvm.cond_br.
Consequently, the operation-speci!c lowering path associated with the operation affine.for

is ↓affine.for, {𝑅1, 𝑅2, 𝑅3}, {𝑅1 ↗ 𝑅2, 𝑅2 ↗ 𝑅3}↔. Speci"cally, the output of this stage is the
operation-speci!c lowering path for each operation. In particular, to ensure the reliability of
mapping results, we manually analyzed the documentation of operations and lowering passes.
Moreover, we veri"ed all the operation-speci"c lowering paths by constructing associated
MLIR programs to ensure they actually work.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 383. Publication date: October 2025.

383:14 Chenyao Suo, Jianrong Wang, Yongjia Wang, Jiajun Jiang, Qingchao Shen, and Junjie Chen

Fig. 3. The lowering process for the dialect operation affine.for by applying passes {𝑅1, 𝑅2, 𝑅3}.

(2) Lowering Pass Topological Sorting: Given that MLIR programs may include a variety of
operations and each of them is associated with an operation-speci!c lowering path. To achieve
an e!cient lowering process (i.e., compilation) and avoid circular application of the same
lowering pass, DESIL exploits the optimal pass execution by leveraging topological sorting
over all the passes associated to all the operations in the current MLIR program. Formally,
assuming 𝑎 represents all the operations in the program, and 𝐿 represents all the passes
involved. Then, ≃𝑅1, 𝑅2 ↘ 𝐿 , 𝑅1 ↗ 𝑅2 holds i" it holds for any 𝑁 ↘ 𝑎 . According to this,
DESIL always chooses the pass 𝑅𝑀 ↘ 𝐿 as the "rst one for execution i" ⇐𝑅 𝑁 ↘ 𝐿, 𝑅 𝑁 ↗ 𝑅𝑀 . It is
important to note that such a pass 𝑅𝑀 always exists since each dialect operation is guaranteed
to be transformed into the executable form by the corresponding operation-speci!c lowering
path, indicating no circular dependency exists for all the passes. However, if more than one
pass meets the condition, DESIL randomly chooses one of them. Figure 3 presents such an
example, where the lowering pass 𝑅1 will be the "rst lowering pass for execution.

In summary, the "rst stage (i.e., Operation-Speci"c Lowering Path Construction) is a one-o# task.
Once the operation-speci"c lowering paths are constructed, they can be directly reused during the
compilation process for diverse MLIR programs. In contrast, the second stage will be dynamically
performed by DESIL – choosing a lowering pass to execute for transforming the MLIR program into
another form – until all the operations in the program are transformed into the executable form.
In particular, the lowering-path optimization of DESIL requires only knowledge of which passes
transform operations into executable form. It remains e#ective even though internal changes occur
in passes or dialects, as long as the overall transformation relationships between passes and dialects
stay intact. This ensures robustness to compiler evolution while preserving high-level lowering
capabilities.

3.3 Di!erential Testing
After transforming the given MLIR program into an executable form, the next step is to run the
program and examine whether it was correctly compiled by the MLIR compiler. However, like all
fuzz testing techniques, it is infeasible to automatically obtain the oracles of the test execution
without the speci"cation of the test program [22]. To address this issue, DESIL employs di#erential
testing to check whether the MLIR program is correctly compiled by the compiler. To achieve that,
DESIL comprises a compilation operation-aware optimization recommendation strategy along with
the lowering pass topological sorting (introduced in Section 3.2). The objective of this strategy
is to produce di#erent test execution results by applying diverse optimizations during compiling
the same MLIR program, where potential silent bugs in the MLIR compiler would be detected.
Speci"cally, given an MLIR program, DESIL collects all the operations involved in it and then selects
optnum_each (which is evaluated in Section 4.5) optimization passes according to the collected
operations. Then, DESIL checks the execution results of these di#erent executions (DESIL by default
generates di"num executable programs for each MLIR program). Di#erent execution results among
them indicate incorrect compilations, and represent the detection of silent bugs in compilers.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 383. Publication date: October 2025.

DESIL: Detecting Silent Bugs in MLIR Compiler Infrastructure 383:15

However, unlike traditional test programs for high-level programming languages (e.g., Java and
C++), which usually associate with a relatively complete functionality, the MLIR programs may not
perform a meaningful function as they are usually generated in a random fashion by assembling
low-level dialect operations. As a consequence, the "nal output of the MLIR programs may not well
re$ect their whole execution behaviors. This issue potentially reduces the detection capability of
silent bugs in MLIR compilers since the mis-compiled operations may not a#ect the "nal execution
results. To improve the capability of the MLIR program for detecting silent bugs, DESIL further
incorporates an “test oracle” generation process inspired by Csmith [24] – A well-known fuzz
testing method for C/C++ compilers. Speci"cally, DESIL calculates the checksum of the MLIR
program by summing up all the accessible integer values (values in array-like objects are also
included) at the end of the MLIR program’s main function. In particular, DESIL does not consider
$oating-point values since the precision issue during calculation may cause false positives in bug
detection. Finally, the checksum will play as an estimation of the test “oracle”. Since any integer
value error will propagate to the "nal checksum, it should have a strong power to uncover incorrect
execution results, thereby improving the capability of detecting silent bugs in MLIR compilers.

3.4 Bug Detection by DESIL
Given an MLIR program, DESIL "rst transforms it to the executable forms by adopting di#erent
sequences of optimizations. Then, it runs the test programs and compares the checksum correspond-
ingly, and reports potential silent bugs if the checksum values are inconsistent. More speci"cally,
the overall silent bug detection process of DESIL consists of four stages, which are presented as
follows.
(1) Test Program Generation: In order to generate diverse MLIR programs for detecting silent

bugs in MLIR compilers, DESIL utilizes an MLIR program generator. It is important to note
that DESIL is a post-processing method for MLIR program generators, and thus can be
combined with any o#-the-shelf generators as a plugin.

(2) Unde!ned Behavior Elimination: For each candidate MLIR program, DESIL "xes the
unde"ned behaviors in it by leveraging the UB elimination algorithm presented in Section 3.1.
As aforementioned, this process is essential to ensure the capability of precisely detecting
silent bugs since UBs are easy to produce false positives.

(3) Lowering Path Optimization: After eliminating potential UBs in the MLIR programs, DESIL
leverages the lowering path optimization component (introduced in Section 3.2) to transform
the programs into executable forms.

(4) Di"erential Testing for Bug Detection: Given di#erent executable programs compiled
from the same MLIR program, DESIL generates the calculations of the checksum for each one.
For di#erential testing, DESIL leverages the operation-aware optimization recommendation
component for generating di#erent versions of the MLIR programs. Finally, DESIL executes
the programs and detects potential silent bugs by checking the consistency of their associated
checksum values. In particular, DESIL also has the ability to detect crash bugs in MLIR
compilers during the compilation process if any crashes are encountered.

