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Code naturalness, which captures repetitiveness and predictability in programming languages, has proven
valuable for various code-related tasks in software engineering. However, precisely measuring code natural-
ness remains a fundamental challenge. Existing methods measure code naturalness over individual lines of
code while ignoring the deep semantic relations among di�erent lines, e.g., program dependency, which may
negatively a�ect the precision of the measure. Despite the intuitive appeal of extending the code naturalness
measure to the code dependency domain (as there are some work that have initiated the utilization of code
dependency for diverse code-related tasks), this assumption remains unexplored and warrants direct investi-
gation. In this study, we aim to perform the �rst empirical study to investigate whether incorporating code
dependency, instead of analyzing individual lines, can enhance the precision of measuring code naturalness.

To achieve that, we �rst propose a newmethod namedDAN formeasuring code naturalness by incorporating
the rich dependency information in the code. Speci�cally, DAN extracts multiple sequences of code lines
by traversing the program dependency graph, where di�erent code lines are connected by dependencies in
each sequence, and then the code naturalness will be measured by taking each sequence as a whole. In this
way, the dependency information can be well captured. Finally, we have conducted an extensive study to
evaluate the in�uence of code dependency for measuring code naturalness with DAN, and compared it with
the state-of-the-art methods under three emerging application scenarios of code naturalness. The results
demonstrate that DAN can not only better distinguish natural and unnatural code, but also substantially boost
two important downstream applications of code naturalness, i.e., distinguishing buggy and non-buggy code
lines and data cleansing for training better code models, re�ecting the signi�cance of code dependency in
measuring code naturalness.

CCS Concepts: • General and reference ! Measurement; • Theory of computation ! Program
analysis; • Software and its engineering!Maintaining software.
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1 Introduction
Natural languages (NL) exhibit notable repetitiveness and predictability, which facilitates reliable
and e�cient communication among humans [Pilkington 1996; Ray et al. 2016]. This property,
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commonly referred to as naturalness, has been e�ectively harnessed in the area of Natural Language
Processing (NLP) [Cavnar et al. 1994; Kowsari et al. 2019]. Inspired by it, programming languages,
as a special form of human-oriented languages, have been also demonstrated repetitive and pre-
dictable [Hindle et al. 2012; Jiang et al. 2022]. This property of code has been successfully exploited
to facilitate various code-related tasks, such as code generation [Chakraborty et al. 2022], code
completion [Raychev et al. 2014], and code de-obfuscation [Raychev et al. 2015]. It also constitutes
the foundation for the rapid development of statistical language modeling of source code [Wang
et al. 2021a; Zheng et al. 2023].

Due to the importance of this property, how to measure the naturalness of code is one of the most
fundamental tasks in this area. In the literature, some methods of measuring code naturalness have
been proposed [Hindle et al. 2012; Jiang et al. 2022; Ray et al. 2016; Tu et al. 2014]. For example,
Hindle et al. [Hindle et al. 2012] applied the n-gram model to measure cross entropy of source code
as code naturalness. As source code tends to be more repetitive within a small module, Tu et al. [Tu
et al. 2014] further incorporated a cache model to exploit localness of source code for measuring
code naturalness more precisely. Then, Ray et al. [Ray et al. 2016] proposed to normalize code
naturalness according to statement types in order to balance the naturalness of di�erent syntax
types. Further, to relieve the limitations of the n-grammodel (e.g., trained on small datasets and thus
inapplicable to cross-project scenarios), Khan�r et al. [Khan�r et al. 2022] proposed CodeBERT-NT
to use the pre-trained language model, i.e., CodeBERT [Feng et al. 2020] instead of n-gram, to
measure code naturalness based on the prediction con�dence on masked tokens in code.

Although code naturalness can be measured more precisely with more methods being proposed,
almost all of them share the same work�ow, i.e., measuring naturalness of each line in a complete
code snippet (e.g., a method or a �le) individually. However, humans and compilers tend not to
understand a single line without considering su�cient contexts, especially the lines of code that
are depended on [Busjahn et al. 2015; Rahman et al. 2019]. Hence, such a way isolating each code
line could negatively a�ect the measure of code naturalness.
In this work, we aim to perform the �rst empirical study to investigate whether incorporating

code dependency, instead of isolating each line, can improve the precision of measuring code
naturalness. Intuitively, considering all lines in the complete code snippet together in a sequential
manner can be a straightforward method to include all dependency information within the code
snippet. However, such a coarse-grained strategy may incur much noise because sequential lines
in code may be independent with each other, which has been con�rmed in our study (Section 4).
Indeed, humans and compilers do not process code in a completely sequential manner [Busjahn
et al. 2015; Rahman et al. 2019].
To investigate the in�uence of code dependency well, we �rst propose a more reasonable way

of incorporating dependency information among lines in code for measuring code naturalness.
We call it dependency-aware code naturalness (abbreviated as DAN). Speci�cally, DAN represents
the complete code as a program dependency graph (PDG) by performing control- and data- �ow
analysis. Then, it traverses all paths in the graph in a DFS (depth �rst search) manner, each of
which can be treated as a sequence of lines with control or data dependency. DAN measures
the naturalness of each sequence with some statistical model, which is helpful to incorporate
dependency information without incurring noise, and then obtains the naturalness of the complete
code snippet by aggregating the naturalness of all these sequences. Note that our novelty does
not lie in designing new statistical models for measuring code naturalness. In fact, the idea of
DAN is general and can be applied independently of the used statistical model. To demonstrate
the generalizability of our DAN idea, we create two instantiations of DAN by integrating the
two state-of-the-art statistical models that have been used to measure code naturalness (i.e., the
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cached n-gram model and the pre-trained CodeBERT model) for evaluation, respectively. DAN can
also integrate more advanced statistical models for better performance (even though they were
not investigated to measure code naturalness), which will be discussed in Section 5.2. For ease of
presentation, we call them DANngram and DANcodebert, respectively.

Recent work has initiated the utilization of code dependency for diverse code-related tasks [Guo
et al. 2020; Suo et al. 2024; Yang et al. 2024b], exempli�ed by GraphCodeBERT [Guo et al. 2020],
which leverages program analysis to augment vectorization of code snippets. Despite the intuitive
appeal of extending the naturalness measure to the code dependency domain, this assumption
remains unexplored and warrants direct investigation. Therefore, despite conceptually simple, DAN
is the �rst attempt to incorporate code dependency in measuring code naturalness. In this way,
code semantic information can be e�ectively utilized to measure code naturalness to some degree.

With DAN, we conducted the extensive study to investigate the in�uence of code dependency on
measuring code naturalness compared to the state-of-the-art n-gram-based method [Ray et al. 2016]
(called Ngram-NT in our work) and CodeBERT-NT [Khan�r et al. 2022], both of which work on a per-
line basis for measuring code naturalness. Speci�cally, we performed comparisons (DANngram v.s.
Ngram-NT and DANcodebert v.s. CodeBERT-NT, each pair of methods used the same statistical model
for investigating the contribution of code dependency more clearly) in three scenarios by carefully
designing corresponding experiments. First of all, we investigated the ability of DAN to distinguish
natural and unnatural code, which is the core task of measuring code naturalness, by intentionally
transforming each piece of natural code in the widely-used HumanEval-X dataset [Zheng et al.
2023] into unnatural code based on a set of transformation rules. The results show that DAN can
distinguish natural code and unnatural code better than Ngram-NT/CodeBERT-NT by achieving
41.82% and 13.41 times more di�erence in the measured naturalness between them on average.

