Fuzzing MLIR Compiler Infrastructure via Operation
Dependency Analysis

Chenyao Suo
College of Intelligence and
Computing, Tianjin University
Tianjin, China
chenyaosuo@tju.edu.cn

Jiajun Jiang
College of Intelligence and
Computing, Tianjin University
Tianjin, China
jlangjiajun@tju.edu.cn

Abstract

MLIR (Multi-Level Intermediate Representation) compiler infras-
tructure has gained widespread popularity in recent years. It intro-
duces dialects to accommodate various levels of abstraction within
the representation. Due to its fundamental role in compiler con-
struction, it is critical to ensure its correctness. Recently, a grammar-
based fuzzing technique (i.e., MLIRSmith) has been proposed for it
and achieves notable effectiveness. However, MLIRSmith generates
test programs in a random manner, which restricts the exploration
of the input space, thereby limiting the overall fuzzing effective-
ness. In this work, we propose a novel fuzzing technique, called
MLIRod. As complicated or uncommon data/control dependencies
among various operations are often helpful to trigger MLIR bugs, it
constructs the operation dependency graph for an MLIR program
and defines the associated operation dependency coverage to guide
the fuzzing process. To drive the fuzzing process towards increas-
ing operation dependency coverage, MLIRod then designs a set
of dependency-targeted mutation rules. By applying MLIRod to
the latest revisions of the MLIR compiler infrastructure, it detected
63 previously unknown bugs, among which 38/48 bugs have been
fixed/confirmed by developers.

CCS Concepts
« Software and its engineering — Software testing and debug-
ging.

Keywords

Compiler Fuzzing, MLIR Compiler Infrastructure, Test Program
Generation

*Junjie Chen is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ISSTA °24, September 16-20, 2024, Vienna, Austria

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0612-7/24/09

https://doi.org/10.1145/3650212.3680360

Junjie Chen*
College of Intelligence and
Computing, Tianjin University
Tianjin, China
junjiechen@tju.edu.cn

Yingquan Zhao
College of Intelligence and
Computing, Tianjin University
Tianjin, China
zhaoyingquan@tju.edu.cn

1287

Shuang Liu
School of Information, Renmin
University of China
Beijing, China
shuang liu@ruc.edu.cn

Jianrong Wang
College of Intelligence and
Computing, Tianjin University
Tianjin, China
wir@tju.edu.cn

ACM Reference Format:

Chenyao Suo, Junjie Chen, Shuang Liu, Jiajun Jiang, Yingquan Zhao, and Jian-
rong Wang. 2024. Fuzzing MLIR Compiler Infrastructure via Operation
Dependency Analysis. In Proceedings of the 33rd ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis (ISSTA "24), September
16-20, 2024, Vienna, Austria. ACM, New York, NY, USA, 13 pages. https:
//doi.org/10.1145/3650212.3680360

1 Introduction

MLIR is a novel compiler infrastructure for facilitating building
domain-specific compilers [24]. It not only provides a comprehen-
sive set of shared resources benefiting multiple domains simultane-
ously, but also introduces dialects (defining a number of operations)
to support multi-level IRs and facilitate their transformations. Its
rapid adoption and recognition in both academia and industry have
promoted extensive research works [33, 38, 48] and empowered
a spectrum of compilers targeting diverse domains, such as the
FORTRAN compiler Flang [1] and the DL compiler IREE [3]. Given
the fundamental role of the MLIR compiler infrastructure, ensuring
its correctness is of paramount importance. Specifically, numer-
ous domain-specific compilers are built upon this infrastructure,
and thus any bugs in it could potentially result in unexpected be-
haviors across all these empowered compilers. That is, the bugs
in the MLIR compiler infrastructure can have a broader impact
than the bugs in an individual compiler, and particularly the per-
niciousness of the latter has been emphasized by lots of existing
studies [8, 17, 27, 37, 42, 50]. Hence, the practical significance of
fuzzing the MLIR compiler infrastructure becomes self-evident.
MLIR exhibits unique characteristics, notably employing dialects
to handle multi-level IRs within the infrastructure and featuring
its proprietary data structure and semantics [24]. These distinctive
features make the existing compiler fuzzing techniques inapplicable
to the MLIR compiler infrastructure. Specifically, these techniques
are typically designed to generate high-level source programs as
test inputs for a specific compiler rather than the general com-
piler infrastructure, and also, they lack alignment in terms of data
structure and semantics with MLIR. Although the generated high-
level source programs can be transformed into MLIR programs by
corresponding frontends, such an indirect method limits test diver-
sity, which has been demonstrated ineffective in fuzzing the MLIR

https://orcid.org/0000-0001-5436-940X
https://orcid.org/0000-0003-3056-9962
https://orcid.org/0000-0001-8766-7235
https://orcid.org/0000-0003-1983-6572
https://orcid.org/0000-0003-2998-1052
https://orcid.org/0000-0002-8980-1634
https://doi.org/10.1145/3650212.3680360
https://doi.org/10.1145/3650212.3680360
https://doi.org/10.1145/3650212.3680360

ISSTA °24, September 16-20, 2024, Vienna, Austria

compiler infrastructure [39]. Recently, the first fuzzing technique
specific to the MLIR compiler infrastructure (called MLIRSmith)
has been developed, which randomly constructs MLIR programs
according to its grammars [39]. Indeed, it helped detect a number
of bugs, but such a random manner for generating test programs
limits the effectiveness in exploring the input space largely, thereby
limiting its test effectiveness.

In this work, we propose a novel fuzzing technique for the MLIR
compiler infrastructure, called MLIRod (MLIR fuzzing guided by
operation dependencies), to improve the test effectiveness. Specif-
ically, MLIRod utilizes the dependencies between operations to
guide the fuzzing process, instead of the random strategy. This
is because complicated or uncommon data/control dependencies
among various operations are often helpful to trigger MLIR bugs,
which is also confirmed by our preliminary manual investigation on
historical MLIR bugs. With this intuition, MLIRod first introduces
an operation dependency graph (ODG) and its associated operation
dependency coverage (OD coverage) for an MLIR program, and
employs this new type of coverage as the guidance of fuzzing. To
drive the fuzzing process towards increasing OD coverage, MLIRod
then elaborately designs a set of mutation rules to help construct
such high-quality MLIR programs, thereby enhancing the test ef-
fectiveness. In particular, OD coverage is measured in a black-box
manner, further improving the practicability of MLIRod.

We applied MLIRod to fuzz the latest version of the MLIR com-
piler infrastructure for 50 days. In total, MLIRod detected 63 previ-
ously unknown bugs, among which 38/48 bugs have already been
fixed/confirmed by MLIR developers. To further investigate the
effectiveness of MLIRod, we compared MLIRod with the state-of-
the-art MLIR fuzzing technique, i.e. MLIRSmith [39]. During 24-
hour fuzzing (with five repeated experiments), MLIRod detected
31 bugs, while MLIRSmith detected only 14 bugs. The former im-
proves the latter by 121.43% in terms of the number of detected bugs.
The results demonstrate the significant superiority of MLIRod over
MLIRSmith in fuzzing the MLIR compiler infrastructure. We also
confirmed the contribution of each main component in MLIRod
through extensive ablation experiments.

In summary, our work makes the following contributions:

e We design a new type of coverage (operation dependency
coverage) to measure MLIR program diversity in terms of
data and control dependencies among operations from oper-
ation dependency graphs.

e We propose a novel fuzzing technique for the MLIR com-
piler infrastructure (called MLIRod) by guiding the fuzzing
process with operation dependency coverage and a set of
dependency-targeted mutation rules.

e We conducted an extensive study to demonstrate the effec-
tiveness of MLIRod, outperforming the state-of-the-art MLIR
fuzzing technique. In particular, MLIRod detected 63 previ-
ously unknown bugs, among which 38/48 bugs have been
fixed/confirmed by developers.

2 Background and Motivation
2.1

The MLIR compiler infrastructure is a general framework that sup-
ports building diverse domain-specific compilers without creating

MLIR Compiler Infrastructure

Chenyao Suo, Junjie Chen, Shuang Liu, Jiajun Jiang, Yingquan Zhao, and Jianrong Wang

1288

a new Intermediate Representation (IR) with a single abstraction
for each domain. It achieves this by introducing dialects to sup-
port multi-level IR, and providing systematic passes that cater to a
broad spectrum of transformation and optimization functionalities,
benefiting multiple domains simultaneously.