4 Evaluation
To evaluate DESIL, we designed the following research questions (RQs) in the study:

• RQ1: How e#ective is DESIL in detecting previously unknown MLIR bugs?
• RQ2: How does DESIL perform compared to the state-of-the-art MLIR testing techniques?
• RQ3: How does each component contribute to the overall e#ectiveness of DESIL?
• RQ4: What is the in$uence of di#erent con"gurations on the e#ectiveness of DESIL?

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 383. Publication date: October 2025.

383:16 Chenyao Suo, Jianrong Wang, Yongjia Wang, Jiajun Jiang, Qingchao Shen, and Junjie Chen

4.1 Experimental Setup
To answer RQ1, we applied DESIL to fuzz the latest versions of the MLIR compiler infrastructure,
aiming to uncover previously unknown bugs. Over a four-month fuzzing period, we consistently
updated the infrastructure to the latest version, covering revisions from adbf21 to b6d5fa. To
answer RQs 2-4, we selected the latest version of the MLIR compiler infrastructure at the time of
performing these experiments (i.e., revision c6d6da). We ran each studied technique for 12 hours on
this version. To reduce the in$uence of randomness involved in testing, we repeated each technique
for "ve times (except the variant techniques investigated in RQ4) and reported the aggregated
results. Due to the large number of studied variant techniques in RQ4 and the fuzzing cost for each
technique, we repeated them for three times to balance the conclusion robustness and evaluation
cost, and then reported the aggregated results.

By default, we set the number of optimization passes per lowering step (optnum_each) to 1 and the
number of compilations for di#erential testing (di"num) to 2 in DESIL for seeking cost-e#ectiveness.
The in$uence of di#erent settings for them will be investigated in RQ4. All our experiments were
conducted on a machine with Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40GHz and 128G Memory,
Ubuntu 20.04.6 LTS.

4.1.1 Studied Techniques. Due to the pluggable design of DESIL presented before, DESIL can be
combined with any existing MLIR program generation tools. That is, for any given MLIR program,
DESIL can be applied to transform it into a UB-free one and then compile it to the executable
program for testing. In the study, to ensure the generalizability of DESIL, we used two state-of-
the-art MLIR program generation tools (i.e., MLIRSmith [21] and MLIRod [19]) to prepare initial
MLIR programs for DESIL, respectively. For ease of presentation, we call the two instantiations
DESILsmith and DESILod.

Since the MLIR programs generated by MLIRSmith and MLIRod may contain unde"ned behav-
iors, neither includes a lowering component to transition these programs into executable forms. As
a result, their original versions cannot detect silent bugs. To enable a more comprehensive compar-
ison, we integrated lowering path optimization and di#erential testing components from DESIL
into MLIRSmith and MLIRod, equipping them with the capability to detect silent MLIR bugs. To
distinguish these enhanced versions from their originals, we refer to them as MLIRSmithenhanced
andMLIRodenhanced, respectively. Speci"cally, these variants retain their original program gen-
eration mechanisms but follow DESIL’s compilation process to produce executable programs for
di#erential testing. However, since MLIRSmithenhanced and MLIRodenhanced do not eliminate UB, they
may produce a high number of false positives in silent bug detection. Comparing them against
DESIL allows us to evaluate RQ2 and also demonstrates the contribution of the UB elimination
component in DESIL.
Besides the above-mentioned UB elimination component, there are another two main com-

ponents in DESIL - the lowering path optimization and di#erential testing components. Their
contributions will be investigated in RQ3. To investigate the contribution of the lowering path opti-
mization component, we constructed the corresponding variants DESILw/o lowersmith and DESILw/o lowerod
by removing this component from DESIL. Speci"cally, these variants randomly select a sequence
of lowering passes to construct a lowering path for each MLIR program after UB elimination. To
prevent the lowering process from hanging due to the application of an excessive number of passes,
we set the lowering path length to 50, which is signi"cantly larger than the average length of the
determined lowering paths in DESIL during our study.

Regarding the di#erential testing component, DESIL modi"es the application of optimizations to
generate a set of executable programs for di#erential comparison. To enhance the e#ectiveness
of di#erential testing, it employs a recommendation mechanism that selects optimization passes

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 383. Publication date: October 2025.

DESIL: Detecting Silent Bugs in MLIR Compiler Infrastructure 383:17

Table 2. Details of previously unknown bugs detected by DESIL

Bug Id Type Root Cause1 Component Status Bug Id Type Root Cause Component Status

80960 silent MAES Documentation "xed 114652 silent IRL Domain Speci"c(arith) duplicate
81228 silent EAL Domain Speci"c(arith) "xed 114654 silent IRL Domain Speci"c(arith) "xed
82158 silent IRL Domain Speci"c(arith) "xed 114656 silent – Domain Speci"c(linalg) con"rmed
82168 silent IRL Domain Speci"c(arith) "xed 114657 silent – Domain Speci"c(linalg) "xed
82622 silent – Domain Speci"c(math) submitted 115293 silent IRL Domain Speci"c(arith) "xed
83530 silent – Domain Speci"c(arith) "xed 1152942 silent – Domain Speci"c(vector) con"rmed
92057 crash IP General "xed 1152942 crash – Conversion con"rmed
94423 crash IP Domain Speci"c(arith) "xed 116664 silent – Domain Speci"c(scf) submitted
94431 silent MAES Domain Speci"c(arith) "xed 118224 crash – Domain Speci"c(a!ne) "xed
95246 crash IRL Conversion "xed 118225 crash – Domain Speci"c(a!ne) submitted
102576 crash IP Conversion "xed 126195 silent – Domain Speci"c(arith) con"rmed
102577 crash – Conversion submitted 126196 crash IRL General "xed
111241 crash – Conversion "xed 126197 crash IP Domain Speci"c(vector) "xed
111242 crash IV Conversion "xed 126213 crash – General con"rmed
111243 crash IP Domain Speci"c(linalg) "xed 126371 crash – Domain Speci"c(vector) con"rmed
111244 crash – Domain Speci"c(vector) submitted 128273 silent – Domain Speci"c(a!ne) submitted
112878 silent – Domain Speci"c(linalg) "xed 128275 crash IP Domain Speci"c(math) "xed
112881 silent MT Domain Speci"c(linalg) "xed 128277 crash IP Domain Speci"c(a!ne) "xed
113687 silent – Domain Speci"c(a!ne) submitted 129414 silent IP General "xed
113689 silent – General submitted 129415 silent – Conversion submitted
113690 silent – Domain Speci"c(linalg) "xed 129416 crash IP General "xed

1 Full Names of Root Causes: IV (Incomplete Veri"er), IP (Incorrect Pattern), MAES (Misalignment with Executable Semantic), EAL (Erroneous Analysis
Logic), MT (Missing Trait), IRL (Incorrect Rewrite Logic).