We then evaluated DAN in two downstream applications of code naturalness: (1) distinguishing
buggy and non-buggy code lines following the existing work [Jiang et al. 2022; Ray et al. 2016; Yan
et al. 2020], and (2) cleansing training data for building better code generation models, which can
generate more natural code without damaging the functionality correctness of generated code,
as indicated by the existing work [Chakraborty et al. 2022; Zan et al. 2022b]. For the former, we
used all the three datasets that have been used in this application, i.e., Defects4J [Just et al. 2014],
GrowingBugs [gro 2023], SmartSHARK [Herbold et al. 2020]. The results show that DAN helps
identify 26.67%, 14.81%, 28.48% more buggy lines within the top20% prioritized lines than Ngram-
NT on the three datasets respectively, and helps identify 32.00%, 14.29%, and 40.24% more buggy
lines than CodeBERT-NT accordingly. For the latter, we used two widely-studied code generation
models (i.e., CodeGen-Multi [Nijkamp et al. 2022] and GPT-2 [Radford et al. 2019]) as the target
models due to the model availability and �ne-tuning cost, and used the APPS [Hendrycks et al.
2021] and HumanEval-X [Zheng et al. 2023] datasets since they have been widely used in the area
of code generation. The results show that the training data selected by DAN builds better code
generation models than the entire training set and the data selected by Ngram-NT and CodeBERT-
NT respectively. Speci�cally, the code generation models with DAN achieve 18.08% and 16.25%
higher CodeBLEU scores than those with Ngram-NT and CodeBERT-NT on average. The results
demonstrate that the former can generate code that has high textual similarity with the ground-
truth (human-written) code, indicating the high readability of generated code to some degree.
In particular, the former even achieves higher code generation accuracy (measured through test
execution on generated code) than the latter two. Overall, the results demonstrate the contribution
of incorporating code dependency to improve the precision of measuring code naturalness as well
as boost the two important downstream applications.
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To sum up, our work makes the following major contributions:
• We are the �rst to empirically investigate the in�uence of code dependency on measuring
code naturalness, compared to the state-of-the-art practice of isolating each line in code.

• We design dependency-aware code naturalness (i.e., DAN), a simple but e�ective method to
measure code naturalness by incorporating code dependency among lines.

• We conducted the extensive study with DAN in three scenarios, including the core task
of distinguishing natural and unnatural code and two downstream applications of code
naturalness, demonstrating its signi�cant contribution in all the three scenarios.

2 Background
2.1 Statistical Language Models
Language modeling fundamentally involves the construction of probability distributions over
sequences of words or tokens. Typically, the conditional probability % (C8 |C1, ..., C8�1) denotes the
likelihood that the token C8 will follow the sequence of preceding tokens ⌘ = C1, ..., C8�1. However,
accounting for entire sequences as context can become computationally prohibitive due to the
possible vastness of sequence variation and length. Hence, the n-gram model simpli�es it by
considering only the most recent = � 1 tokens, adhering to a Markovian assumption:

%ngram (C8 |⌘) = % (C8 |C8�=+1, ..., C8�1) (1)

The n-gram model has been e�ectively used to capture highly repetitive regularities in both natural
and programming languages, contributing signi�cantly to various code-related tasks such as code
completion [Tu et al. 2014], bug detection [Yan et al. 2020], and naturalness measure [Ray et al.
2016]. Subsequently, many pre-trained language models (e.g., CodeBERT [Feng et al. 2020]) are
proposed, expanding on the capabilities of language modeling by accepting �xed-length token
sequences. They leverage vast data and provide a user-friendly, out-of-the-box solution. Their
robust learning mechanisms enable them to capture intricate code patterns, which are bene�cial
for a variety of tasks.

2.2 Code Naturalness
As introduced in Section 1, code naturalness is an important property of source code. Therefore,
studying the accurate measure of code naturalness is critical. Hindle et al. [Hindle et al. 2012] were
the �rst to measure code naturalness based on the n-gram model, calculating the cross-entropy for
a line of code ( = C1C2 ...C# as follows:

�ngram (() = � 1
#

#’
8=1

log %ngram (C8 |⌘) (2)

Here, ⌘ represents the token sequence before C8 in ( (i.e., ⌘ = C1, ..., C8�1).
Then, Tu et al. [Tu et al. 2014] improved the code naturalness measure by exploiting code

localness and proposed the cached n-gram model:

%cache (C8 |⌘) = _ · %global (C8 |⌘) + (1 � _) · %local (C8 |⌘) (3)

In Formula 3, %global represents the conditional probability computed by the traditional n-gram
model, which is trained with a large-scale corpus of source code, such as one project, whereas %local
represents the n-gram model that is trained over small-scale source code, such as the context of a
single line in a �le. _ is the weight re�ecting both the commonalities among source code in the
large-scale corpus and the particularity under certain contexts. The subsequent code naturalness
calculation shares the same work�ow as the one proposed by Hindle et al. [Hindle et al. 2012]. Later,
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Given Code Dependency Extraction
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1 ExampleClass example;
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2 if (example == null) {
3 example.printNum(i);
4 }

Mapping
Line1+Line2+Line3

Line1+Line2+Line3

Fig. 1. Overview of DAN

Ray et al. [Ray et al. 2016] optimized its line naturalness measure by normalizing the computation
for di�erent types of code lines.

To overcome the limitation of n-grammodels (e.g., trained on small datasets and thus inapplicable
to cross-project scenarios), Khan�r et al. [Khan�r et al. 2022] proposed CodeBERT-NT by using the
pre-trained CodeBERTmodel to measure code naturalness based on token predictability. CodeBERT-
NT masks some tokens in each individual line and uses the minimal prediction con�dence of
CodeBERT on the masked tokens as the naturalness of this line.

To sum up, all these methods measure code naturalness by applying the used statistical language
model to measure the naturalness of each line individually. However, they ignore essential code
dependency information and thus may lead to inaccurate measure of code naturalness, since the
dependency information is crucial for code comprehension as discussed in Section 1.
In what follows, we will use a simple example to illustrate this issue. Considering the code

snippet shown in Figure 1 (simpli�ed for clarity), the code is regarded as natural when each line of
code is measured individually by existing methods since each code line is common and widely-
used in the code snippet. However, after putting all the code lines together, it is indeed unnatural
because the object example at line 3 will be de-referenced when it is null. Considering all the lines
sequentially may not capture such information well since many lines between lines 1 and 2 (also
after line 4) may involve too much noise and thus weaken the e�ect of code dependency. In such a
case, incorporating accurate code dependency for measuring code naturalness may be helpful. In
this work, we aim to conduct the �rst empirical exploration to investigate the in�uence of code
dependency on measuring code naturalness by designing an initial (but reasonable) solution.

3 Methodology
In this work, we conduct the �rst empirical study to investigate the in�uence of code dependency
on code naturalness. To complete this study, we propose the �rst method of incorporating code
dependency into measuring code naturalness, i.e., dependency-aware code naturalness (DAN). In
fact, there may be some other methods of utilizing code dependency, but our main contribution lies
in the �rst exploration in this direction even though the idea of DAN is simple. If we can obtain
positive conclusions from the study with DAN, designing more advanced methods of incorporating
code dependency can be promising future work. In this section, we introduce DAN in detail.

In general, DAN consists of three steps as shown in Figure 1. (1) It represents the given code as a
program dependency graph (PDG) by performing control- and data- �ow analysis, which can help
understand the semantics of code. (2) It traverses all paths in the PDG, each of which can be treated
as a sequence of lines with control or data dependency. It can incorporate code dependency without
much noise compared to treating all lines in code as a sequence for measuring code naturalness. (3)
It applies the widely-used statistical model (i.e., n-gram or CodeBERT) to each sequence, instead of
each individual line, for measuring code naturalness. With DAN, code naturalness can be measured
by incorporating code semantics with the aid of code dependency information, which can intuitively
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Example example

if example == null  2

example.printNum(i)3

1

exit4

Dependency Edge

Complete Path 1

Complete Path 2

Complete Path 3

Fig. 2. An example of program dependency graph

improve the precision of measuring code naturalness. Next, we present dependency extraction in
Section 3.1, line sequence extraction in Section 3.2, and naturalness measure in Section 3.3.

3.1 Dependency Extraction
To extract the dependency information for a given code snippet, DAN transforms the code into
a PDG. The PDG serves as a representation of a program’s control and data �ow dependencies
among program elements. The PDG is represented as a directed graph G = (V, E), where:

• V is the set of nodes in the graph, and each node corresponds to a program element, e.g.,
statement or function.

• E is the set of directed edges between nodes in V , representing the dependencies between
program elements.