Dialects are employed to depict distinct levels of abstraction.
Introducing or modifying dialects enables convenient addition or
refinement of abstraction levels, making the incorporation of new
domains or hardware targets straightforward. Each dialect defines
a set of operations tailored to a specific domain. For example, the
TOSA dialect defines a set of whole-tensor operations commonly
employed by deep neural networks for different processors [5]. An
operation represents a fundamental unit of computation in MLIR.
For example, the reverse operation defined in the TOSA dialect
aims to return a tensor with identical type and values as the input,
wherein the data is reversed along the specified axis.

Dialects enable MLIR to support the representation of operations
across various levels of abstraction. This collective representation
of operations in different dialects forms an MLIR program, which is
regarded as a test input for the MLIR compiler infrastructure. An
illustrative example of an MLIR program is shown in Figure 1(c).
In this example, the func dialect provides the func operation to
define a function, the arith dialect provides the constant oper-
ation to create constant values, the memref dialect provides the
alloc operation for memory allocation, and so on. An operation
can receive some operands and produce results. For example, the
result %@ produced by the arith.constant operation at Line 9 is
used as an operand of the affine. store operation at Line 10. Such
a collective representation facilitates the optimization of various
operations at their respective appropriate levels, contributing to
enhanced code generation efficiency and maximizing optimization
capabilities across different hardware targets.

Passes execute a range of transformations or optimizations on
MLIR programs, focusing particularly on operations among diverse
dialects. It takes an MLIR program as input and outputs the trans-
formed or optimized MLIR program. Some passes provide common
transformations or optimizations across multiple dialects, such as
common subexpression elimination, while some passes are tailored
for specific dialects, such as the “-tosa-layerwise-constant-fold”
pass for the TOSA dialect, which enables folding of full-layer oper-
ations on constant tensors. In particular, a number of passes can
perform conversions between dialects or operations. For example,
the “-tosa-to-tensor” pass transforms the operations in the TOSA
dialect to the corresponding operations in the tensor dialect.

2.2 A Motivating Example

Figure 1(a) shows the Bug#76281 detected by MLIRod, which trig-
gers a null pointer de-reference at Line 1. The reason is that the
findAncestorOpInRegion function returns null that is not prop-
erly captured. Figure 1(b) shows the patch fixing the bug, where
a proper check for the return result of findAncestorOpInRegion is
added (Lines 2-3). The code in Figure 1(a) is in isEscapingMemrefaw
function, which is invoked by the LoopFusion: : runOnOperation
function corresponding to the “-affine-loop-fusion” pass. This code
snippet begins by utilizing block->getParent() to obtain the re-
gion (a list of blocks) that defines block. Subsequently, it invokes

Fuzzing MLIR Compiler Infrastructure via Operation Dependency Analysis

if (block -> getParent()
-> findAncestorOpInRegion (*user)
-> getBlock () '= block)
return false;

(a) Buggy code of Bug#76281

auto ancestorOp = block -> getParent()
-> findAncestorOpInRegion (*user) ;
if ('ancestorOp)
return true;
if (ancestorOp -> getBlock() '= block)
return false;

(b) Patch for fixing Bug#76281

func. func @producer_consumer_ with outmost_user() {
%c0 = arith.constant 0 : index

[8src]= memref.alloc() : memref<f1l6, 1>
%dst = memref.alloc() : memref<fl6>
%$tag = memref.alloc() : memref<lxi32>
%$fl = arith.constant 1.0 fl6
affine.for %$argl = 4 to 6 {

affine.for %$arg2 = 0 to 1 {

%f0 = arith.constant 0.0 : f16
affine.store %£0, : memref<fl6, 1>

}
affine.for %$arg3 = 0 to 1 {

%0 = affine.load %src[] : memref<fl6, 1>
}

}

affine.dma_start|%src[, %dst[], %$tag[%c0], %cO :
memref<fl6, 1>, memref<fl6>, memref<lxi32>

return

(c) The MLIR program triggering Bug#76281
Figure 1: The motivation example with Bug#76281

the findAncestorOpInRegion function to determine if the defini-
tion of xuser is within the region. If xuser is defined within the
region, the function returns *user or its ancestor (i.e., the operation
defining the block that contains *user); Otherwise, a null pointer
is returned. Finally, it performs a comparison between two blocks.

The MLIR program presented in Figure 1(c) triggered this bug un-
der the “-affine-loop-fusion” pass. Specifically, the presence of two
fusionable affine.for operations within the same block (Lines
7-15) enables the triggering of the LoopFusion: :runOnOperation
function corresponding to the “-affine-loop-fusion” pass. In this pro-
gram, the affine. store operation (Line 10) within the affine. for
operation (Lines 8-11) writes the memory location (i.e., %src[])
and the affine.dma_start operation (Line 16) outside the afore-
mentioned block (Lines 7-15) reads the same memory location.
This makes the LoopFusion: : runOnOperation function invoke
the isEscapingMemrefaw function, executing Line 1 in Figure 1(a).
In this case, the block at Line 1 in Figure 1(a) refers to the block
(Lines 7-15) containing the affine.store operation (Line 10) in
Figure 1(c). Hence, block->getParent() returns the region con-
taining the only block (Lines 7-15) in Figure 1(c). The *user in Fig-
ure 1(a) refers to the affine.dma_start operation (Line 16) in Fig-
ure 1(c), which reads the same memory location as the affine.store
operation (Line 10). After calling the findAncestorOpInRegion
function on the affine.dma_start operation, null is returned
since Line 16 is not in the region returned by block->getParent ().
This ultimately triggers a null pointer de-reference bug.

From this example, we can observe that the triggering of Bug#762-
81 requires to satisfy complicated scoping and data referencing
constraints, which are difficult to achieve by randomly generating

1289

ISSTA °24, September 16-20, 2024, Vienna, Austria

PR
Select Mutate J
—_—> —_—> C
A)

Seed Program Mutated Program

Seed Pool

+Pass
 \ — >
« New Coverage 2 %ﬁf!-

(\

$X NO

Discard OD Coverage

Test Report

Transformed Program

Figure 2: Overview of MLIRod

MLIR programs (like MLIRSmith [39]). We have explicitly marked
the bug-triggering constraints in Figure 1(c), where the arrows
show the def-use chains of variables and the boxes show the scope
of code (which can be captured by control dependencies). Note that
Bug#76281 was not introduced recently, but has persisted for an
extensive period (since the revision fe9d0a committed in 2022-12-
14). This also implies that the state-of-the-art MLIRSmith has failed
to detect it, since it had been applied to fuzzing all the revisions
from 2022-10-14 to 2023-03-13 according to its paper/artifact [39],
although all the operations involved in the bug-triggering MLIR
program have been supported by MLIRSmith. In other words, gen-
erating those operations is not difficult for MLIRSmith, but it is
actually not the case that this bug can be triggered as long as the
test program contains these operations. This confirms the limitation
of MLIRSmith, further motivating our technique that carefully
considers the dependencies among operations. In particular,
there are a large number of dialects and operations in the MLIR
compiler infrastructure, which forms the huge input space espe-
cially when considering various dependencies among operations.
Hence, this motivates us to design an effective strategy in our
fuzzing technique to guide the exploration of the huge space.

3 Approach

We propose a novel fuzzing technique for the MLIR compiler infras-
tructure, called MLIRod, to improve the test effectiveness. MLIRod
proposes to exploit the dependencies between operations for guid-
ing the fuzzing process, in order to explore the input space more ef-
ficiently. Specifically, MLIRod constructs an operation dependency
graph (ODG) for each MLIR program and then measures the cor-
responding operation dependency coverage (OD coverage) based
on the graph. The fuzzing process is thus driven towards increas-
ing OD coverage, instead of the random manner employed by the
state-of-the-art MLIRSmith [39]. To produce the MLIR programs fa-
cilitating increasing OD coverage, MLIRod elaborately designs a set
of mutation rules, which focus on establishing new dependencies
or modifying the existing ones between operations.