2 These two bugs were reported together.

based on the operations present in the MLIR program, rather than choosing them randomly. This
mechanism increases the likelihood of optimizations a#ecting the program’s behavior, improving
the chances of exposing silent bugs. Therefore, in RQ3, we also investigated the contribution of this
optimization recommendation mechanism by constructing the corresponding variants DESILw/o optsmith
and DESILw/o optod , which remove this mechanism from DESILsmith and DESILod respectively. Speci"-
cally, these variants randomly select optimization passes to generate a set of executable programs
for di#erential testing, rather than leveraging operation-aware recommendations.

To answer RQ4, we con"gured the number of optimization passes per lowering step (optnum_each)
to {1, 3, 5, 7, 9} and the number of compilations for di#erential testing (di"num) to {2, 4, 6, 8, 10},
respectively. Notably, when examining the in$uence of one hyperparameter, we maintain the
default setting for the other to ensure an isolated analysis.

4.1.2 Metrics. Following the existing work on MLIR testing [19, 21], we used the number of
detected bugs tomeasure the e#ectiveness of each studied technique. For thismetric, de-duplication
is a necessary step [9, 10, 23]. In the study, for crash bugs, we de-duplicated them based on crash
messages following the existing work [18, 19]. For silent bugs, we de-duplicated them by analyzing
their bug-triggering operations and passes, which are obtained based on delta debugging on both
programs and passes [10, 23]. Then, we reported each bug to the developers for further con"rmation.
Based on their feedback, the used de-duplication mechanisms are indeed accurate to a large extent.

4.2 RQ1: Previously Unknown Bugs Detected by DESIL
Table 2 provides the details of the previously unknown bugs detected by DESIL, including the bug
ID, type of bug, root cause, buggy component, and bug status. In total, DESIL detected 42 bugs,
comprising 23 silent bugs and 19 crash bugs. Among these, 17 silent bugs and 16 crash bugs have
been con"rmed or "xed by developers. However, existing techniques, such as MLIRSmith and
MLIRod, cannot theoretically detect silent bugs due to the potential UB in their generated test

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 383. Publication date: October 2025.

383:18 Chenyao Suo, Jianrong Wang, Yongjia Wang, Jiajun Jiang, Qingchao Shen, and Junjie Chen

(a) Program snippet for triggering Bug#80960 (silent)

(b) Program snippet for triggering Bug#81228 (silent)

(c) Program snippet for triggering Bug#112881 (silent)

Fig. 4. previously unknown bug examples detected by DESIL.

programs and the absence of a lowering mechanism to compile these programs into executable
forms. The results underscore that DESIL is e#ective in exposing silent bugs, which is orthogonal
to all existing testing techniques for the MLIR compiler infrastructure.

4.2.1 Buggy Components Analysis. From Table 2, we observed that the bugs detected by DESIL
span various components within the MLIR compiler infrastructure. These bugs are detailed as
follows:
Documentation de"nes the semantics of operations. Documentation changes can alter the

semantics of MLIR operations’ behavior. Bugs in this category cannot be detected by existing
approaches (e.g., MLIRSmith and MLIRod) since crashes can not reveal semantic issues in MLIR
programs since they are not executed. One bug detected by DESIL belongs to this category.
Domain-Speci!c Passes are designed to apply specialized optimizations to MLIR programs,

targeting speci"c types of operations or dialects that are relevant to a particular domain. There
are 28 bugs detected in these domain-speci"c passes by DESIL, covering 6 dialects. Speci"cally,
there are 10 bugs in arith-dialect speci"c passes, 2 bugs in math-dialect speci"c passes, 6 bugs in
linalg-dialect speci"c passes, 4 bugs in vector-dialect speci"c passes, 5 bugs in affine-dialect
speci"c passes and 1 bug in scf-dialect speci"c passes.

General passes operate on MLIR programs at a more generic or broad level, typically a#ecting
multiple dialects or operations. These passes are designed to be domain-agnostic, providing opti-
mizations that are universally applicable rather than tailored to a speci"c use case. 6 bugs detected
by DESIL in this category.

Conversion Passes transform higher-level dialects into lower-level dialects. When conversion
passes contain bugs, they either cannot produce executable IRs or generate erroneous ones. 7 bugs
detected by DESIL belong to this category.

These bugs are distributed across 4 categories with 9 di#erent components of the MLIR compiler
infrastructure, demonstrating the e#ectiveness of DESIL in bug detection.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 383. Publication date: October 2025.

DESIL: Detecting Silent Bugs in MLIR Compiler Infrastructure 383:19

4.2.2 Root Cause Analysis. Based on developers’ feedback, we conducted a detailed analysis of the
root causes of bugs detected by DESIL. In particular, out of the 27 bugs that have been "xed by
developers, we have successfully identi"ed the root causes for 21 bugs, while the remaining six
were "xed silently and therefore excluded from this analysis. More concretely, through a careful
analysis of these bugs, the root causes mainly involve six categories: Incorrect Rewrite Logic (IRL),
Incomplete Veri"er (IV), Incorrect Pattern (IP), Misalignment with Executable Semantic (MAES),
Erroneous Analysis Logic (EAL), and Missing Trait (MT). We have also presented the analysis
results in Table 2 (i.e., the third and eighth columns). Speci"cally, the "rst three categories have
been introduced in existing studies [19, 21] – Incorrect Rewrite Logic (IRL) refers to $awed
transformation logic within MLIR passes that rewrite matched operations into new forms. Seven
bugs fall into this category. Incomplete Veri!er (IV) refers to the absence, incompleteness, or
inadequacy of a veri"er associated with an MLIR pass. One bug belongs to this category. Incorrect
Pattern (IP) refers to faulty patterns used by MLIR passes to match operations for transformation
or optimization. Nine bugs have been attributed to this root cause. Additionally, our analysis also
identi"ed three new root causes from these DESIL-detected bugs: Misalignment with Executable
Semantic (MAES), Erroneous Analysis Logic (EAL), and Missing Trait (MT).
Misalignment with Executable Semantics (MAES) refers to a discrepancy between the

semantics described in MLIR’s documentation or implementation and the actual semantics of the
corresponding executable IR (i.e., LLVM IR). Such misalignment leads to incorrect conversions from
MLIR to LLVM IR, causing any MLIR program containing the a#ected operations to produce incor-
rect outputs, thereby signi"cantly undermining the reliability of the MLIR compiler infrastructure.
Two bugs fall under this category.