Speci�cally, DAN constructs the PDG at the granularity of program statements. That is, each node
E in the graph corresponds to a statement in the source code, and the edges in the graph depict the
dependencies between these statements. For instance, considering the code displayed in Figure 1,
the PDG constructed at the statement granularity is shown in Figure 2. For DAN, there are two
types of edges in the PDG:

• E2 : This type of dependency represents control �ow relationship between statements. For
example, if a statement A depends on another statement B in a way that the execution of A
depends on the outcome of B, then a control dependency edge is present from B to A in the
PDG. For example, the edge between node E2 and node E3 in Figure 2 represents the control
dependency between them.

• E3 : This type of dependency represents data �ow relationship between statements. If a
variable’s value is used in another statement, a data dependency edge is established from the
statement using the variable to the one de�ning its value. For example, the edge between
node E1 and node E3 represents the data dependency of the object example.

During the PDG construction process, DAN also analyzes the mapping between the nodes in the
graph and the lines in source code, serving as the foundation for subsequent naturalness measure.
For instance, node E1 in the PDG is mapped back to the object declaration at Line 1 of the source
code in Figure 1. However, it is essential to note that not all nodes in the PDG have corresponding
source lines. For example, node E4 in the PDG does not correspond to any lines in the source code.
Also, multiple nodes in the graph sometimes correspond to the same line, such as a line of a for
statement that is represented by multiple nodes in the PDG.
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3.2 Line Sequence Extraction
Each path in the PDG represents a sequence of nodes that have dependencies. To incorporate
dependency information for measuring code naturalness, DAN extracts paths from the PDG. The
extraction process is performed using a Depth-First Search (DFS) strategy, which starts from a
designated starting node and explores each path throughout the graph systematically. When DAN
reaches a node with no successors or the node representing the termination of code execution (i.e.,
the exit node), this path represents a complete path. To handle cyclic paths, DAN maintains a set of
visited nodes, ensuring that previously visited nodes are not revisited during the traversal process.
In this way, DAN obtains a list of complete paths. For instance, DAN extracts three complete paths
from the PDG of the code in Figure 1, each of which is highlighted in di�erent colors as shown in
Figure 2. Note that DAN �lters out the paths that are subsumed by any other paths.
However, complete paths are typically lengthy and intricate, and thus there are usually a lot

of overlapped nodes between complete paths. That results in redundant use of the dependencies
between these nodes, which could incur extra computation overhead and a�ect the precision of
code naturalness measure. Inspired by the existing work [Rahman et al. 2019] that highlighted
the repetition of n-node sub-graphs of source code, DAN addresses this problem by extracting
n-node sub-paths from each complete path. For example, given n=3, four distinct sub-paths can be
extracted from the three complete paths in the graph shown in Figure 2, i.e., {E1�E2�E3, E2�E3�E4,
E1 � E3 � E4, E1 � E2 � E4}. Each sub-path represents a shorter sequence of nodes with dependencies.

To address the di�culty of using statistical models to measure the naturalness of PDG nodes,
DAN further leverages the mapping obtained in the �rst step to convert each sub-path into a
sequence of corresponding code lines. Similarly, if a sequence is a subset or duplicate of any other
sequences, DAN �lters it out. For instance, if there are three extracted sequences: Line1-Line2-
Line3, Line2-Line3, and Line2-Line3, DAN retains only the sequence Line1-Line2-Line3. Since
multiple nodes may correspond to the same code line, there may be the cases where the same
line continuously appears in a sequence (e.g., Line3-Line5-Line5-Line5). Actually, this line has
encompassed the dependencies of all its corresponding nodes, and thus DAN retains only one
occurrence of this line in the sequence to avoid redundancy (e.g., the above example sequence is
reduced as Line3-Line5).
This process results in a re�ned set of sequences, each of which consists of code lines with

data or control dependencies. In this way, DAN can incorporate code dependency into naturalness
measure by applying the widely-used statistical model to each sequence of code lines.

3.3 Naturalness Measure
After obtaining the set of sequences of code lines, DAN follows the similar work�ow of the existing
methods [Khan�r et al. 2022; Ray et al. 2016] to measure the naturalness of code. To make our
method description self-contained, we also introduce the work�ow brie�y in this section. When
measuring the naturalness of a given code snippet, DAN treats each sequence of code lines with
dependencies as a unit for naturalness measure. That is, DAN applies a statistical model to each
sequence of code lines instead of each code line individually, and then aggregates the naturalness
of all sequences to obtain the naturalness of the given code snippet.

Speci�cally, given that DAN reorganizes the given code snippet into m sequences of code lines:
2 = {B1, B2, . . . , B<}, where B8 represents a sequence of code lines with data or control dependencies.
Then, DAN measures the naturalness of the code as follows:

Naturalness2 =
1
<

8=<’
8=1

OutputM(B8 ) (4)
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Here, M represents the statistical model used to measure code naturalness and OutputM(B8 )
represents the naturalness of B8 measured byM. Note that the idea of DAN is general and can be
applied independently of the used statistical model. Therefore, we can use any statistical model in
this step of DAN. To demonstrate the generality of our DAN idea, we create two instantiations
of DAN by integrating the two widely-used statistical models in measuring code naturalness
(i.e., the cached n-gram model and the pre-trained CodeBERT model) for evaluation, respectively.
As described in Section 1, we call them DANngram and DANcodebert, respectively. The details of
using the cached n-gram and pre-trained CodeBERT models to measure code naturalness have
been introduced in Section 2. As it is infeasible to determine one syntax type for a sequence of
multiple code lines, DANngram does not perform syntax-based normalization like the state-of-the-art
n-gram-based method [Ray et al. 2016].

4 Evaluation
With DAN, we conducted the �rst empirical study to investigate whether incorporating code depen-
dency can improve the measure of code naturalness. We evaluated DAN (i.e., its two instantiations
DANngram and DANcodebert) in three scenarios for code naturalness, including its core task (i.e.,
distinguishing natural and unnatural code) - RQ1, and two applications of code naturalness: distin-
guishing buggy and non-buggy code lines (called buggy line prioritization) - RQ2, and cleansing
data for training code generation models (called training data cleansing) - RQ3.

•Compared Techniques. We chose theNgram-NT [Ray et al. 2016] andCodeBERT-NT [Khan�r
et al. 2022] methods for comparison in our study , which have been introduced in Section 2. To
investigate the contribution of incorporating code dependency to measure code naturalness clearly,
we compared DANngram/DANcodebert with Ngram-NT/CodeBERT-NT respectively, by controlling
the in�uence of the used statistical model. In particular, it is helpful to demonstrate the generality
of our DAN idea across di�erent statistical models.
As mentioned in Section 1, considering all code lines together in a sequential manner is an

intuitive method to include all dependency information within the given code, but can incur
much noise in code dependency. We regarded it as a compared technique in the study, which can
help investigate the contribution of our code dependency extraction strategy in DAN. For ease
of presentation, we call it CSN (short for complete sequence code naturalness). Due to the input
length limitation in CodeBERT, we cannot use CodeBERT as the statistical model in CSN, and thus
we just constructed the instantiation of CSN by using the cached n-gram model as the statistical
model (called CSNngram).
Besides, DAN extracts n-node sub-paths from each complete path to relieve the lengthiness

and intricacy of complete paths. CSN may also su�er from this issue. Hence, we improve CSN by
splitting the complete sequence with all code lines used in it into a set of n-line subsequences,
then measuring naturalness of each n-line subsequence, and �nally aggregating the naturalness of
all subsequences, for more su�cient comparison. We call this variant of CSN-sub. According to
the used statistical model, we created two instantiations, i.e., CSN-subngram and CSN-subcodebert.
We set n to 3 by default following the existing study [Rahman et al. 2019], which demonstrated
the repetitiveness of 3-node sub-graphs of code, and extracted all sub-paths with length 3 from
complete paths. However, we also investigated the in�uence of n by setting n to 2 in DAN.
Overall, we had two sets of comparisons: DANngram vs. DANngram(n=2) vs. Ngram-NT v.s.

CSNngram v.s. CSN-subngram andDANcodebert vs. DANcodebert(n=2) vs. CodeBERT-NT v.s. CSN-subcodebert,
so as to evaluate the importance of incorporating code dependency in measuring code naturalness
regardless of the used statistical models. As �ne-tuning code models is resource-intensive and
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time-consuming, we only compared DANngram vs. Ngram-NT and DANcodebert vs. CodeBERT-NT
for the third scenario (i.e., training data cleansing).