Figure 2 shows the overview of MLIRod. In the following, we
first introduce ODG in Section 3.1 and its associated OD coverage
in Section 3.2, then present the mutation rules in MLIRod for con-
structing diverse MLIR programs in Section 3.3, and finally describe
the overall fuzzing process of MLIRod guided by the defined ODG
and OD coverage as well as the mutation rules in Section 3.4.

ISSTA °24, September 16-20, 2024, Vienna, Austria

09:arith.constant
12:affine.for -
¥ 10:affine.store) !

13:affine.load
~ 16:affine.dma_start

¢, 06:arith.constant)

RN 04:memref.alloc
02:arith.constant
. *

g 03:memref.alloc

Figure 3: ODG of the MLIR program shown in Figure 1(c)

3.1 Operation Dependence Graph

As illustrated in our motivation example, the dependencies between
operations are relevant to the detection of bugs in the MLIR com-
piler infrastructure. Furthermore, certain optimizations in the MLIR
compiler infrastructure can only be activated with the occurrence
of some dependencies between operations in an MLIR program. For
example, the “-buffer-loop-hoisting” optimization, which aims to
move allocation operation out of loop nests, requires the control
dependency between an allocation operation and a loop operation
(such as scf. for). Therefore, MLIRod takes operation dependen-
cies as the core to improve the fuzzing process.

Inspired by the concept of program dependency graph (PDG) [11],
we define operation dependency graph (ODG) in MLIRod. Similarly,
we consider both data dependencies and control dependencies be-
tween operations in ODG. For ease of presentation, we call them
operation data dependencies and operation control dependencies in
this paper. As introduced in Section 2.1, an operation consists of
its name, operands, and results. If we just treat an operation with
a specific name as the basic unit for analyzing data dependencies
and control dependencies, it is relatively coarse-grained since some
bugs can be triggered under certain types of operands for an opera-
tion. If we treat an operation with specific values of operands and
results as the basic unit, it is relatively fine-grained and thus leads
to the enormous space for ODG due to the huge value space for
operands and results. To balance effectiveness and efficiency, we
consider the types of operands and results for an operation to form
the basic unit for subsequent analysis, which is called operation
instance for ease of presentation in this paper.

In the following, we formally define operation instance, opera-
tion data dependency, operation control dependency, and operation
dependency graph (ODG).

DEFINITION 1 (OPERATION INSTANCE). The operation instance (oi)
can be defined as a tuple: (Oname, ODtypes, Rtypes), where Oname
is an operation name, ODtypes is a list of operand types, and Rtypes
is a list of result types.

DEFINITION 2 (OPERATION DATA DEPENDENCY). Let 0i; and oij
be two operation instances in an MLIR program, oi; is data dependent
on oi; if oi; defines a value v and oij accesses the value v. We use
a directed edge eg?m from oi; to oij to represent that oij is data
dependent on oi;.

DEFINITION 3 (OPERATION CONTROL DEPENDENCY). Let 0i; and
oij be two operation instances in an MLIR program, oij is control

Chenyao Suo, Junjie Chen, Shuang Liu, Jiajun Jiang, Yingquan Zhao, and Jianrong Wang

1290

dependent on oi; if the execution of o0i; is dominated by the outcome
of the execution involving oi;. We use a directed edge ei?”tmlfrom 0i;
to oij to represent that oij is control dependent on oi;.

DEFINITION 4 (OPERATION DEPENDENCY GrRAPH (ODG)). ODG
is defined as a 2-tuple (N, E), where N is a set of nodes and E is a set
of edges. Each node is an operation instance and each edge represents
either operation data dependency or operation control dependency.

Figure 3 shows an example ODG corresponding to the MLIR
program depicted in Figure 1(c). In Figure 3, the dashed arrows
represent the operation control dependency and the solid arrows
represent the operation data dependency. The edges labeled with
“” are the operation dependencies relevant to the triggering of this
bug presented in Section 2.2. Here, operation control dependency is
more about the block nesting relationship and variable accessibility.
Specifically, if an operation instance oi; has a code block containing
an operation instance oij, then the edge ei‘}"tml exists.

3.2 Operation Dependency Coverage

Traditional white-box or grey-box code coverage is typically ex-
pensive, especially for larger-scale compiler infrastructure. To en-
able efficient and effective guiding of the fuzzing process, MLIRod
defines a black-box coverage criterion from ODG, i.e., operation
dependency coverage (OD coverage), and utilizes the OD coverage
to guide the test generation process.

DEFINITION 5 (D-STEP REACHABILITY). Given an ODG G=(N, E)
and a node oi; € N, for each node oij € N, we say oij is d-step
reachable from oi; iff there exists a node sequence <oiy, oiy, - - -, 0ij>,

where l < d A oiy = oij A oij = oi; and Vk € [0,] - 1],6%3_1 €

d
EV econtrol ¢ £ We yse (o ~ 0ij) to represent this relation.

k,k+1
DEFINITION 6 (OPERATION DEPENDENCY PATTERN). Given an
ODGG = (N, E), the OD pattern within d-step reachability regarding
a given node oi; € N is the largest subgraph G’ = (N, E’) of G, where
d

N’ € N AE’ C E andVoi; € N’, 0ij = 0i; V (0i; ~ oij).
According to this definition, the OD pattern with 0-step reacha-
bility regarding the node 13 in Figure 3 is G = (N, E), where N =
{oi13} and E = 0. Similarly, the OD pattern with 1-step reachability
regarding the node 13 is G’ = (N’, E’), where N” = {oig3, 0i12, 0i13}

and E/ = {econtrol edata

edges are thlj’éincr(ggoperation instances in actual implementa-
tion. For example, the node oi;3 denotes the operation instance
for affine.load at Line 13 (in Figure 1(c)), while the edge eﬁg,”g"l
denotes that the operation instance for affine.load at Line 13
is control-dependent on the operation instance for affine.for at
Line 12. In this way, we define that two OD patterns are equal to
each other if they contain the same operation instances with the
same dependency relations, i.e., the same subgraph from an ODG.
Then, we define the concept of operation dependency coverage.

}. Note that the corresponding nodes and

DEFINITION 7 (OPERATION DEPENDENCY COVERAGE). The oper-
ation dependency coverage (OD coverage) of a given test suite T of
MLIR programs is defined in formula (1),

| Urer P |
P

d

OD¢oy = (1)

t'eA

Fuzzing MLIR Compiler Infrastructure via Operation Dependency Analysis

where G; is the ODG for the MLIR program t, and Pgt is a set of
all possible OD patterns over G; regarding d-step reachability, and
A is the set of all possible MLIR programs. That is, OD coverage is
measured on the entire input space rather than a single MLIR program.

It is impossible to enumerate all tests in A, and thus it is hard to
estimate the denominator of OD¢,y. One potential way to conduct
the estimation is to randomly generate a large number of MLIR
programs and calculate the number of unique OD patterns, until
the number of OD patterns does not increase, or increases very
slowly. However, this is rather expensive [43]. In our work, we only
use the OD coverage to guide the exploration of input space, rather
than use it for test adequacy evaluation. Hence, we can directly use
the enumerator, i.e., the concrete number of covered OD patterns in
the executed MLIR programs, to achieve the same purpose. In the
following, we mean the concrete number of covered OD patterns
in the executed MLIR programs when we refer to OD coverage.

Note that in MLIRod, we provide a method of defining OD cover-
age from ODG based on OD pattern. However, this may be not the
only method and also not the optimal one. For example, we could
also extract paths from ODG to define OD coverage. Here, we aim
to provide a cost-effective method to enable our MLIRod idea and
then take the exploration of more (potentially better) methods for
further improving its effectiveness as our future work.

3.3 Mutation Rules

In MLIRod, we elaborately design a set of mutation rules to change
the existing MLIR programs towards increasing OD coverage. These
mutation rules aim to establish new dependencies or modify the
existing dependencies between operations. From the perspective of
ODG, they can operate both nodes and edges in an ODG to achieve
this goal. Specifically, we have designed four types of mutation
rules, including node insertion, node deletion, data dependency
modification, and control dependency modification. In the follow-
ing, we will introduce each mutation rule in detail. Due to the space
limit, we prepared a set of examples to facilitate understanding
these mutation rules at our project homepage [4].