For instance, issue#80960 (shown in Figure 4(a)) is a MAES bug caused by a semantic mismatch
between the MLIR operation arith.shrui and its LLVM IR counterpart lshr. While LLVM IR
explicitly treats shift amounts equal to the bit width in lshr as unde"ned behavior, the original
arith.shrui speci"cation de"ned the behavior for this edge case. This mismatch causes MLIR
programs using arith.shrui to yield unexpected results, casting doubt on the correctness of its
semantics in MLIR. The issue was resolved by aligning the semantics of arith.shrui with LLVM
IR, explicitly de"ning this case as unde"ned behavior. Notably, this latent bug had persisted since
the introduction of arith.shrui and went undetected by existing approaches because it caused
behavioral inconsistencies rather than crashes.

Erroneous Analysis Logic (EAL) refers to $awed analysis logic within MLIR that misinterprets
or provides inaccurate information (such as data or control $ow details) to subsequent rewrite passes.
Typically, an analysis serves multiple passes and other analyses; for instance, the DataFlowSolver
analysis supplies data $ow information used by integer range optimization, sparse conditional
constant propagation, and dead code elimination. Errors in this analysis propagate incorrect
information to all dependent passes, leading to erroneous MLIR program outputs and undermining
trust in the MLIR compiler. One bug detected by DESIL falls under this category.
Figure 4(b) shows an MLIR program that triggers a bug in this category. The MLIR compiler

generated di#erent IRs for the given program across multiple runs under the same optimization due
to the buggy data $ow analysis in MLIR. Speci"cally, the “-int-range-optimizations” pass utilizes a
DataFlowSolver after performing fold optimizations. However, when the fold optimization deletes
an original operation and creates a new one at the same memory location, the solver fails to
detect the change and returns the old operation’s state. This bug can signi"cantly impair compiler
reliability as said by developers: “its impact on other passes (e.g., Sparse Conditional Constant
Propagation and dead code analysis) makes debugging challenges”. Developers have "xed it by
adding a listener to track deleted operations, preventing the solver from returning outdated states.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 383. Publication date: October 2025.

383:20 Chenyao Suo, Jianrong Wang, Yongjia Wang, Jiajun Jiang, Qingchao Shen, and Junjie Chen

Table 3. Comparison between DESIL and li"ed existing techniques in silent bug detection

Techniques #Inconsistencies #FP Inconsistencies FP Rate #TP Inconsistencies #Silent Bugs

MLIRSmithenhanced 4,914 4,783 97.33% 131 14
MLIRodenhanced 4,542 4,404 96.96% 138 15
DESILsmith 519 0 0% 519 25
DESILod 470 0 0% 470 31

Missing trait (MT) refers to the absence of a required trait in the de"nition of an MLIR operation,
attribute, or type. In MLIR, traits act as implicit markers that convey semantic properties (such
as memory side e#ects) and guide compiler optimizations like dead code elimination. When a
necessary trait is missing, optimizations relying on that trait may behave incorrectly, leading to
faulty program transformations. This type of bug can have broad consequences, as the lack of a
trait disables all optimizations or checks that depend on it, reducing the reliability of the compiler.
One bug detected by DESIL falls into this category.

For example, issue#112881 is anMT bug caused by the omission of the RecursiveMemoryEffects
trait in linalg operations (shown in Figure 4(c)). When the MLIR program is optimized using the
“-linalg-named-op-conversion” pass, it produces incorrect results. Speci"cally, a memref.store
operation inside a linalg.map stores the value %2 into %alloc[%c1], which is later printed using
vector.print. The expected output is 10 (the value of %2), but the actual printed value is 1
(the value before the memref.store operation) due to this bug. The root cause is the missing of
RecursiveMemoryEffects trait on linalg.map, which prevents the compiler from recognizing
the memory e#ects of memref.store within the operation. Consequently, since the return value of
linalg.map is unused, the compiler wrongly assumes it has no side e#ects and eliminates it. This
incorrect elimination of operations with memory side e#ects leads to unreliable program outputs.
To "x this, developers added the RecursiveMemoryEffects trait to the relevant linalg operations,
ensuring internal memory e#ects are properly detected and preserved during optimization.

4.3 RQ2: Compared to (Li"ed) Existing MLIR Testing Techniques
As presented in Section 4.1.1, we lifted both MLIRSmith and MLIRod as MLIRSmithenhanced and
MLIRodenhanced, enabling the comparison between DESIL and the existing MLIR testing techniques
in silent bug detection. Table 3 presents the comparison results among these studied techniques in
silent MLIR bug detection during the given testing time. In this table, columns 2-6 represent the
number of inconsistencies detected via di#erential testing, the number of false positives among
these inconsistencies, the ratio of false positives (dividing the number of false positives by the total
number of inconsistencies), the number of true inconsistencies caused by silent bugs, the number
of silent bugs after de-duplicating inconsistencies, respectively. For each detected inconsistency
by MLIRSmithenhanced or MLIRodenhanced, we applied DESIL to check whether the corresponding
MLIR program has UB and then eliminate it. If the inconsistency still exists by running the UB-free
program, it is regarded as a true inconsistency; Otherwise, it is a false positive. Indeed, through our
manual analysis on these true inconsistencies detected by existing techniques and the inconsisten-
cies detected by DESIL, all of them are real bugs.

From Table 3, DESILsmith (25) and DESILod (31) detected more silent bugs than MLIRSmithenhanced
(14) or MLIRodenhanced (15), respectively, demonstrating the e#ectiveness of DESIL in detecting silent
MLIR bugs. Although MLIRSmithenhanced and MLIRodenhanced were able to detect some silent bugs,
they su#ered from extremely high false positive rates (97.33% and 96.96%, respectively). Moreover,
DESIL played a crucial role in distinguishing the silent bugs detected by MLIRSmithenhanced and

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 383. Publication date: October 2025.

DESIL: Detecting Silent Bugs in MLIR Compiler Infrastructure 383:21

(a) DESILsmith v.s. MLIRSmithenhanced (b) DESILod v.s. MLIRodenhanced

Fig. 5. The number of unique bugs detected by DESIL and li"ed existing techniques in bug detection.

MLIRodenhanced from a large number of false positive inconsistencies. This indicates that even with
enhancements, MLIRSmith and MLIRod remain impractical for reliably detecting silent bugs.