• Implementations. We implemented DAN in Java and Python.We implemented PDG construction
using Soot [Vallée-Rai et al. 1999] (a widely-used program analysis tool), and constructed the
mapping between nodes and code lines based on the debugging information provided by Soot (i.e.,
line number tables and local variable tables). We implemented the cached n-gram model based on
nltk 3.8.1 [Loper and Bird 2002], javalang 0.13.0 [jav 2023], and scikit-learn 1.2.2 [skl 2023]. For
Ngram-NT, we replicated the experimental results in the original paper [Jiang et al. 2022] based on
our re-implementation, which validates the correctness of our re-implementation to a large extent.
For CodeBERT-NT, we directly used their released tool [Khan�r et al. 2022].

Although the idea of DAN is general, we implemented and evaluated it on Java projects currently,
which may not represent the subjects under other programming languages. This is a potential
threat in our study, and we discussed it in detail in Section 5.4. Our decision to �rst focus on Java
projects was in�uenced by the high-impact study conducted by Ray et al. [Ray et al. 2016] and
Khan�r et al. [Khan�r et al. 2022], which were also carried out on Java projects. This choice allows
for more direct comparison between our study and the existing work.

We conducted all the experiments on a server with Intel(R) Xeon(R) Silver 4214 @ 2.20GHz CPU,
256GB memory, and Ubuntu 18.04 operating system.

4.1 RQ1: E�ectiveness Comparison on Distinguishing Natural and Unnatural Code
4.1.1 Dataset. To answer RQ1, it is essential to create a collection of both natural code and
unnatural code. Here, we treated the code in the HumanEval-X dataset [Zheng et al. 2023], which
extends the widely-used HumanEval dataset [Chen et al. 2021b] to multiple languages (including the
Java version we focused on), as natural code. This dataset consists of 164 hand-written programming
problems and the corresponding answers, which has been widely used as the reference to evaluate
code quality [Athiwaratkun et al. 2022; Nijkamp et al. 2022; Touvron et al. 2023; Zheng et al. 2023].
In HumanEval-X, 34.99% of statements are dependent on other statements and each dependency
sequence involves 7 statements on average. The code in HumanEval-X is meticulously crafted by
experienced developers and has been recognized as high-quality code [Athiwaratkun et al. 2022;
Zheng et al. 2023]. Hence, this dataset is suitable as natural code in this experiment.
We then constructed the corresponding unnatural code from each piece of natural code in

HumanEval-X. Speci�cally, we implemented a set of semantic-preserving transformation rules
for de-naturalizing code following the existing work [Chakraborty et al. 2022; Patra and Pradel
2021]. By applying them to a piece of natural code, we can obtain a set of unnatural but equivalent
code. The reasons for obtaining unnatural code in this way are two-fold: (1) There is no existing
open-source dataset of unnatural code to our best knowledge; (2) Such a way can control the
di�erence between each pair of natural code and unnatural code, which can help evaluate the
ability of distinguishing natural code and unnatural code more purely by keeping the remaining
part of code the same (except the de-naturalized part of code).

In total, we implemented three equivalent transformation rules to de-naturalize code. The general
idea of these rules is to transform frequently-encountered natural code that developers can typically
write, into the synthetic unnatural form. The existing studies [Casalnuovo et al. 2020a,b] have
demonstrated that the de-naturalized code with these transformation rules is more challenging
to read and understand. We used an example shown in Figure 3 to facilitate illustrating the three
rules in the following:
Dead Code Insertion: It inserts a block of dead code that will never be executed at random

positions in the original code. To ensure the property of dead code, the inserted block is a loop or

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 354. Publication date: October 2024.



354:10 Chen Yang, Junjie Chen, Jiajun Jiang, and Yuliang Huang

1 public int getMax(int[] arr) 
2 {
3 int len = arr.length;
4 int max = arr[0];
5 int i = 0;
6 while (i < len) {
7 if (arr[i] > max) {
8 max = arr[i];
9 }
10 i++;
11 }
12 return max;
13 }
14
15
16

(a) Original code

public int getMax(int[] arr) 
{

int len = arr.length;
int max = arr[0];
int i = 0;
while (i < len) {

while (i != i) {
max = arr[i];

}
if (arr[i] > max) {

max = arr[i];
}
i++;

}
return max;

}

(b) Dead Code Insertion

1 public int getMax(int[] arr) 
2 {
3 int len = arr.length;
4 int max = arr[0];
5 int i = 0;
6 while (i < len) {
7 if (arr[i] > max) {
8 max = arr[i];
9 }
10 for (int j=0; j<len;) {
11 j += 1;
12 }
13 i++;
14 }
15 return max;
16 }

(c) Confusing Code Insertion

public int getMax(int[] VAL_1) 
{

int len = VAL_1.length;
int max = VAL_1[0];
int i = 0;
while (i < len) {

if (VAL_1[i] > max) {
max = VAL_1[i];

}
i++;

}
return max;

}

(d) Variable Renaming

Fig. 3. Examples of de-naturalization

branch block, which is guarded by an unsatis�able condition (e.g., a variable is not equal to itself).
The content in the branch or loop body is the statements transplanted from the original code. As
shown in Figure 3b, a while loop with an identically-false condition is inserted at Lines 7-9.

Confusing Code Insertion: It inserts a block of code, which can be executed without altering
the original functionality, at random positions in the natural code. Speci�cally, the inserted block
is a loop that can be executed several times and the content in the loop body is a statement with
increment or decrement operation on a variable. For example, it inserts a for loop that can be
executed without altering the original functionality at Lines 10-12 as shown in Figure 3c.
Variable Renaming: It renames variables to VAR_i (an unnatural name). When renaming a

variable, we analyze the data-�ow of this variable and rename all the occurrences of this variable
in the original code. For example, we rename the variable arr in Figure 3a to VAL_1 in Figure 3d.
For each piece of natural code in HumanEval-X, we applied a transformation rule to create

four distinct unnatural versions, each exhibiting di�erent degrees of de-naturalization. They are
produced based on :-order (k={1,2,3,4}) transformation with a speci�c transformation rule (applying
the transformation rule : times to the piece of natural code), respectively. Consequently, we crafted
four sets of unnatural code per transformation rule from HumanEval-X, accumulating 12 sets across
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Table 1. E�ectiveness on distinguishing natural and unnatural code

Method Dead Code Insertion Confusing Code Insertion Variable Renaming

1 2 3 4 1 2 3 4 1 2 3 4

DANngram 12.17% 19.08% 23.53% 26.26% 24.86% 38.76% 46.88% 53.24% 17.70% 30.12% 42.23% 48.45%
DANngram(n=2) 11.30% 18.01% 22.50% 25.29% 24.68% 38.11% 46.31% 53.72% 17.65% 30.21% 42.16% 48.05%
Ngram-NT 7.96% 14.05% 19.95% 22.82% 17.96% 29.46% 37.60% 42.97% 9.13% 19.09% 25.12% 31.72%
CSNngram 8.58% 10.66% 15.39% 15.80% 19.88% 31.05% 37.85% 43.40% 14.18% 20.29% 32.85% 35.96%
CSN-subngram 10.06% 16.66% 20.39% 25.33% 17.44% 25.87% 34.16% 38.78% 6.77% 14.30% 18.78% 26.13%

DANcodebert 9.46% 10.11% 13.20% 13.75% 19.37% 30.41% 32.43% 32.68% 14.83% 26.28% 35.65% 37.87%
DANcodebert (n=2) 8.90% 9.62% 11.15% 12.87% 8.48% 15.51% 18.28% 16.05% 10.72% 17.56% 32.75% 36.85%
CodeBERT-NT 7.90% 5.25% 7.61% 7.06% 2.02% -0.25% 0.35% 0.74% 10.59% 15.70% 29.49% 35.91%
CSN-subcodebert 9.35% 13.50% 10.79% 14.66% 10.33% 8.26% 6.59% 5.91% 10.28% 18.43% 28.37% 28.96%

three distinct rules. This comprehensive collection of data is instrumental in assessing how well
di�erent methods can distinguish natural code and its unnatural counterparts with di�erent degrees
of de-naturalization. Note that we did not use loop transformation and block/operation-swap
transformation in the existing work [Chakraborty et al. 2022], since they cannot guarantee the
transformed code is really unnatural (e.g., changing a==b to b==a). Regarding these two rules, code
naturalness and readability can be retained to a large extent since they retain structural information
to a large extent and all textual semantics without changing identi�ers.