Node Insertion (R1) denotes inserting a new random node
into the ODG of a given MLIR program and then constructing the
dependency edges between it and the existing nodes according to
the operands required by the new node. This mutation rule can
introduce new nodes to make the ODG more complicated and thus
have a larger possibility to detect hard-to-trigger bugs.

Formally, assuming that the newly inserted node (i.e., an oper-
ation instance) is represented as oi; = (_, ODtypes;,). Then, for
each t; € ODtypes;, MLIRod tries to find an accessible operation
instance oie = (_, _, Rtypes,) whose result types contain the type
ty, ie., tp € Rtypes,. In this way, a new data dependency edge
e = ed‘”a Lent (nis
equal to the size of ODtypes;) to represent the set of data depen-
dency edges to be constructed according to the required operands
in oi;. Here, we use “accessible” to denote that the referenced value
is defined before use. If no such existing operation instance oi,
exists for ¢, MLIRod then generates a new node oi, with a random

can be constructed. We use E; = {ey, e, ..

!For ease of presentation, we use “_” to denote any valid instances, symbols, or values
if they do not affect the understanding in the paper.

1291

ISSTA °24, September 16-20, 2024, Vienna, Austria

value of the corresponding type for this operand (which can be
implemented by invoking the APIs provided by MLIRSmith).

To construct more complicated MLIR programs for fuzzing the
MLIR compiler infrastructure with higher OD coverage, MLIRod
prefers to insert the new node to some location where it can be
controlled by a certain existing operation instance oic. In this way,

“’””"l can be introduced. As a

a new control dependency edge e
result, given that the ODGs before and after applying this mutation
rule as G = (N, E) and G’ = (N’, E’) respectively, we have N’ =
N U {oii, 0ie} A E' = EU Eq U {e&rl},

Node Deletion (R2) denotes randomly deleting an existing node
from the OGD of a given MLIR program and then updating the data
and control dependencies broken by the deletion. Specifically, new
data dependencies have to be constructed for those nodes that are
data dependent on the deleted one in order to make the mutated
program valid. This mutation rule can help cover more diverse OD
patterns by changing nodes in the ODG and the corresponding
dependency edges, thereby increasing OD coverage.

Formally, assuming that the deleted node is represented as oig
and the original ODG is G = (N, E). The deletion of 0iy may affect
some other node oi, that is either dependent on or depended by oiy,
and the edges affected by this deletion are denoted as e?a‘@, gcontrol

ed ’ ed
ed4ata_and econtrol ere egdata apq gcontrol denoting that the deleted
d.e d.e ed e,d

node oiy is data or control dependent on some existing node oie,
can be directly deleted. However, for e44/4 control

e

and e , additional
modifications are required to ensure the Validity’ of the mutated
program. Specifically, e} d“t“ represents that some existing node oi,
uses the result of oiy, and thus is data dependent on oiy. For this
case, similar to the rule of node insertion, this mutation rule tries to
find another accessible node oi, with the same result type as oig, and

data to e

then updates the edge e} d“m . In other words, the operand

of oi, is updated to be another value For e;"”" ol

representing that
some existing node oi, is control dependent on oiy, this mutation
rule deletes it from E and its associated node oi, from N accordingly.
Note that this process is recursive since the deletion of the node oi,
can be viewed as another round of node deletion, where another
updating procedure has to be conducted.

Data Dependency Modification (R3) denotes replacing all
the nodes that are data depended by a randomly selected node
in the ODG of a given MLIR program with other accessible and
type-compatible nodes. In other words, all the operand values of
the selected node are replaced with other type-compatible ones.
This mutation rule can help establish new data dependencies in the
MLIR program by reorganizing some data dependencies associated
with this node, which facilitates the detection of more diverse bugs.

Formally, assuming that the node oigy,, = (_, ODtypes, _) is the
selected node, whose operands (or data dependencies) are required
to be updated in the given ODG G = (N, E). For each operand type
tr € ODtypes, if there is an associated edge ei‘fjﬁl € E (ie., oigy
is data dependent on 0i;), MLIRod tries to find another accessible
node oir = (_, _, Rtypes), where t;. € RtypesAoi, # oij, for updating
the data dependency from eﬁ‘:jz to e",ijitrfl. More explicitly, the k'
operand value of o0igy, is updated to use the result of 0i, rather than
oij. If there is no alternative oi, found for replacing oij, it keeps
unchanged. Finally, if no data dependency edge is updated in E,

ISSTA °24, September 16-20, 2024, Vienna, Austria

a new node oig,, will be selected to perform the same mutation
process until it succeeds or reaches a given constraint (e.g., a time
budget or times of mutation).

Control Dependency Modification (R4) denotes updating
the control dependency of a randomly selected node in the ODG
of a given MLIR program, while keeping all the data dependencies
unchanged. Specifically, this mutation rule aims to move the opera-
tion instance from an inner conditional block to the outer one, and
thus achieves the modification of the control dependency, which
can complement the other mutation rules to a large extent.

Formally, assuming that the selected node is oicy, for control
dependency modification and the associated ODG is G = (N, E).
If there exist nodes oi; € N and oir € N that satisfy ejc."’crizml €
EAefSVtrOI € E, then this mutation rule is to change eqf’c’;ﬁr"l to econtrol,
In other words, the control dependent node of oicy, is updated from
oij to oir. That is, the operation instance oicp, is moved from an
inner conditional block to the outer one. However, this change may
break the data dependencies of the node oicy, since the movement
may cause the reference to some existing node to be invalid. To
keep the data dependencies unchanged and ensure the validity of
the mutated MLIR program, this rule also moves the dependent

nodes of o0icy, accordingly. That is, for each node oi, € N, if eé‘é‘,‘,’, €

EA e]?"e"tml € E (i.e., oi¢y is data dependent on oi, and they are

in the same conditional block), it then updates ej.f’e”" o to egontn ol
That is, the node oi. is moved from the inner conditional block
to the outer one together. In this way, the data dependency eg‘lc[,‘,’l
can keep unchanged as long as their relative order is preserved.
Similarly, the movement of the node oi, may further affect other
nodes. We recursively handle this issue by following the same

process presented above.

3.4 Overall Fuzzing Process

The general workflow of MLIRod for fuzzing the MLIR compiler
infrastructure, as shown in Figure 2, consists of seed pool initializa-
tion, mutation-based MLIR program generation, MLIR-pass-based
fuzzing, and OD-coverage-based seed pool maintenance.

Seed Pool Initialization: MLIRod initializes the seed pool by
utilizing the state-of-the-art MLIR program generator (i.e., MLIR-
Smith [39]) to generate N MLIR programs. Note that MLIRod is
not specific to MLIRSmith, and in theory, the seed pool can be
initialized by any MLIR program generators (however, MLIRSmith
is the only one until now) or open source MILR programs. Then,
MLIRod calculates the OD coverage of these seed programs.

Mutation-based MLIR Program Generation: In each fuzzing
iteration, MLIRod randomly selects a seed program from the seed
pool and randomly selects a mutation rule to mutate it. In this
way, a new MLIR program can be generated for fuzzing the MLIR
compiler infrastructure.

MLIR-Pass-based Fuzzing: MLIRod collects the entire set of
MLIR passes from documentation [7]. For a generated MLIR pro-
gram, MLIRod randomly selects k passes with replacement from
the entire set of MLIR passes and randomly determines the order
of these selected passes to form an MLIR pass sequence. Then,
MLIRod applies each pass in the sequence to the MLIR program.
If a crash occurs during this process, we regard that this MLIR

Chenyao Suo, Junjie Chen, Shuang Liu, Jiajun Jiang, Yingquan Zhao, and Jianrong Wang

1292

program detects a bug. Note that since we just considered crash
as the test oracle, we did not specially investigate lowering paths,
which can be regarded as our future work. Each specified pass
is designed to produce a newly transformed or optimized MLIR
program, potentially introducing new dialects and operations. To
broaden the scope of dialects and operations under fuzzing, MLIRod
gathers all the newly transformed or optimized MLIR programs for
OD-coverage-based seed pool maintenance.