Besides silent bugs, all these studied techniques are able to detect crash bugs. Hence, we further
compared them in the overall bug detection capability. In total, DESILsmith and DESILod detected
29 and 38 MLIR bugs respectively, while MLIRSmithenhanced and MLIRodenhanced detected 20 and
25 bugs respectively, demonstrating the superiority of DESIL over baselines in terms of overall
bug detection e#ectiveness. To investigate whether DESIL signi"cantly outperforms baselines
in statistics, we then conducted Mann-Whitney U-tests [7] between DESIL and each baseline in
terms of the number of detected bugs across multiple runs at the signi"cant level of 0.05. The
p-value for DESILsmith v.s. MLIRSmithenhanced is 0.0057 (smaller than 0.05), and that for DESILod
v.s. MLIRodenhanced is 0.0055 (smaller than 0.05). The results demonstrate that the improvements of
DESIL over both baselines are statistically signi"cant.
Figure 5 shows the overlap analysis results for DESILsmith v.s. MLIRSmithenhanced and DESILod

v.s. MLIRodenhanced. From this "gure, by comparing DESILsmith with MLIRSmithenhanced, the former
detected 13 unique bugs (including 12 silent bugs and one crash bug) while the latter detected only
4 unique bugs (including one silent bugs and 3 crash bugs). Similarly, by comparing DESILod with
MLIRodenhanced, the former detected 18 unique bugs (including 16 silent bugs and 2 crash bugs)
while the latter detected only 5 unique bugs (including 0 silent bug and 5 crash bugs). The results
further con"rm the e#ectiveness of DESIL. Through further observation, we found that DESILsmith
(4) and DESILod (7) detected slightly less crash bugs than MLIRSmithenhanced (6) and MLIRodenhanced
(10), respectively. This is as expected, since DESIL requires extra time cost for UB elimination, and
thus ran less MLIR programs for testing. Speci"cally, during the same testing period, the number
of executed programs for DESILsmith and DESILod is 13,269 and 13,541 respectively, while that for
MLIRSmithenhanced and MLIRodenhanced is 21,681 and 21,420 respectively. Nevertheless, the strong
capability of DESIL in detecting silent bugs far outweighs its slight drawback in crash bug detection,
which is due to the additional time cost incurred by UB elimination.

4.4 RQ3: Ablation Study
We "rst investigated the contribution of the lowering path optimization mechanism in DESIL
by running DESILw/o lowersmith and DESILw/o lowerod . Over "ve repeated 12-hour fuzzing sessions, both
DESILw/o lowersmith and DESILw/o lowerod failed to compile any MLIR program into an executable form, even
when applying 50 lowering passes — more than twice the number typically required by DESIL
(i.e., 21 on average). That is, randomly selecting a sequence of lowering passes hardly succeeds
in converting all operations from diverse dialects into an executable dialect within a reasonable
number of steps. This underscores the critical role of our lowering path optimization strategy in
ensuring the feasibility of DESIL for silent bug detection.
We then investigated the contribution of the operation-aware optimization recommendation

strategy in DESIL by comparing with DESILw/o optsmith and DESILw/o optod . During the given testing period,
DESILsmith and DESILod detected 29 and 38 bugs while DESILw/o optsmith and DESILw/o optod detected 21

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 383. Publication date: October 2025.

383:22 Chenyao Suo, Jianrong Wang, Yongjia Wang, Jiajun Jiang, Qingchao Shen, and Junjie Chen

(a) 𝑂𝑃𝑄𝑅𝑆𝐿𝑀𝑁𝑂𝑃 and its variant (b) 𝑂𝑃𝑄𝑅𝑆𝑄𝑅 and its variant

Fig. 6. The number of unique bugs with and without optimization recommendation component.

(a) The number of detected bugs with di#erent optnum_each (b) The number of detected bugs with di#erent di"num

Fig. 7. The number of bugs detected by DESIL under di!erent configurations.

and 31 bugs respectively. Figure 6 further shows the overlap analysis results among the studied
techniques. As shown in the "gure, DESILsmith detected 11 unique bugs compared to DESILw/o optsmith , and
DESILod detected 12 unique bugs compared to DESILw/o optod . In contrast, DESILw/o optsmith and DESILw/o optod
detected only 3 and 5 unique bugs, respectively. These results highlight the superiority of the
operation-aware optimization recommendation strategy in DESIL over the random strategy for
specifying optimization passes.

4.5 RQ4: Influence of Di!erent Configurations
Figure 7 shows the e#ectiveness of DESIL under di#erent con"gurations of optnum_each (the
number of optimization passes per lowering step) and di"num (the number of compilations for dif-
ferential testing), respectively. The y-axis represents the total number of bugs detected by DESILsmith
and DESILod. In general, as the values of optnum_each or di"num increase, the e#ectiveness of
DESIL decreases to some extent (especially for the former). This phenomenon arises from the
trade-o# between bug detection capability and time e!ciency. While larger values enable broader
exploration of the optimization space, potentially increasing the likelihood of uncovering bugs, the
associated time overhead ultimately reduces these bene"ts. This aligns with the conclusion of an
existing study [8], which highlights testing e!ciency as one of the most critical factors in compiler
testing. Similarly, the decreasing trend for di"num is less pronounced, as the overhead it incurs
under these settings is lower than that of optnum_each. Based on this insight, we set optnum_each
to 1 and di"num to 2 as the default con"gurations of DESIL for practical use.

5 Discussion
Signi!cance of DESIL. While DESIL is designed to fuzz the MLIR compiler infrastructure, its
impact extends beyond a single system. Many compilers, such as Flang [3] and IREE [4], are built on
top of MLIR, meaning that improving the reliability of the MLIR compiler infrastructure enhances
the quality and robustness of all compilers that depend on it. In other words, fuzzing the MLIR
compiler infrastructure has a far-reaching e#ect, bene"ting multiple compiler systems rather than
just one. Moreover, DESIL is independent of MLIR test program generation techniques and can

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 383. Publication date: October 2025.

DESIL: Detecting Silent Bugs in MLIR Compiler Infrastructure 383:23

be integrated with any of them. Speci"cally, for any given MLIR program, DESIL can transform it
into a UB-free version and then compile it into an executable form for silent bug detection. Our
evaluation has demonstrated the e#ectiveness of DESIL when combined with two state-of-the-art
MLIR program generation tools, i.e., MLIRSmith and MLIRod. Therefore, we are con"dent that
DESIL can also enhance future, more advanced MLIR program generation techniques, further
extending its impact and applicability.
Limitations of DESIL. The "rst limitation is that the dialects, operations, and execution platforms
supported by DESIL are incomplete. Currently, DESIL supports most of the widely used dialects
and operations in MLIR fuzzing, speci"cally the dialects and operations supported by MLIRSmith.
However, the dialects supported by MLIRSmith are primarily middle-level dialects, meaning that
certain higher-level dialects, such as the TOSA dialect, are not yet supported. Fortunately, DESIL
has already de"ned a comprehensive set of unde"ned behavior elimination rules, which can be
reused to handle unde"ned behaviors in the TOSA dialect. As a result, supporting new dialects
in DESIL generally requires only a minimal number of additional elimination rules. To expand
the range of supported execution platforms, new executable dialects should be supported, which
can be accomplished by adjusting operation-speci"c lowering paths within DESIL. No additional
mechanisms are required to enable the support of new executable dialects.
Second, DESIL has false negatives due to two main factors. One factor is the side e#ect of UB-