4.1.2 Metrics. To evaluate the ability of distinguishing natural code and unnatural code for each
method of measuring code naturalness, we �rst measured the naturalness of each piece of natural
code and the corresponding unnatural code transformed from it in each set of unnatural code.
For ease of presentation, we denote the naturalness of the original natural code as Naturalness=
and denote that of the corresponding unnatural one as NaturalnessD . Then, we measured the
normalized di�erence in naturalness between each pair of natural and unnatural code: di� =
NaturalnessD�Naturalness=

Naturalness= . The di�erence provides insights into how distinctly a method can capture
changes in code naturalness, re�ecting its sensitivity to a large extent. Also, larger di�erences
provide higher con�dence to trust measure results to some degree. If a piece of code becomes
unnatural after (slight) code changes during evolution, the measure with higher sensitivity is more
e�ective to identify it.

4.1.3 Results and Analysis. Table 1 shows the comparison e�ectiveness of DANngram v.s. Ngram-NT
and DANcodebert v.s. CodeBERT-NT in distinguishing natural code and unnatural code produced by
di�erent orders of transformation with di�erent rules. For each set of unnatural code, we presented
the average normalized di�erence values and put all the detailed results at our project homepage.
From Table 1, we found that DANngram outperforms Ngram-NT, and DANcodebert outperforms
CodeBERT-NT across di�erent degrees of unnatural code produced by di�erent transformation
rules. Speci�cally, DANngram improves upon Ngram-NT by an average of 41.82%, while DANcodebert
improves upon CodeBERT-NT by an average of 13.41 times, in terms of average normalized
di�erence values across all the 12 sets of unnatural code constructed from the set of natural code.
In particular, CodeBERT-NT even incorrectly identi�es unnatural code as being more natural in
one case (i.e., the average normalized di�erence value is negative), whereas DANcodebert avoids
such misjudgments. The results demonstrate the superiority of DAN in distinguishing natural
and unnatural code regardless of the used statistical models. In particular, we performed a paired
sample Wilcoxon signed-rank test [Woolson 2007] at the signi�cant level of 0.05 to further con�rm
the superiority of DAN over the state-of-the-art counterparts in statistics by obtaining the p-values
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all smaller than 0.05. The e�ect size between DANngram/DANcodebert and Ngram-NT/CodeBERT-NT
is 0.36 and 0.65.

Moreover, the results also demonstrate that DANngram outperforms CSN-subngram and DANcodebert
outperforms CSN-subcodebert in the vast majority of cases. On average, DANngram shows an improve-
ment of 58.65% over CSN-subngram, and DANcodebert shows an average improvement of 136.75% over
CSN-subcodebert, in terms of average normalized di�erence values. In additional, DANngram always
performs better than CSNngram. For di�erent n values, DAN with n=3 outperforms that with n=2 in
the vast majority of cases, but the latter still signi�cantly outperforms the baselines. The results not
only con�rm the contribution of relatively broad dependency information compared to the local
context information incorporated by CSN-sub, but also con�rm the poor performance of directly
treating the code as a whole sequence due to incurring too much noise (even though including all
dependency information), demonstrating the importance of incorporating code dependency in a
reasonable manner for measuring code naturalness (like DAN).

Here, we noticed that CodeBERT-based methods (DANcodebert and CodeBERT-NT) perform worse
than n-gram-based methods (DANngram and Ngram-NT) in many cases. The reason may be that
CodeBERT was pre-trained on extensive open-source projects, which may not work well on our
datasets constructed with minimal de-naturalization, while the cached n-gram model considers
localness well.

We also constructed four sets of unnatural code by mixing the three rules for :-order (k={1,2,3,4})
transformation on each piece of natural code for more su�cient evaluation. Speci�cally, we ran-
domly selected a rule from the three for each transformation. All the conclusions are consistent
with the above ones. Due to the space limit, we put the detailed results at our project homepage.

Finding 1: Incorporating code dependency for measuring code naturalness with DAN
achieves a stronger ability of distinguishing natural and unnatural code than the state-of-the-
art Ngram-NT and CodeBERT-NT methods that isolate each code line for measuring code
naturalness. The code dependency extraction strategy contribute to the overall e�ectiveness
of DAN compared to the intuitive methods of treating code as a whole sequence.

4.2 RQ2: E�ectiveness Comparison on Buggy Line Prioritization
As demonstrated by the existing studies [Jiang et al. 2022; Ray et al. 2016], buggy code lines often
exhibit worse naturalness than non-buggy lines. Therefore, code naturalness has been used to
identify buggy lines for early inspection in order to improve the e�ciency of software develop-
ment and maintenance [Khan�r et al. 2022; Yan et al. 2020]. In this RQ, we investigated whether
incorporating code dependency into measuring code naturalness with DAN can help improve the
e�ectiveness of buggy line prioritization.

Note that we do not aim to compete with the state-of-the-art static bug �nders and fault localiza-
tion techniques, but use this downstream application to demonstrate the superiority of DANngram
over Ngram-NT and DANcodebert over CodeBERT-NT.

4.2.1 Datasets. To answer RQ2, we collected all the datasets used for buggy line prioritization
from the existing studies [Jiang et al. 2022; Khan�r et al. 2022], i.e., Defects4J [Just et al. 2014],
GrowingBugs [gro 2023], and SmartSHARK [Herbold et al. 2020]. Note that we are the �rst to
use all the three datasets for evaluating code naturalness measures in the scenario of buggy line
prioritization. Each dataset contains a collection of real-world bugs from di�erent Java projects. In
total, we used 1,346 real-world bugs in this experiment, including 614 bugs from Defects4J, 324
bugs from GrowingBugs, and 368 bugs from SmartSHARK. Across all three datasets, 27.22% of
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Table 2. E�ectiveness on buggy line prioritization

Method Defects4j GrowingBugs SmartSHARK
20% 40% 60% 80% 100% MRR 20% 40% 60% 80% 100% MRR 20% 40% 60% 80% 100% MRR

DANngram 0.133 0.240 0.333 0.406 0.474 0.118 0.155 0.259 0.344 0.425 0.499 0.178 0.194 0.356 0.491 0.592 0.667 0.129
DANngram(n=2) 0.132 0.239 0.333 0.406 0.474 0.117 0.152 0.256 0.343 0.424 0.498 0.177 0.181 0.343 0.483 0.585 0.662 0.126
Ngram-NT 0.105 0.192 0.277 0.356 0.433 0.111 0.135 0.228 0.324 0.408 0.485 0.174 0.151 0.309 0.450 0.565 0.649 0.125
CSN-subngram 0.095 0.166 0.237 0.311 0.392 0.081 0.118 0.193 0.270 0.347 0.433 0.118 0.097 0.181 0.274 0.381 0.489 0.075

DANcodebert 0.066 0.126 0.185 0.240 0.309 0.099 0.064 0.131 0.190 0.255 0.331 0.130 0.115 0.206 0.290 0.362 0.440 0.128
DANcodebert (n=2) 0.065 0.121 0.180 0.239 0.306 0.096 0.059 0.117 0.181 0.251 0.329 0.126 0.098 0.182 0.269 0.347 0.429 0.112
CodeBERT-NT 0.050 0.089 0.136 0.188 0.263 0.081 0.056 0.102 0.156 0.215 0.294 0.114 0.082 0.147 0.208 0.285 0.373 0.107
CSN-subcodebert 0.061 0.116 0.177 0.236 0.307 0.086 0.058 0.112 0.178 0.245 0.323 0.089 0.098 0.184 0.269 0.347 0.429 0.105

statements are dependent on others and each dependency sequence involves 25 statements per
�le. We discarded the bugs with compilation errors since the underlying tool (i.e., Soot) extracts
code dependency at the Jimple code. The main reason lies in that many bugs from SmartSHARK
are very old and thus it is di�cult for them to restore the environment and dependency required
for compilation. Nevertheless, the number of bugs used in our study is the largest among all the
existing studies on buggy lines prioritization [Jiang et al. 2022; Ray et al. 2016]. Each bug is equipped
with a buggy version and a bug-�xed version. Following the existing studies [Jiang et al. 2022;
Ray et al. 2016], we identi�ed the code lines in the buggy version that have either been deleted or
modi�ed in the bug-�xed version as buggy lines. The remaining lines in the same �les as buggy
lines are identi�ed as non-buggy lines.