OD-Coverage-based Seed Pool Maintenance: If a generated
MLIR program via mutation achieves new OD coverage, MLIRod
puts the generated MLIR program into the seed pool, inspired by
the general coverage-based fuzzing practice (coverage-increasing
test cases tend to help generate more effective tests) [6, 12, 44].
Furthermore, MLIRod checks whether the transformed program by
each MLIR pass improves the OD coverage. If the improvement is
identified, MLIRod also puts it into the seed pool. In this way, the
fuzzing process can be effectively driven towards increasing OD
coverage, and thus the fuzzing effectiveness can be improved.

4 Evaluation

To evaluate MLIRod, we conducted an extensive study to answer
the following research questions (RQs):

e RQ1: How does MLIRod perform in detecting previously
unknown bugs in the MLIR compiler infrastructure?

e RQ2: How does MLIRod perform in bug detection compared
with the state-of-the-art MLIRSmith?

¢ RQ3: How does each main component in MLIRod contribute
to the overall effectiveness?

e RQ4: How does the step of reachability d in measuring OD
coverage affect the effectiveness of MLIRod?

4.1 Experimental Setup

To answer RQ1, we applied MLIRod to fuzz the latest revisions of
the MLIR compiler infrastructure (from revision fe5370d to revision
6e90f1) for 50 days. It aims to detect previously unknown bugs.
To answer RQs 2-4, we selected the revision eb6014 (the latest
one when we started the experiments for RQs 2-4), totaling 429.5K
lines of code, as the subject for 24-hour fuzzing to perform fair
comparisons. To reduce the influence of randomness, we repeated
the experiments in RQs 2-4 for five times, and aggregated the results
same as the existing study [39]. To balance the testing effectiveness
and efficiency, we set the step of reachability in measuring OD
coverage (d) to 2, the number of passes for constructing an MLIR
pass sequence (k) to 10, and the number of initial seed programs
(N) to 50 in MLIRod by default. In RQ4, we will investigate the
influence of an important parameter (i.e., d) on the effectiveness of
MLIRod. All our experiments were conducted on a machine with
Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40GHz and 128G Memory,
Ubuntu 20.04.6 LTS.

4.1.1 Compared Techniques. To answer RQ2, we compared MLIRod
with the state-of-the-art technique for fuzzing the MLIR compiler
infrastructure (i.e., MLIRSmith [39]). We adopted the released im-
plementation of MLIRSmith and used the recommended parameter
settings in the work of MLIRSmith for fair comparison [39].
MLIRod is orthogonal to MLIRSmith to some extent, since the
former can produce more MLIR programs through mutation based

Fuzzing MLIR Compiler Infrastructure via Operation Dependency Analysis

on the programs generated by the latter. Nevertheless, it is still
important to compare their fuzzing effectiveness. To more clearly
highlight the contribution of our mutation-based MLIRod, we used
MLIRSmith to generate only 50 programs as the initial seed pro-
grams in MLIRod. During the 24-hour fuzzing, MLIRSmith gen-
erates 12,855 programs, which is significantly more than the 50
initial seed programs employed by MLIRod, while MLIRod gener-
ates 9,291 programs through mutations (whose sizes are ranging
from 94 to 18,776 lines of code). That is, MLIRod under this setting
does not incorporate too much from MLIRSmith. Hence, such an
experiment can help compare the mutation-based MLIRod and the
grammar-based MLIRSmith clearly.

Note that the existing study [39] has demonstrated MLIRSmith
outperforms the indirect method of transforming high-level source
programs generated by NNSmith [31] (the state-of-the-art test gen-
erator for fuzzing deep learning compilers by generating ONNX
computation graphs) into MLIR programs through available fron-
tends. Hence, we chose the better one (MLIRSmith) as our com-
pared technique in our study. For sufficient comparison, we also
conducted an experiment to compare MLIRod with the method
using NNSmith, but put the detailed results on our project home-
page [4] due to the space limit. In summary, during 24-hour fuzzing,
MLIRod (31) indeed detected much more bugs than NNSmith (10).

In RQ3, we investigated the contributions of each mutation rule,
the mechanism of enriching dialects and operations with MLIR
passes, and our OD coverage guidance in MLIRod. Accordingly, we

constructed seven variants of MLIRod for comparison. MLIRodﬁ}o,

MLIRodffjo, MLIRodﬁ?o, and MLIRodﬁj‘O remove each mutation
rule (R1, R2, R3, or R4) from MLIRod, respectively. MLIRod‘zI ‘;:s
removes the mechanism of putting pass-produced programs for
seed pool maintenance from MLIRod. MLIRod,,,4 removes the
OD coverage guidance from MLIRod and randomly puts each gen-
erated MLIR program into the seed pool. MLIRod,4,. replaces
the OD coverage with the widely-studied edge coverage [12] as
the guidance in MLIRod. We collected edge coverage following
AFL++ [12].

To answer RQ4, we studied several settings for the step of reach-
ability d in measuring OD coverage in MLIRod, i.e., 0, 1, 2, 3. The
0-step OD coverage means that MLIRod only collects individual
operation instances in the MLIR program for measuring coverage.

4.1.2 Metrics. We adopted two metrics to measure the effective-
ness of each technique: 1) the number of detected bugs and 2) the
number of covered lines in the subject. Both of them have been
widely used in the existing work on fuzzing [25, 47, 49]. During the
fuzzing process, a number of crashes may be triggered, but many of
them may be caused by the same root causes. Hence, it is important
to de-duplicate them to accurately measure the number of detected
bugs. We de-duplicated them according to crash messages same
as the existing work [39]. Then, we submitted unique crashes to
MLIR compiler infrastructure developers, and counted the number
of detected bugs based on their feedback. Note that developers
may directly fix bugs without updating issue reports. As our bugs
were detected on the latest revisions at the time of our fuzzing and
reporting, we also checked whether each bug without developers’
response still existed on subsequently-commited revisions follow-
ing the existing work [10]. If it is a crash bug and did not exist

1293

ISSTA °24, September 16-20, 2024, Vienna, Austria

on subsequently-commited revisions, we regard it as the case of
developer fixing without updating reports. Regarding line coverage,
we collected it using the widely-used gcov [2].

4.2 RQ1: New Bugs Detected by MLIRod

In total, MLIRod detected 63 previously unknown bugs during 50-
day fuzzing, among which 48/38 bugs have been confirmed/fixed by
developers and 15 bugs are still awaiting feedback. Table 1 shows the
details of these detected bugs, including the bug ID, the root cause
for each fixed bug (identified by developers), the type of the MLIR
pass where each bug occurs, and the bug status. The bugs detected
by MLIRod exhibit diversity, spanning across a broad spectrum
of MLIR passes and root causes. Subsequently, we conducted a
comprehensive analysis of these bugs from these two aspects.

Bug-occurring Pass Analysis: As introduced in the existing
work [39], in general, there are four types of passes in the MLIR
compiler infrastructure:

o Conversion passes perform transformations between dialects
to lower the abstraction level. 14 out of 63 bugs are identified
within conversion passes.

Bufferization passes transform the operations that exhibit
tensor semantics into the operations with memref semantics.
4 bugs are associated with bufferization passes.

General transformation passes are universally applicable
to all dialects and are designed to perform common opti-
mizations/transformations. 20 bugs manifest within general
transformation passes.

Domain-specific passes perform domain-specific optimiza-
tions/transformations within each specific dialect. 25 bugs
occur in domain-specific passes.

Root Cause Analysis: The detected bugs by MLIRod covered
all the five root causes introduced in the existing work [39], i.e.,
Incomplete Verifier (IV), Incorrect Pattern (IP), Incorrect Rewrite
Logic (IRL), Unregistered Dialect (UD), and Incorrect Assertion (IA).
Note that the root causes were identified by the developers of the
MLIR compiler infrastructure and thus only the 38 fixed bugs have
been labeled with the corresponding root causes.