elimination rules. Some rules may be overly conservative, restricting the diversity of generated
MLIR programs and potentially reducing DESIL’s bug detection capability (resulting in missed
bugs). This limitation can be mitigated by re"ning the UB-elimination rules with greater attention
to preserving program diversity. Another factor lies in the limitation of the checksum mechanism.
Currently, DESIL includes only integer variables in the checksum, excluding $oating-point variables.
This may cause bugs related to $oating-point computations to go undetected. To address this, we
plan to extend DESIL with existing solutions for handling $oating-point imprecision [13, 14].
Moreover, subtle semantic discrepancies may not be captured by numerical checksum comparisons
alone. In such cases, integrating formal veri"cation tools like Alive2 [16] may help strengthen
bug detection further. Nevertheless, DESIL’s ability to expose previously undetectable silent bugs
outweighs the limitation of false negatives.

The third limitation arises fromMLIR evolution. Dialects and operations in MLIR may be changed
or newly introduced over time, indicating that the corresponding UB-elimination rules may need
to be updated or designed. Maintaining these rules poses a challenge for DESIL. To relieve this, we
plan to leverage the strong semantic understanding of LLMs to analyze code and documentation,
facilitating (semi-)automatic evolution of existing rules and synthesis of new ones.
Generalizability of DESIL. The core principles of DESIL (UB elimination, lowering-path optimiza-
tion, and di#erential testing) are broadly applicable to other IRs. Some UB-elimination rules (e.g.,
signed integer over$ow elimination) are common and easily transferable. As most IRs have simpler
lowering pipelines than MLIR’s multi-dialect design, the lowering-path optimization could be
simpli"ed accordingly. These indicate the generalizability of DESIL to a large extent. Nevertheless,
full adaptation still requires handling domain-speci"c UBs and transformations.
Overhead of DESIL. Integrating DESIL into bug detection incurs an average overhead of 5.045
seconds per MLIR program. Speci"cally, programs not processed by DESIL take 8.123 seconds
on average, while those processed by DESIL require 13.168 seconds. This increase is largely due
to longer compilation times caused by UB-elimination rules, which expand MLIR program size.
Speci"cally, compiling unprocessed programs takes 7.630 seconds on average, compared to 12.637
seconds for processed ones (an added cost of 5.007 seconds). Other components of DESIL contribute
negligible overhead, adding less than 0.1 seconds per program. While the UB-elimination rules

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 383. Publication date: October 2025.

383:24 Chenyao Suo, Jianrong Wang, Yongjia Wang, Jiajun Jiang, Qingchao Shen, and Junjie Chen

slightly reduce fuzzing e!ciency, they enable DESIL to detect silent bugs in the MLIR compiler
infrastructure that would otherwise go unnoticed, making this trade-o# worthwhile.

Threats to Validity. The threat to internal validity primarily concerns the implementation of
DESIL. To mitigate this, two authors meticulously reviewed the source code and designed unit
tests to ensure the correctness of DESIL. In addition, we further validated DESIL by applying the
“-generate-runtime-veri"cation” pass, which is equipped in the MLIR compiler for verifying the
correctness of operations, to 10,000 test programs generated by DESIL. None of the test programs
triggered the check failure in the “-generate-runtime-veri"cation” pass, demonstrating the stability
of DESIL. For the existing techniques (i.e., MLIRSmith and MLIRod), we directly adopted their
publicly released implementations and followed the recommended settings.
The threat to external validity arises from the choice of the subject under test. To address this,

we selected the latest versions of the MLIR compiler infrastructure as the subject and conducted
continuous fuzzing to thoroughly evaluate the e#ectiveness of DESIL in detecting previously
unknown bugs. This is consistent with prior work [19, 21], targeting the MLIR infrastructure itself
rather than individual compilers built on it. The reason is that MLIR is foundational, and thus bugs
in its infrastructure could a#ect all dependent compilers. In the future, we will adapt DESIL to test
speci"c MLIR-based compilers to expand the applicability.
The threat to construct validity arises from the randomness in the experiments and the hyper-

parameter settings in DESIL. To mitigate the impact of randomness, we repeated each experiment
"ve times (three times for parameter-setting experiments due to their extensive time cost). To
address concerns regarding hyper-parameter settings, we evaluated DESIL under various con"gu-
rations, as detailed in Section 4.5.

6 Related Work
In recent years, several testing techniques have been proposed for the MLIR compiler infrastruc-
ture [19, 21]. For example, Wang et al. introduced MLIRSmith [21], the "rst MLIR program generator
designed for testing the MLIR compiler infrastructure. MLIRSmith generates MLIR programs by
"rst constructing program templates based on MLIR’s grammar and then "lling these templates
according to semantic rules to ensure the generation of semantically valid MLIR programs. Suo et al.
proposed MLIRod [19], which de"nes operation dependency coverage as the testing guidance and
employs four types of dependency-speci"c mutations to generate new MLIR programs, enhancing
the e#ectiveness of testing the MLIR compiler infrastructure. They have demonstrated signi"cant
e#ectiveness in detecting crash bugs by generating semantically valid MLIR programs.

As explained in Section 1, all existing techniques su#er from the UB issue, which prevents them
from detecting silent bugs. Due to this issue, none of these techniques incorporates a lowering
process to compile MLIR programs into executable programs for execution, making it impossible
for them to detect silent bugs. In contrast, our work introduces DESIL, the "rst technique designed
to detect silent MLIR bugs by addressing the UB issue through a set of UB-elimination rules and
designing a lowering path optimization strategy for checking program execution. Thus, DESIL is
orthogonal to all existing MLIR testing techniques, o#ering a signi"cant improvement in quality
assurance for the MLIR compiler infrastructure.

A recent parallel e#ort, Ratte [25], also targets silent bug detection in the MLIR compiler infras-
tructure. Below, we provide a detailed comparison between DESIL and Ratte: (1) Ratte employs
a reference interpreter to provide runtime semantics for guiding test generation from scratch,
requiring manual implementation of both the generator and interpreter for each operation. In
contrast, DESIL eliminates UBs in existing MLIR programs using UB-elimination rules, which only
need to be de"ned as necessary (i.e., without a strict one-to-one mapping between operations and

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 383. Publication date: October 2025.