4.2.2 Process. Following the existing work [Jiang et al. 2022; Yan et al. 2020], we applied Ngram-
NT and CodeBERT-NT to each line in the buggy �les for each bug, respectively. It measures the
naturalness of each line, and then prioritizes all the lines in the buggy �les as the descending
order of their measured naturalness scores. The lines with higher priorities are more likely to
be buggy. For DANngram and DANcodebert, we applied them to measure the naturalness of each
sequence that consists of multiple lines with dependencies and then prioritized all the sequences
in the buggy �les in the descending order, respectively. To break the tie for the lines within
each sequence, we prioritized them by measuring the naturalness of each of these lines same as
Ngram-NT/CodeBERT-NT.

4.2.3 Metrics. In this experiment, we adopted the widely-used metrics, i.e., RAUC-k (Raw Area
Under the Curve) andMRR (Mean Reciprocal Rank), following the existing studies on prioritization
tasks [Chen et al. 2023; Wang et al. 2021b; Yang et al. 2023]. RAUC-k measures the e�ectiveness of a
prioritization technique for the �rst : results in a prioritized list [Wang et al. 2021b]. Speci�cally, it
transforms the prioritization result produced by a technique to a plot, where the x-axis represents the
number of prioritized lines and the y-axis represents the number of identi�ed buggy lines. Then, it
calculates the ratio of the area under the curve for a technique to that for the perfect prioritization. To
perform comprehensive comparison, we considered : to be 20%, 40%, 60%, 80%, 100% of the number
of prioritized lines, respectively. MRR measures the e�ectiveness of a prioritization technique based
on its ability to rapidly identify the �rst correct result [Worster and Haines 2004]. Speci�cally,
MRR treats each buggy �le as a query and computes the reciprocal of the rank of the �rst correctly
identi�ed buggy line for each query, and then averages these reciprocal ranks across all queries to
measure the prioritization e�ectiveness. Larger RAUC-k and MRR values mean better prioritization
results, indicating better e�ectiveness of measuring code naturalness in the application of buggy
line prioritization.

4.2.4 Results and Analysis. Table 2 shows the comparison results in terms of average RAUC-k and
MRR across all bugs in each dataset. Due to the space limit, we put the detailed results on each bug
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by each method of measuring code naturalness at our project homepage. From Table 2, DANngram
outperforms Ngram-NT and DANcodebert outperforms CodeBERT-NT on all three datasets in terms of
all the metrics. For example, on average across all three datasets, DANngram/DANcodebert achieves an
improvement of 14.81%⇠28.48%/14.29%⇠40.24% over Ngram-NT/CodeBERT-NT in terms of RAUC-
20% and 2.30%⇠6.31%/14.04%⇠22.22% in terms of MRR. In particular, the improvements of DANngram
over Ngram-NT and DANcodebert over CodeBERT-NT are larger when : is smaller, indicating that we
can identify buggy lines more e�ciently especially when the given inspection time is limited. The
results also show that DANngram/DANcodebert outperforms CSN-subngram/CSN-subcodebert respectively
in buggy line prioritization across all three datasets. For example, DANngram and DANcodebert improve
upon their CSN-sub counterparts by 31.36%⇠100.00% and 8.20%⇠17.35% respectively, across all
three datasets in terms of RAUC-20%. For di�erent n values, the results demonstrate that DAN
with n=3 consistently outperforms that with n=2, but the latter still signi�cantly outperforms the
baselines. Overall, the results show the stable and obvious superiority of DAN over the baselines
in identifying buggy lines among all code lines.
Furthermore, we performed a paired sample Wilcoxon signed-rank test [Woolson 2007] at the

signi�cance level of 0.05 to check whether each metric value achieved by DANngram/DANcodebert
is signi�cantly better than that of Ngram-NT/CodeBERT-NT in statistics. We found that all the
p-values are smaller than 0.05 and the e�ect size between DANngram/DANcodebert and Ngram-
NT/CodeBERT-NT is 0.33/0.55 in terms of MRR across the three datasets, further con�rming the
superiority of DAN.

Finding 2: Incorporating code dependency for measuring code naturalness with DAN
can more e�ectively identify buggy lines from all the code lines than the state-of-the-art
Ngram-NT and CodeBERT-NT, demonstrating that DAN provides more accurate measure
for code naturalness in the application of buggy line prioritization.

4.3 RQ3: E�ectiveness Comparison on Training Data Cleansing
Code generation holds great promise in automating various aspects of software development
and the naturalness (such as readability and maintainability) of generated code is an important
property (besides the widely-watched performance metric – functionality correctness of generated
code) [Austin et al. 2021]. Cleansing training data with code naturalness measure (such as DAN) is a
potential way of building the code generation models ensuring this property. Moreover, the existing
work has indicated that small-scale high-quality training data can achieve performance levels in
code generation that are comparable to models trained on larger datasets [Gunasekar et al. 2023].
Indeed, sampling training data with high code naturalness can also ensure the high quality of data
to a large extent due to guaranteeing syntactic correctness as well, and thus such a data cleansing
strategy will not damage code generation performance too much. In this RQ, we investigated
whether cleansing training data by emphasizing code naturalness with DAN (compared to the
state-of-the-art Ngram-NT and CodeBERT-NT) can lead to better models that generate code with a
more natural and readable structure without sacri�cing overall code generation performance.

4.3.1 Datasets. To answer RQ3, our subjects include the models and datasets for code generation.
Here, we cleansed training data in each dataset, and then trained or �ned-tuned each model based
on the cleansed data, in order to build a better model. In the study, we used two pre-trained code
generation models, i.e., CodeGen-Multi [Nijkamp et al. 2022] and GPT-2 [Radford et al. 2019], as
the target models due to the availability, popularity, and reasonable training cost. Moreover, we
used APPS [Hendrycks et al. 2021] and HumanEval-X [Zheng et al. 2023] as the datasets, which has
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been widely used in the task of code generation [Le et al. 2022; Nijkamp et al. 2022; Zan et al. 2022a;
Zhang et al. 2023; Zheng et al. 2023]. HumanEval-X has been introduced in Section 4.1, for which
we randomly sampled 90% of data as training data and regarded the remaining data as test data.
APPS consists of 10,000 programming problems gathered from various open-access programming
websites. It has been o�cially divided into training and test data, each of which contains 5,000
programming problems. These problems are categorized into three levels according to their degrees
of di�culty. Following the existing work [Olausson et al. 2023], we randomly sampled 300 problems
from the APPS test set according to the original distribution of the three levels, in order to balance
evaluation cost and conclusion generality. As the current implementation of DAN is for Java code,
we used the Java versions of HumanEval-X and APPS. The former is provided by the existing
work [Zheng et al. 2023], while the latter is constructed by us with the aid of ChatGPT [ope 2023].
In the Java version of APPS, 57.95% of statements are dependent on other statements and each
dependency sequence involves 3 statements on average. We also released the Java version of APPS
at our project homepage for future research.