7 bugs are caused by Incomplete Verifier. Specifically, each pass
is equipped with a verifier to assess the compatibility between
the pass and specific operations. This root cause is the absence or
incompleteness of a necessary verifier for a pass. This deficiency
results in the pass operating on incompatible operations, ultimately
leading to a crash. That is, compilers should normally reject invalid
programs rather than directly crash. For example, Bug#70418 (Fig-
ure 4) was triggered when the “-convert-func-to-spirv” pass was
applied to the program with the affine.vector_load operation,
which uses an invalid value for the %dim operand. Such an invalid
value can be produced only if the memref . dim operation takes an
out-of-bound index as its operand (i.e., the value of %c6 is larger
than the shape of %alloc_4). The root cause lies in missing a veri-
fier between this pass and the affine.vector_load operation to
capture such an exception in advance, resulting in a crash. Also, the
data dependency between memref.dim and affine.vector_load
makes a large contribution to detecting this bug, demonstrating the
importance of considering data dependencies between operations
in MLIRod. Regarding MLIRSmith, it adopts the random strategy

ISSTA °24, September 16-20, 2024, Vienna, Austria

Chenyao Suo, Junjie Chen, Shuang Liu, Jiajun Jiang, Yingquan Zhao, and Jianrong Wang

Table 1: Previously unknown bugs detected by MLIRod

Bugld Root Cause! Pass Category Status H BuglId Root Cause Pass Category Status
64385 P Conversion fixed 71281 UD Domain Specific(async) fixed
64408 P Domain Specific(linalg) fixed 73190 IRL General Transformation fixed
64409 g Conversion fixed 73191 — Bufferization confirmed
64622 IRL Domain Specific(linalg) fixed 73285 - General Transformation submitted
64638 — Bufferization submitted 73288 IRL Domain Specific(linalg) fixed
64639 — Domain Specific(GPU) confirmed 73289 P Conversion fixed
64674 iy General Transformation fixed 73381 — Domain Specific(arith) submitted
67760 v Domain Specific(TOSA) fixed 73382 1A General Transformation fixed
67761 v Conversion fixed 73383 P General Transformation fixed
67763 1P Domain Specific(TOSA) fixed 73532 — General Transformation submitted
67977 IRL Bufferization fixed 73534 — Conversion submitted
68187 v Domain Specific(TOSA) fixed 73540 — Domain Specific(affine) submitted
68481 v Conversion fixed 73547 - General Transformation confirmed
68483 i Domain Specific(memref) fixed 74227 IRL Domain Specific(sparse_tensor) fixed
68486 v Conversion fixed 74234 — Domain Specific(arith) confirmed
68948 IRL Bufferization fixed 74236 - General Transformation confirmed
68950 i Domain Specific(transform) fixed 74237 g Domain Specific(TOSA) fixed
70180 P Domain Specific(memref) fixed 74301 — General Transformation submitted
70183 - General Transformation submitted 74306 P General Transformation fixed
70278 — Conversion confirmed 74308 — Conversion submitted
70415 v Domain Specific(TOSA) fixed 74313 IRL General Transformation fixed
70418 v Conversion fixed 74453 IRL Domain Specific(llvm) fixed
70439 — Domain Specific(affine) submitted 74461 — General Transformation confirmed
70633 iy General Transformation fixed 74466 — Conversion submitted
70884 IP General Transformation fixed 74937 - Domain Specific(arith) confirmed
70887 P General Transformation fixed 74940 - Conversion submitted
70902 1P General Transformation fixed 75758 P Domain Specific(scf) fixed
70913 — General Transformation submitted 75770 — Conversion confirmed
71036 i Domain Specific(vector) fixed 76281 IRL Domain Specific(affine) fixed
71147 — Domain Specific(affine) submitted 76309 - Domain Specific(affine) submitted
71150 P Conversion fixed 77420 - General Transformation confirmed
71153 P General Transformation fixed

1 Full Name of Root Cause: IV (Incomplete Verifier), IP (Incorrect Pattern), IRL (Incorrect Rewrite Logic), UD (Unregistered Dialect), IA (Incorrect Assertion)

" These bugs belong to the cases of developer fixing without updating reports.

%dim = memref.dim %alloc_4, %c6 :
memref<4xi64> // out-of-bound
%70 = affine.vector_ load %alloca_100[%dim]

memref<100xi64>, vector<31lxi64>

Figure 4: Program snippet for triggering Bug#70418 (IV)

: memref<?x£32>
: memref<?x£32> to

memref.dealloc %arg0
%0 = bufferization.clone %arg0
memref<32x£32>

Figure 5: Program snippet for triggering Bug#74306 (IP)

for program generation, and thus it is hard for it to construct such
a data dependency and thus detect this bug.

20 bugs are caused by Incorrect Pattern. Specifically, a set of
patterns is employed by each pass to identify the operations that
this pass intends to transform or optimize. If certain patterns are
incorrect, this pass may inadvertently transform or optimize un-
expected operations, resulting in a crash. For example, Bug#74306
(Figure 5) was caused since the “-canonicalize” pass improperly
optimizes the bufferization.clone operation. This optimization
relies on the assumption that the memref . dealloc operation fol-
lows the bufferization.clone operation. However, there is an
memref.dealloc operation preceding the bufferization.clone
operation in this program, causing that this optimization processes
the variable (%arg®) that has been released by this memref.dealloc
operation and thus crashes. This bug has been fixed by modify-
ing the pattern to avoid activating this optimization under such

1294

1llvm. func @funcl() {
scf.parallel (%arg0)

}

(%c0) to (%c22) step (%cl) {

}
Figure 6: Program snippet for triggering Bug#71281 (UD)

cases. The data dependency between bufferization.clone and
memref.dealloc on %argo contributes to the triggering of this bug.

9 bugs are caused by Incorrect Rewrite Logic. Specifically, passes
rewrite matched operations into new forms. However, if the logic
governing this rewriting is flawed, the pass may generate incorrect
operations. We have introduced such a bug in Section 2.2.

One bug is caused by Unregistered Dialect. Specifically, to facil-
itate the transformation from an operation in one dialect to an
operation in another dialect, the latter dialect must be registered
within the pass. Without this registration, the transformation pro-
cess will crash. For example, Bug#71281 (Figure 6) was caused due
to missing to register the func dialect for the “-async-parallel-for”
pass. Specifically, when the “-async-parallel-for” pass is activated
by the scf.parallel operation, it requires the information of the
func dialect. However, this dialect is not loaded due to missing
registration, ultimately leading to a crash. This bug cannot be trig-
gered by MLIRSmith, since all programs generated by it use the
func dialect. This bug-triggering program is produced by MLIRod
on the seed program complemented by the “-convert-func-to-llvm”
pass, which lowers all the operations in the func dialect to the

Fuzzing MLIR Compiler Infrastructure via Operation Dependency Analysis

scf.for %arg4 = %c0 to %c22 step %cl {
%dim = memref.dim %alloc, %cl :
memref<?xil> // undefined behavior

}
Figure 7: Program snippet for triggering Bug#73382 (IA)

corresponding operations in the 11vm dialect. It leads to the disap-
pearance of the func dialect in the seed program as well as this
bug-triggering program. This demonstrates the necessity of the
mechanism of putting pass-produced programs for seed pool main-
tenance in MLIRod.

One bug is caused by Incorrect Assertion. Specifically, the MLIR
compiler infrastructure includes numerous assertions designed to
verify internal states. Incorrect assertions will make the transforma-
tion/optimization process crash, even if internal states are correct.
For example, Bug#73382 (Figure 7) was caused due to an incorrect
assertion in the “-loop-invariant-code-motion” pass. Specifically,
this pass works since there is an scf . for operation in this program.
However, the memref.dim operation within the scf. for operation
has an out-of-bound dimension index, which is an undefined behav-
ior. The assertion in this pass incorrectly processes this undefined
behavior, leading to a crash. The control dependency between the
scf. for operation and the memref.dim operation with an out-of-
bound dimension index contributes to the triggering of this bug.

4.3 RQ2: MLIRod v.s. MLIRSmith

Figure 8(a) shows the number of bugs detected by each technique
as the fuzzing process progresses for 24 hours. As aforementioned,
we repeated the experiments for five times and aggregated the re-
sults to reduce the influence of randomness involved in fuzzing.
Overall, MLIRod detected 31 bugs, while MLIRSmith just detected
14 bugs during the same fuzzing time. The improvement of MLIRod
over MLIRSmith is 121.43%. From this figure, MLIRSmith reached
saturation in bug detection quickly, while MLIRod can detect bugs
continuously within the fuzzing time. The results demonstrate the
superiority of MLIRod over MLIRSmith in bug detection. We also an-
alyzed the overlap of the bugs detected by MLIRod and MLIRSmith.
21 bugs detected by MLIRod cannot be detected by MLIRSmith
during the given fuzzing time, while only 4 bugs detected by the
latter cannot be detected by the former, further confirming the
effectiveness of MLIRod. The possible reason behind the 4 missed
bugs by MLIRod is that, the random fuzzing strategy employed in
MLIRSmith could make it explore a portion of input space that is
still unexplored by MLIRod within the given fuzzing time.