DESIL: Detecting Silent Bugs in MLIR Compiler Infrastructure 383:25

rules). (2) Ratte detects bugs by comparing interpreter results with those from a "xed lowering
and optimization pipeline, while DESIL explores diverse lowering paths via a lowering-path opti-
mization strategy, thereby covering a broader range of MLIR passes. (3) Regarding e#ectiveness, as
reported in the respective papers, DESIL detected 17 con"rmed or "xed silent bugs, whereas Ratte
identi"ed 5. Further, we evaluated Ratte by running it for 12 hours per mode on the same MLIR
version used in our study, but did not observe any inconsistencies, con"rming DESIL’s e#ectiveness.

Additionally, there are a lot of testing techniques for traditional compilers in the literature [13,
14, 17, 24]. Some of these techniques are capable of detecting silent bugs in traditional compilers by
ensuring UB-free test programs. For example, Csmith [24], a grammar-based C program generator,
leverages prede"ned rules (such as safe arithmetic wrappers) and built-in dynamic checks to prevent
unde"ned behaviors during test program generation. YARPGen [14], another C/C++ program
generator, ensures expression safety by de"ning a set of safe expressions that prevent unde"ned
behaviors at the generation phase. Lecoeur et al. introduced reconditioning [13], a technique
that eliminates unde"ned behaviors in OpenGL Shading Language (GLSL) and WebGPU Shading
Language (WGSL) through post-processing with program transformations.
Reconditioning is the most relevant technique to DESIL, as both address UB through post-

processing code transformations rather than during program generation. However, DESIL di#ers in
several key aspects. First, DESIL targets a fundamentally di#erent domain, focusing on intermediate
representations (IRs) rather than high-level languages. Reconditioning operates on languages with
restricted memory allocation (e.g., GLSL, which disallows variable-length arrays), while DESIL
handles IRs that support $exible memory allocation (e.g., dynamic shapes) and complex operation
semantics (e.g., linalg.matmul for matrix multiplication). As a result, DESIL must address unique
categories of UB and requires more sophisticated transformation rules. Second, DESIL introduces
an additional challenge absent in reconditioning: lowering path optimization. MLIR compilation
involves multiple dialects, requiring careful selection of lowering passes to ensure successful
translation to an executable representation. DESIL tackles this problem with a structured lowering-
path optimization strategy, making it fundamentally distinct from reconditioning.

7 Conclusion
In this paper, we presented DESIL, a novel technique designed to bridge the gap in detecting
silent bugs in the MLIR compiler infrastructure. DESIL addresses two key challenges in MLIR
bug detection: (1) eliminating unde"ned behavior (UB) in UB-prone operations through a set of
unde"ned behavior elimination rules, and (2) determining an optimal lowering path to prevent
redundant or circular application of lowering passes, ensuring e!cient compilation to an executable
representation. By incorporating a di#erential testing oracle, DESIL further enhances its ability to
detect silent bugs by comparing the results of executable programs a#ected by di#erent optimization
passes. Our evaluation demonstrates DESIL’s e#ectiveness in detecting silent MLIR bugs, identifying
42 previously unknown bugs (23 silent and 19 crash bugs) over a four-month testing period, with
26 "xed and 33 con"rmed by the developers.

Data-Availability Statement
We released the source code of DESIL (implemented in 4.6K lines of C++ code), along with all
experimental data in our artifact [20].

Acknowledgments
This work was supported by the National Key Research and Development Program of China (Grant
No. 2024YFB4506300), and the National Natural Science Foundation of China (Grant Nos. 62322208,
12411530122, 62232001, 62202324).

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 383. Publication date: October 2025.

383:26 Chenyao Suo, Jianrong Wang, Yongjia Wang, Jiajun Jiang, Qingchao Shen, and Junjie Chen

References
[1] 2025. A!ne Documentation. https://mlir.llvm.org/docs/Dialects/A!ne.
[2] 2025. DESIL repository. https://github.com/tju-chenyaosuo/DESIL.
[3] 2025. Flang. https://github.com/llvm/llvm-project/tree/main/$ang.
[4] 2025. IREE. https://github.com/iree-org/iree.
[5] 2025. MLIR language reference. https://mlir.llvm.org/docs/LangRef.
[6] Alfred V. Aho, Ravi Sethi, and Je#rey D. Ullman. 1986. Compilers: Principles, Techniques, and Tools. Addison-Wesley.

https://www.worldcat.org/oclc/12285707
[7] Andrea Arcuri and Lionel C. Briand. 2011. A practical guide for using statistical tests to assess randomized algorithms

in software engineering. In Proceedings of the 33rd International Conference on Software Engineering, ICSE 2011, Waikiki,
Honolulu , HI, USA, May 21-28, 2011, Richard N. Taylor, Harald C. Gall, and Nenad Medvidovic (Eds.). ACM, 1–10.
doi:10.1145/1985793.1985795

[8] Junjie Chen, Wenxiang Hu, Dan Hao, Yingfei Xiong, Hongyu Zhang, Lu Zhang, and Bing Xie. 2016. An empirical
comparison of compiler testing techniques. In Proceedings of the 38th International Conference on Software Engineering,
ICSE 2016, Austin, TX, USA, May 14-22, 2016, Laura K. Dillon, Willem Visser, and Laurie A. Williams (Eds.). ACM,
180–190. doi:10.1145/2884781.2884878

[9] Junjie Chen, Jibesh Patra, Michael Pradel, Yingfei Xiong, Hongyu Zhang, Dan Hao, and Lu Zhang. 2021. A Survey of
Compiler Testing. ACM Comput. Surv. 53, 1 (2021), 4:1–4:36. doi:10.1145/3363562

[10] Alastair F. Donaldson, Paul Thomson, Vasyl Teliman, Stefano Milizia, André Perez Maselco, and Antoni Karpinski.
2021. Test-case reduction and deduplication almost for free with transformation-based compiler testing. In PLDI ’21:
42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation, Virtual Event,
Canada, June 20-25, 2021, Stephen N. Freund and Eran Yahav (Eds.). ACM, 1017–1032. doi:10.1145/3453483.3454092

[11] Mary Jean Harrold and Mary Lou So#a. 1994. E!cient Computation of Interprocedural De"nition-Use Chains. ACM
Trans. Program. Lang. Syst. 16, 2 (1994), 175–204. doi:10.1145/174662.174663

[12] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis, Jacques Pienaar, River Riddle, Tatiana
Shpeisman, Nicolas Vasilache, and Oleksandr Zinenko. 2021. MLIR: Scaling Compiler Infrastructure for Domain
Speci"c Computation. In 2021 IEEE/ACM International Symposium on Code Generation and Optimization (CGO). 2–14.
doi:10.1109/CGO51591.2021.9370308

[13] Bastien Lecoeur, Hasan Mohsin, and Alastair F. Donaldson. 2023. Program Reconditioning: Avoiding Unde"ned
Behaviour When Finding and Reducing Compiler Bugs. Proc. ACM Program. Lang. 7, PLDI (2023), 1801–1825. doi:10.
1145/3591294