4.3.2 Process. For each dataset, we �rst measured the naturalness of each training code snippet by
each method, and ranked all the training code snippets in the ascending order of the measured
naturalness scores. Then, we selected top-50% training data as the cleansed data, which are used
to �ne-tune each pre-trained model. In this way, a �ne-tuned model is built based on cleansed
training data by each method of measuring code naturalness.
For su�cient comparison, we also used all training data in each dataset without cleansing to

�ne-tune each pre-trained model. Besides, we included a baseline, which randomly selected 50%
training data from each dataset to �ne-tune each pre-trained model. In total, for a pair of dataset
and pre-trained model, we obtained six �ne-tuned models, among which two models are based
on the cleansed training data by Ngram-NT and DANngram, two models are based on the cleansed
training data by CodeBERT-NT and DANcodebert, one model is based on randomly sampled training
data, and one model is based on all training data. For the former �ve, the size of cleansed training
data for model �ne-tuning is the same (i.e., 50% of the whole training data) for fair comparison. The
�ne-tuning process follows the common practice in the existing work [Chen et al. 2021a; Yan et al.
2023]. Finally, we compared the performance of these models on the test data in the corresponding
dataset. Note that we did not cleanse test data to avoid the over�tting issue.

4.3.3 Metrics. We measured the performance of �ne-tuned models using two metrics: Code-
BLEU [Ren et al. 2020] and AvgPassRatio (Average Pass Ratio) [Tian and Chen 2023]. CodeBLEU
measures the textual similarity between generated code and ground-truth code by considering
both syntax match (the proportion of matched subtrees between their ASTs) and data�ow match
(the proportion of matched def-use edges in their data�ow graphs). Since the ground-truth code
is meticulously crafted by developers, CodeBLEU can help measure the readability of generated
code. That is, higher CodeBLEU scores mean that the generated code looks more similar to the
developer-written ground truth, indicating higher readability of generated code to a large extent. It
is also possible that the generated code is signi�cantly di�erent from the ground-truth code but is
also natural and readable. For these cases, CodeBLEU could produce false negatives. However, we
did not �nd such cases by manually analyzing a small set of data via random sampling. Indeed,
CodeBLEU’s e�ectiveness in measuring readability has been demonstrated by numerous stud-
ies [Ren et al. 2020; Yan et al. 2023; Yang et al. 2024c]. Therefore, the threat from CodeBLEU may be
not serious. Currently, it is still an open challenge to design an automated metric that can entirely
eliminate false negatives in terms of readability [Zan et al. 2022b], which can be regarded as our
future work. Even though CodeBLEU has been also used to measure code generation performance,
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Table 3. CodeBLEU e�ectiveness on training data cleansing

Method HumanEval-X APPS
CodeGen GPT-2 CodeGen GPT-2

All 0.43 0.14 0.34 0.33
Random 0.40 0.07 0.33 0.32

Ngram-NT 0.37 0.17 0.34 0.32
DANngram 0.46 0.21 0.37 0.37

CodeBERT-NT 0.47 0.14 0.40 0.31
DANcodebert 0.49 0.20 0.42 0.35

some recent work has pointed out its limitation in this aspect [Roy et al. 2021], and thus we just
used it to measure code readability.
Besides, we used AvgPassRatio to measure code generation performance (the functionality

correctness of generated code). AvgPassRatio �rst calculates the ratio of passing test cases to all
executed test cases on each piece of generated code, and then calculates the average ratio across
the entire test set. Larger AvgPassRatio values mean better code generation performance.

4.3.4 Results and Analysis. Table 3 shows the CodeBLEU score of each �ne-tuned model based on
di�erent sets of (cleansed) training data for each pair of pre-trained model and dataset, respectively.
Row “All” presents the result of each �ne-tuned model based on all training data in each dataset.
The last �ve rows present the results of each �ne-tuned model based on the cleansed training data
in each dataset by �ve di�erent methods, respectively.

FromTable 3, the �ne-tunedmodels with the aid of DAN can generate codewith higher readability
(measured by CodeBLEU) than those based on all training data, demonstrating the importance
of cleansing training data for model building. This aligns with the existing work [Chakraborty
et al. 2022; Gunasekar et al. 2023], reinforcing the conclusion that training with natural code
can enhance the readability of generated code. However, random sampling cannot achieve better
model performance than using all training data on all the subjects, highlighting the necessity of
designing e�ective data cleansing methods. Notably, DANngram achieves an average improvement of
18.08% over Ngram-NT in facilitating generating natural code, and DANcodebert achieves an average
improvement of 16.25% over CodeBERT-NT, across all the subjects.
Furthermore, both DANngram and DANcodebert do not make their �ne-tuned models sacri�ce

overall code generation performance. In terms of AvgPassRatio, their �ne-tuned models even
slightly improve the code generation performance by 0.90%⇠8.66% over the �ne-tuned models with
all training data and 0.12%⇠6.85% over the �ne-tuned models with randomly sampled training data.
However, both Ngram-NT and CodeBERT-NT make at least one �ne-tuned models perform worse
than �ne-tuning with all training data or randomly sampled training data in terms of AvgPassRatio.
The results demonstrate the superiority of DAN over the state-of-the-are methods of measuring
code naturalness in cleansing training data for building better models, which can generate more
natural code without damaging the overall functionality correctness of the generated code.

Finding 3: Incorporating code dependency for measuring code naturalness with DAN can
more e�ectively cleanse training data for building better models (that generate more natural
code without sacri�cing overall code generation performance), which outperforms the
data cleansing methods with the state-of-the-art Ngram-NT and CodeBERT-NT, random
sampling, and the way of using all training data.
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Table 4. E�ectiveness comparison between DAN and its variant w/o sub path (SP) in distinguishing unnatural
code

Transformation Rules DAN=6A0< w/o SP DAN=6A0<

Dead Code Insertion 12.50% 20.26%
Confusing Code Insertion 24.99% 40.94%
Variable Renaming 33.54% 34.63%

Table 5. E�ectiveness of DAN with more advanced statistical models

Transformation Rules CodeLlama DAN⇠>34!;0<0

Dead Code Insertion 2.64% 5.19%
Confusing Code Insertion 5.32% 7.09%
Variable Renaming 2.85% 10.83%

5 Discussion
5.1 Contribution of Sub-path Extraction
As presented in Section 3, one important component in DAN is to extract n-node sub-paths from each
complete path for facilitating the measure of code naturalness. Here, we conducted an experiment
to empirically evaluate the contribution of this component by comparing DANngram with its variant
without this component. Speci�cally, this variant transforms a complete path (instead of a sub-path)
into a sequence of code lines for naturalness measure. We repeated the experiment of RQ1 based
on DANngram and this variant. Table 4 presents the comparison results between them in terms of
the average normalized di�erence values. The results demonstrate that DANngram signi�cantly
outperforms the variant of DANngram without the sub-path extraction component in distinguishing
natural code and unnatural code. The average improvement of DANngram over this variant is 56.59%
in terms of average normalized di�erence values across all the 12 cases. The results con�rm the
contribution of the sub-path extraction component in DANngram.

5.2 E�ectiveness of DAN with More Advanced Statistical Models
As discussed before, our DAN idea can be generally applied independently of the used statistical
model. In our study, we chose the cached n-gram model and the pre-trained CodeBERT model
as the underlying statistical model in DAN for evaluation, respectively. This is because there
are existing studies that proposed the corresponding methods of measuring code naturalness
using the two models. Here, we further investigated whether integrating a more advanced large
language model in DAN can also outperform the corresponding method of directly using the large
language model to measure code naturalness of each line, which can be helpful to further con�rm
the generalizability of DAN and the orthogonality between our DAN idea and the underlying
statistical models. Speci�cally, we used the CodeLlama-13b-hf model [Roziere et al. 2023] as the
representative large language model for investigation. Accordingly, we constructed the instantiation
DANCodeLlama and the baseline CodeLlama-NT (which employs CodeLlama-13b-hf to measure code
naturalness of each line individually). We repeated the experiment of RQ1 based on DANCodeLlama
and CodeLlama-NT. Table 5 presents the comparison results between them in terms of the average
normalized di�erence values. The results demonstrate that DANCodeLlama outperforms CodeLlama-
NT in distinguishing natural and unnatural code, achieving an average improvement of 1.24 times
across all 12 cases in terms of average normalized di�erence values. These results further con�rm the
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generalizability of DAN, demonstrating its consistent enhancement on code naturalness measure
regardless of the underlying statistical models.