We further investigated why MLIRod outperforms MLIRSmith
significantly. Specifically, during the given fuzzing time, MLIRod
covered 116,641 lines of code for the MLIR compiler infrastructure,
while MLIRSmith covered 113,971 lines. Among the lines covered
by MLIRod, 13,373 lines cannot be covered by MLIRSmith. The
maximum branch depth achieved by MLIRod is 7, same as that by
MLIRSmith, but MLIRod covered 715 more branches than MLIR-
Smith. Besides, the MLIR programs produced by MLIRod involved
430 operations from 20 dialects (including the 13 dialects supported
by MLIRSmith and the 7 dialects produced through lowering/opti-
mizations), while those by MLIRSmith just involved 256 operations
from 13 dialects during the given fuzzing time. Note that all dialects
and operations generated by MLIRod and MLIRSmith can be found

1295

ISSTA °24, September 16-20, 2024, Vienna, Austria

at our homepage [4]. That is, MLIRod explored larger input space
due to its ability of guiding the fuzzing process with OD cover-
age and efficiently supporting more dialects and operations with
MLIR passes. Hence, the fuzzing effectiveness of MLIRod can be
significantly enhanced.

4.4 RQ3: Contribution of Each Main
Component in MLIRod

To evaluate the contribution of each component, we applied the
seven variants (introduced in Section 4.1.1) to fuzzing the MLIR
compiler infrastructure, respectively. Figure 8(b) shows the number
of bugs detected by each variant during the given fuzzing time (24
hours with five repeated experiments).

By comparing MLIRod with MLIRod®! | MLIRod®? ' MLIRod®” |

and MLIRodf;O, MLIRod detected more bugs than all the four vari-
ants, demonstrating the contribution of each mutation rule. Among
the four variants, MLIRodlj‘j0 detected the smallest number of bugs
(i.e., 16), indicating the most significant contribution of data depen-
dency modification. The possible reasons are that (1) the mutation
rule of data dependency modification has larger mutation space
than that of control dependency modification, since the former may
involve the combinations of various operations while the latter
just involves the combinations with the control-related operations
(e.g., scf.if and scf.for); (2) data dependency modification is
more efficient than node insertion and node deletion to generate
a mutated MLIR program, which can generate more programs for
fuzzing during the same time.

By comparing with MLIRode azs, we found that the former (i.e.,
31) outperforms the latter (i.e., 28) in bug detection during the
given fuzzing time. The results demonstrate the contribution of the
mechanism of putting pass-produced programs for seed pool main-
tenance. Through further analysis, the MLIR programs generated
by MLIRod involved 430 operations from 20 dialects while those
by MLIRodﬁ) ‘Zs involved 256 operations from 13 dialects. That is,

MLIRod explored larger input space than MLIRodfva/zs, explaining

the superiority of MLIRod over MLIRodﬁ) ‘;ZS. In fact, MLIRodﬁ) ‘;ZS
has the same space of dialects and operations as MLIRSmith, but
the former (i.e., 28) still detected more bugs than the latter (i.e.,
14) during the given fuzzing time. These results demonstrate the
effectiveness of the remaining components in MLIRod.

By comparing MLIRod with MLIRod,,,4, we found that the for-
mer detected 31 bugs while the latter detected 20 bugs during the
given fuzzing time. Also, the former achieved 429.6K OD coverage
while the latter achieved 240.7K OD coverage. The results demon-
strate the contribution of guiding the fuzzing process with OD
coverage in MLIRod. Moreover, we compared our OD coverage guid-
ance with the widely-used edge coverage guidance in the area of
fuzzing by constructing the corresponding variant (i.e., MLIRod . gg).
From Figure 8(b), we found that MLIRod, g, just detected 3 bugs
during the same fuzzing time, which even performs worse than
MLIRod, ;4. After investigation, we found that edge coverage is
hard to increase during the fuzzing process for the MLIR compiler
infrastructure, causing that very few generated programs were put
into the seed pool for further mutations. The results indicate that

ISSTA °24, September 16-20, 2024, Vienna, Austria

Chenyao Suo, Junjie Chen, Shuang Liu, Jiajun Jiang, Yingquan Zhao, and Jianrong Wang

ion Pass OD Coverage ity Step
=31 31
4 307 —= MLIRod 30 28 28
) —8— MLIRSmith 2]
3 ——a—a [} 26 25 26 28
K 25 P — g|25
o
% 20 = 5 2° *
5 : Y
215 2
E 14 £ 10 10
/ =
210 / 25 5
[} 5 10 15 20 25 0
Time (h) MLIRodMYL MY2 M3 MY MP2S Moy Mege Mo My M, M

(a) Number of detected bugs by MLIRod and MLIRSmith

wio

(b) Number of detected bugs by MLIRod and its variants

Figure 8: Number of detected bugs by MLIRod and comparison approaches (M in variant names refers to MLIRod)

OD coverage seems more proper than the widely-used edge cover-
age in our scenario of fuzzing the MLIR compiler infrastructure.

4.5 Influence of the Step of Reachability in
Measuring OD Coverage

We finally investigated the influence of one important parameter in
MLIRod (i.e., the step of reachability d in measuring OD coverage).
As presented in Section 4.1.1, we studied four different settings (d
=0, 1, 2, 3, respectively). For ease of presentation, we call them
MLIRody, MLIRody, MLIRod; (i.e., MLIRod), MLIRods3, respectively.

Figure 8(b) presents the number of detected bugs by MLIRod un-
der different settings of d during the given fuzzing time. We found
that they detected 10, 28, 31, and 25 bugs, respectively. Among them,
MLIRod, performs the worst significantly, since it solely considers
the diversity of operation instances (leading to saturated cover-
age quickly) but ignores the dependencies between them. Under
the remaining three settings, MLIRod can consistently outperform
MLIRSmith. The results demonstrate the necessity of consider-
ing the dependencies between operation instances in MLIRod for
fuzzing the MLIR compiler infrastructure. Besides, we found that
MLIRod; (i.e., MLIRod) performs better than both MLIRod; and
MLIRods3, showing that d = 2 seems to achieve a balance between
effectiveness and efficiency. Specifically, MLIRody collects more
sufficient OD information than MLIRod;, and meanwhile it spends
less time on coverage collection than MLIRod3, leading to generat-
ing more programs for fuzzing during the given time. Hence, we
recommend d = 2 as the default setting in MLIRod for practical use.

4.6 Threats to Validity

The threat to internal validity mainly lies in the implementation of
MLIRod. To reduce this kind of threat, two authors have carefully
checked all source code and written unit tests for guaranteeing the
correctness. Regarding the compared technique (i.e., MLIRSmith),
we directly adopted the released implementation and the recom-
mended settings. The threat to external validity mainly lies in the
used subject. Here, we adopted the latest revision (at the time of
starting our experiments) for comparisons between MLIRod and
both MLIRSmith and the variants of MLIRod, even though there are
many versions for the MLIR compiler infrastructure. This is because
it is helpful to detect previously unknown bugs by fuzzing the latest
revision, which tends to be more significant following the existing
work [39]. To further reduce this kind of threat, we also performed
continuous fuzzing with MLIRod on more revisions for longer time
(i-e., 50 days) as presented in Section 4.1, and our results indeed

1296

demonstrate that MLIRod can continuously detect new bugs on
these studied revisions. The threat to construct validity mainly lies
in parameter settings in MLIRod. To reduce this kind of threat, we
have presented the specific settings of all the parameters in MLIRod
for future replication. Moreover, we empirically investigated the
influence of one important parameter (i.e., d) in MLIRod in RQ4 and
left the investigation on other parameters as our future work due to
the significant fuzzing cost on such experiments. Particularly, we
took 50 randomly-generated programs by MLIRSmith without spe-
cial selection as MLIRod’s seeds in our study. As a mutation-based
fuzzer, MLIRod is supposed to follow the general conclusion that
seeds could affect the effectiveness of mutation-based fuzzers [18].
We will evaluate MLIRod with different sets of seeds. Currently,
our work has provided a set of effective seeds for practical use with
MLIRod.