[14] Vsevolod Livinskii, Dmitry Babokin, and John Regehr. 2020. Random testing for C and C++ compilers with YARPGen.
Proc. ACM Program. Lang. 4, OOPSLA (2020), 196:1–196:25. doi:10.1145/3428264

[15] Vsevolod Livinskii, Dmitry Babokin, and John Regehr. 2023. Fuzzing Loop Optimizations in Compilers for C++ and
Data-Parallel Languages. Proc. ACM Program. Lang. 7, PLDI (2023), 1826–1847. doi:10.1145/3591295

[16] Nuno P. Lopes, Juneyoung Lee, Chung-Kil Hur, Zhengyang Liu, and John Regehr. 2021. Alive2: bounded translation
validation for LLVM. In PLDI ’21: 42nd ACM SIGPLAN International Conference on Programming Language Design
and Implementation, Virtual Event, Canada, June 20-25, 2021, Stephen N. Freund and Eran Yahav (Eds.). ACM, 65–79.
doi:10.1145/3453483.3454030

[17] Mayank Sharma, Pingshi Yu, and Alastair F. Donaldson. 2023. RustSmith: Random Di#erential Compiler Testing for
Rust. In Proceedings of the 32nd ACM SIGSOFT International Symposium on Software Testing and Analysis, ISSTA 2023,
Seattle, WA, USA, July 17-21, 2023, René Just and Gordon Fraser (Eds.). ACM, 1483–1486. doi:10.1145/3597926.3604919

[18] Qingchao Shen, Yongqiang Tian, Haoyang Ma, Junjie Chen, Lili Huang, Ruifeng Fu, Shing-Chi Cheung, and Zan Wang.
2025. A Tale of Two DL Cities: When Library Tests Meet Compiler. (2025), 2201–2212. doi:10.1109/ICSE55347.2025.00025

[19] Chenyao Suo, Junjie Chen, Shuang Liu, Jiajun Jiang, Yingquan Zhao, and Jianrong Wang. 2024. Fuzzing MLIR Compiler
Infrastructure via Operation Dependency Analysis. In Proceedings of the 33rd ACM SIGSOFT International Symposium
on Software Testing and Analysis, ISSTA 2024, Vienna, Austria, September 16-20, 2024, Maria Christakis and Michael
Pradel (Eds.). ACM, 1287–1299. doi:10.1145/3650212.3680360

[20] Chenyao Suo, Jianrong Wang, Yongjia Wang, Jiajun Jiang, Qingchao Shen, and Junjie Chen. 2025. DESIL-artifact.
Zenodo. doi:10.5281/zenodo.15727517

[21] Haoyu Wang, Junjie Chen, Chuyue Xie, Shuang Liu, Zan Wang, Qingchao Shen, and Yingquan Zhao. 2023. MLIRSmith:
Random Program Generation for Fuzzing MLIR Compiler Infrastructure. In 38th IEEE/ACM International Conference on
Automated Software Engineering, ASE 2023, Luxembourg, September 11-15, 2023. IEEE, 1555–1566. doi:10.1109/ASE56229.
2023.00120

[22] Tao Xie. 2006. Augmenting Automatically Generated Unit-Test Suites with Regression Oracle Checking. In ECOOP
2006 - Object-Oriented Programming, 20th European Conference, Nantes, France, July 3-7, 2006, Proceedings (Lecture Notes
in Computer Science, Vol. 4067), Dave Thomas (Ed.). Springer, 380–403. doi:10.1007/11785477_23

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 383. Publication date: October 2025.

https://www.worldcat.org/oclc/12285707
https://doi.org/10.1145/1985793.1985795
https://doi.org/10.1145/2884781.2884878
https://doi.org/10.1145/3363562
https://doi.org/10.1145/3453483.3454092
https://doi.org/10.1145/174662.174663
https://doi.org/10.1109/CGO51591.2021.9370308
https://doi.org/10.1145/3591294
https://doi.org/10.1145/3591294
https://doi.org/10.1145/3428264
https://doi.org/10.1145/3591295
https://doi.org/10.1145/3453483.3454030
https://doi.org/10.1145/3597926.3604919
https://doi.org/10.1109/ICSE55347.2025.00025
https://doi.org/10.1145/3650212.3680360
https://doi.org/10.5281/zenodo.15727517
https://doi.org/10.1109/ASE56229.2023.00120
https://doi.org/10.1109/ASE56229.2023.00120
https://doi.org/10.1007/11785477_23

DESIL: Detecting Silent Bugs in MLIR Compiler Infrastructure 383:27

[23] Chen Yang, Junjie Chen, Xingyu Fan, Jiajun Jiang, and Jun Sun. 2023. Silent Compiler Bug De-duplication via
Three-Dimensional Analysis. In Proceedings of the 32nd ACM SIGSOFT International Symposium on Software Testing
and Analysis, ISSTA 2023, Seattle, WA, USA, July 17-21, 2023, René Just and Gordon Fraser (Eds.). ACM, 677–689.
doi:10.1145/3597926.3598087

[24] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and understanding bugs in C compilers. In
Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2011,
San Jose, CA, USA, June 4-8, 2011, Mary W. Hall and David A. Padua (Eds.). ACM, 283–294. doi:10.1145/1993498.1993532

[25] Pingshi Yu, Nicolas Wu, and Alastair F. Donaldson. 2025. Ratte: Fuzzing for Miscompilations in Multi-Level Compilers
Using Composable Semantics. In Proceedings of the 30th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 2, ASPLOS 2025, Rotterdam, Netherlands, 30 March 2025 - 3
April 2025, Lieven Eeckhout, Georgios Smaragdakis, Katai Liang, Adrian Sampson, Martha A. Kim, and Christopher J.
Rossbach (Eds.). ACM, 966–981. doi:10.1145/3676641.3716270

Received 2025-03-26; accepted 2025-08-12

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 383. Publication date: October 2025.

https://doi.org/10.1145/3597926.3598087
https://doi.org/10.1145/1993498.1993532
https://doi.org/10.1145/3676641.3716270

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Terminology
	2.2 A Motivating Example

	3 Approach
	3.1 Undefined Behavior Elimination
	3.2 Lowering Path Optimization
	3.3 Differential Testing
	3.4 Bug Detection by DESIL

	4 Evaluation
	4.1 Experimental Setup
	4.2 RQ1: Previously Unknown Bugs Detected by DESIL
	4.3 RQ2: Compared to (Lifted) Existing MLIR Testing Techniques
	4.4 RQ3: Ablation Study
	4.5 RQ4: Influence of Different Configurations

	5 Discussion
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