5.3 Future Work
Although DAN does not necessarily achieve state-of-the-art performance on the two downstream
applications as our primary goal is to demonstrate the superiority of DANngram over Ngram-NT
and DANcodebert over CodeBERT-NT, future work could explore how DAN can be integrated with
state-of-the-art methods to enhance their e�ectiveness. For example, in the scenario of buggy
line prioritization, spectrum-based fault localization (SBFL) is a state-of-the-art method for buggy
line prioritization based on test coverage. However, SBFL su�ers from the tie problem [Li et al.
2019], where lines within the same block are given the same priority. DAN could address this issue
by distinguishing between lines that belong to di�erent sub-paths, thereby breaking ties in SBFL
and potentially improving its accuracy. In the scenario of training data cleansing, code evaluation
involves multiple dimensions, such as syntactic validity, semantic correctness, and naturalness.
While state-of-the-art cleansing methods focus primarily on validity and diversity [Gunasekar
et al. 2023; Guo et al. 2024], DAN o�ers a complementary approach by enhancing code naturalness,
which could lead to more comprehensive improvements in code-generation performance.

Moreover, the model-agnostic nature of DAN presents opportunities for further exploration
across a broader range of models and tasks, such as code recommendation or code retrieval. DAN
is also suitable to distinguish LLM-generated and human-written code as a more precise measure
in code naturalness, since the recent work [Xu and Sheng 2024] indicates that slight alterations to
LLM-generated code typically cause higher perplexity to the model, making the code appear more
unnatural. This further exploration could reveal whether DAN can serve as a static analysis way
to address nonlinearities in tasks involving code, in contrast to approaches that rely on learning
nonlinear context.
Currently, DAN depends on PDGs, which have scalability limitations. Future research could

focus on alleviating scalability challenges. Additionally, DAN has been built on the assumption that
naturalness has to be line-level, and implemented on Java, with some experiments conducted on
the relatively small HumanEval dataset. In the future, we plan to evaluate DAN on a more diverse
set of subjects, including di�erent granularities, programming languages, and datasets.

5.4 Threats to Validity
The internal threat mainly arises from the implementation of DAN and the compared techniques.
To reduce this threat, we conducted thorough code review and replicated the original results of
Ngram-NT in its original study based on our re-implementation [Ray et al. 2016].
The threat to external validity mainly lies in the subjects used. As presented in Section 4, we

implemented and evaluated DAN on Java code, which may not represent the subjects under other
programming languages. In fact, the idea of DAN is general and can be implemented to the code
written in other programming languages, as long as there is a program analysis tool supporting the
extraction of code dependency as DAN. In the future, we will extend and evaluate DAN on a more
diverse set of subjects, encompassing di�erent programming languages, to reduce this threat.
The threats to construct validity mainly lie in the randomness involved in our study, i.e., the

construction of unnatural code in RQ1 and the baseline of randomly sampling training data in
RQ3, the setting of = in the sub-path extraction component, and the metrics. For the �rst kind of
randomness, we used each transformation rule to construct four pieces of unnatural code with
di�erent degrees of de-naturalization from each piece of natural code. Such an extensive dataset
can help reduce this threat. For the second kind of randomness, we repeated the experiment �ve
times and calculated the average results. For the second threat, we set = to 3 following the existing
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study [Rahman et al. 2019]. In the future, we will investigate the in�uence of this parameter to
further reduce this threat. For the last threat, we have employed the widely-used metrics by
following previous studies [Chen et al. 2023; Ren et al. 2020; Tian and Chen 2023; Wang et al.
2021b; Yang et al. 2023]. In fact, we also analyzed the overhead of our technique by taking Defects4j
(real-world Java projects) as the representative benchmark. On average, the time spent on extracting
dependencies and sub-paths by DAN is just 3s per �le. The time spent on measuring naturalness
per �le by DAN=6A0</DAN2>3414AC /Ngram-NT/CodeBERT-NT is 0.0099s/0.0283s/0.0049s/0.0209s.
Overall, the overhead of DAN is acceptable especially when considering its signi�cant e�ectiveness.

6 Related Work
In the literature, there are some existing methods of measuring code naturalness [Hindle et al. 2012;
Ray et al. 2016; Tu et al. 2014], which are very relevant to our work. Besides the state-of-the-art
Ngram-NT [Ray et al. 2016] and CodeBERT-NT [Khan�r et al. 2022] that have been presented
in Section 2 and compared in our study, there are some other methods, upon which Ngram-NT
are designed. For example, Hindle et al. [Hindle et al. 2012] applied the n-gram model and cross
entropy to measure code naturalness. Tu et al. [Tu et al. 2014] incorporated a cache model to exploit
localness of source code for measuring code naturalness more precisely. Our work goes beyond the
per-line measure for code naturalness and incorporates code dependency to improve the precision
of measuring code naturalness.

Code naturalness has been utilized for several software engineering applications [Ray et al. 2016;
Tu et al. 2014; Yan et al. 2020], such as buggy line prioritization and training data cleansing as
evaluated in Section 4. Besides, Raychev et al. [Raychev et al. 2014] used the naturalness of code
APIs to build the language model for code completion. Allamanis et al. [Allamanis et al. 2014]
learned the style of a codebase and utilized software naturalness to suggest revisions for improving
stylistic consistency. Dantas et al. [Dantas et al. 2019] proposed to assist search space exploration in
program repair using code naturalness. YAN et al. [Yan et al. 2020] proposed a just-in-time defect
prediction framework based on code naturalness. Di�erent from them, our work investigated the
contribution of incorporating code dependency for code naturalness measure by designing DAN
and improved the e�ectiveness of several naturalness applications. In the future, we will improve
the e�ectiveness of more naturalness applications based on DAN.
There are also some empirical studies on code naturalness [Jiang et al. 2022; Rahman et al.

2019]. Rahman et al. [Rahman et al. 2019] conducted an investigation into the impact of syntax
tokens on naturalness measure and explored how di�erent code representations exhibit di�erent
levels of repetition, which prompts a suggestion for future research to concentrate on new code
representations for code naturalness. However, they did not involve developing new methods
to improve the measure of code naturalness, which contrasts with our method of utilizing code
dependency to achieve it. Jiang et al. [Jiang et al. 2022] conducted an extensive study to investigate
the naturalness of buggy, non-buggy, and bug-�xing code, and con�rmed that buggy code are less
natural. Di�erent from this work, we investigated whether incorporating code dependency can
improve the measure of code naturalness and thus facilitate the downstream applications.

Some studies have looked at leveraging code dependencies for the tasks related to code embedding,
such as the pre-trained GraphCodeBERT [Guo et al. 2020] and GraphCode2Vec models [Ma et al.
2022]. Di�erent from them, our work aims to investigate the in�uence of code dependency on code
naturalness measure, which can be regarded as a basis for these tasks.
Code naturalness is also related to code smell, since there is often a correlation between lower

code naturalness and the presence of code smell. Code that is less natural tends to be harder to
understand and maintain, which can lead to the introduction of code smells. For example, complex
or convoluted code structures, poor naming conventions, and inconsistent formatting can all
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contribute to decreased naturalness and increase the likelihood of code smells. Conversely, code
that exhibits higher naturalness, with clear and concise structure, meaningful variable names, and
consistent formatting, is generally less prone to containing code smells. However, it is important to
note that while there is a correlation, it is not a strict rule, code may lack naturalness due to factors
such as complex logic, tight constraints, or specialized requirements, rather than due to inherent
issues like code smells. Conversely, code that appears natural and readable may still contain code
smells if certain design or implementation choices introduce ine�ciencies or make maintenance
di�cult. In essence, while naturalness can be an indicator of code quality, it does not guarantee the
absence or presence of code smell, and vice versa. Both aspects should be considered independently.

7 Conclusion
In this work, we have conducted the �rst empirical study to investigate whether incorporating code
dependency, instead of isolating each code line like existing methods, can improve the precision of
measuring code naturalness. To achieve that, we �rst proposed a reasonable yet general method
named DAN for incorporating the rich code dependency information in measuring code naturalness.
The evaluation results of DAN in three emerging applications of code naturalness demonstrate
that the code dependency information is signi�cant in measuring code naturalness, encouraging
more future research on it.
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We released our artifact and experimental data for replication and practical use [Yang et al. 2024a].
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