5 Discussion

Novelty in Using Program Dependencies for Fuzzing. Program
dependency has been used in fuzzing [14, 22, 32], vulnerability
detecting [29], code naturalness [46], and software debugging [21].
These existing fuzzing works utilizing data/control dependencies
focused on library-API fuzzing. Their test cases are API sequences,
which can be clearly mapped to library’s functionalities. Therefore,
during test case generation, they mainly focused on the sequences
of invoked APIs and parameter values within APIs, which considers
data dependencies to some degree. However, control dependencies
are built for the target library rather than test cases, guiding to
achieve higher branch coverage.

Different from them, we focus on fuzzing MLIR compilers, which
has two new challenges. First, test cases for MLIR compilers are pro-
grams written according to MLIR’s language constraints, making it
difficult to map MLIR programs directly to MLIR compiler function-
alities. For example, testing the dead-code-elimination optimization
requires analyzing program structure and def-use relationships
between variables, and determining whether certain branch condi-
tions are unsatisfiable in MLIR programs. This mapping involves
complex data and control dependencies. To solve it, MLIRod con-
siders both types of dependencies and their various combinations
in generating MLIR programs by designing OD patterns and cor-
responding mutation rules. Note that while existing graph-level
mutations generally involve node and edge modifications, MLIRod’s
mutations are specifically designed to cover more OD patterns. Sec-
ond, ensuring the validity of MLIR programs during mutation is
challenging due to MLIR’s language constraints. We thus designed

Fuzzing MLIR Compiler Infrastructure via Operation Dependency Analysis

corresponding mechanisms in mutations to ensure program va-
lidity. Particularly, we used MLIR-program dependencies to guide
mutation, which prior library-API fuzzing works did not do.

Significance of MLIRod. While MLIRod is implemented to fuzz
the MLIR compiler infrastructure, its significance is not limited to
the single system. This is because many compilers (such as Flang [1]
and IREE [3]) are built on top of it, fuzzing the MLIR compiler infras-
tructure can contribute to ensuring the quality and robustness of all
compilers leveraging this infrastructure. That is, fuzzing the MLIR
compiler infrastructure can have a broader impact than fuzzing a
single compiler system.

Moreover, the idea of MLIRod could be generalized to the com-
pilers for other programming languages by adjusting dependency
patterns and mutation rules according to compilers’ and languages’
characteristics. It can be also generalized to other kinds of systems
sharing similar characteristics in the form of test inputs to MLIR
programs (especially operations in them). For instance, the test
input for operating systems involves a set of system calls. Like
operations, each system call includes its name, operand types, and
result types, and these system calls can also involve complicated de-
pendencies, even though system calls have different constraints and
semantics from MLIR operations. Hence, transferring the idea of
operation dependency graph/coverage and the associated mutation
rules in MLIRod to exploit the dependencies between system calls
may help improve the fuzzing effectiveness for operating systems.

Future Work. Both MLIRod and MLIRSmith take crash as the
test oracle for fuzzing the MLIR compiler infrastructure. In fact,
comparing the execution results of an MLIR program under different
pass sequences is also a natural test oracle. However, they do not
incorporate it since the MLIR programs generated by them may
have undefined behaviors [26], leading to potential false positives
under this execution-output-based test oracle. That is, the current
MLIRod cannot detect the bugs that make MLIR compiler produce
wrong code without crash. In the future, we can improve MLIRod
by incorporating some mechanisms to identify and avoid undefined
behaviors during program generation.

6 Related Work

Fuzzing has been widely studied to guarantee the quality of various
software systems, such as compilers [9, 20, 30, 36, 45, 47], operating
systems [16, 23, 34], and browser engines [8, 17, 27, 42]. Our work
is related to compiler fuzzing.

The most related work to ours is MLIRSmith [39], which is the
first technique to fuzz the MLIR compiler infrastructure. It belongs
to grammar-based fuzzing and there are also some grammar-based
fuzzing techniques for other types of compilers, e.g., Csmith [47] for
C compilers, CLSmith [30] for OpenCL compilers, NNSmith [31] for
deep learning compilers, and Skyfire [40] for JS compilers. Different
from them, MLIRod is a mutation-based fuzzing technique guided
by OD coverage, and it designs dependency-targeted mutation rules
to efficiently explore the input space.

There are some mutation-based compiler fuzzing techniques [8,
13, 15, 17, 27, 35, 49]. For example, Le et al. [25] proposed semantic-
preserving mutation rules (e.g., mutating dead code) for compiler
fuzzing. Holler et al. [19] proposed LangFuzz to generate JS pro-
grams via program synthesis. Schumi et al. [35] designed semantic

1297

ISSTA °24, September 16-20, 2024, Vienna, Austria

coverage based on language specification for guiding fuzzing, but
we did not compare to it because it is based on the K Framework,
which does not support MLIR. Wang et al. [42] proposed FuzzJIT to
generate JS programs by mutating seed programs with JIT-related
program elements and structures. These techniques were typically
designed to generate high-level source programs as tests for specific
compilers rather than the general compiler infrastructure. They
are inapplicable to the MLIR compiler infrastructure due to lacking
alignment in terms of data structure and semantics with MLIR. Even
though MLIRod is a mutation-based technique, different from the
existing ones, it designs a set of mutation rules associated to ODG
for MLIR programs by carefully considering the data dependencies
and control dependencies between MLIR operations.

In addition, MLIRod can be categorized as coverage-guided fuzzing
by designing ODG and OD coverage corresponding to MLIR pro-
gram characteristics. In the area of fuzzing, most of the existing
coverage-guided fuzzing techniques take edge coverage as the guid-
ance [6, 15, 28, 41, 44]. Among them, AFL (American Fuzzy Lop) [6],
which generates test inputs by applying byte-level and token-level
mutations to increase edge coverage, is the most representative one.
Based on AFL, Wang et al. [41] proposed Superion to support the
generation of structured test inputs. Wu et al. [44] proposed JIT-
Fuzz, which employs edge coverage to guide program mutation for
fuzzing JIT compilers. Our evaluation also compared OD coverage
and edge coverage for guiding the fuzzing process on the MLIR
compiler infrastructure. Our results demonstrate the superiority
of MLIRod with OD coverage in fuzzing MLIR infrastructure. In
particular, OD coverage is collected in a black-box manner, making
MLIRod more practical (compared to the gray-box edge-coverage-
guided fuzzing techniques).

7 Conclusion

We propose a mutation-based MLIR compiler infrastructure fuzzing
technique, MLIRod, for better MLIR compiler infrastructure fuzzing.
To generate diverse MLIR programs, MLIRod designs the ODG cov-
erage to systematically take data and control dependence into con-
sideration to evaluate the diversity of generated MLIR programs and
recognize valuable MLIR programs. MLIRod also designs several
mutation rules based on ODG to improve ODG coverage. MLIRod
has detected 63 previously unknown bugs during 50 days fuzzing,
38/48 bugs in which have been fixed/confirmed by developers.

8 Data Availability

We released our tool MLIRod (totaling 11.5K lines of C++ code)
and experimental data at our project homepage for experimental
replication and practical use [4].

Acknowledgments

This work was supported by the National Natural Science Founda-
tion of China under Grant Nos. 62322208, 62232001, 62202324, and
CCF Young Elite Scientists Sponsorship Program (by CAST). We
thank the anonymous reviewers for their constructive suggestions
to help improve the quality of this paper.

References
[1] 2023. Flang. https://github.com/llvm/llvm-project/tree/main/flang.

ISSTA °24, September 16-20, 2024, Vienna, Austria

[10

(11

[12

[13

[14

(15

[16

[17

[18

[19

[20

[21

[22

[23

[24

]

]

]

]

]

]

]

]

]

2023. geov. https://gee.gnu.org/onlinedocs/gec/Geov.html.

2023. IREE. https://openxla.github.io/iree/.

2023. MLIRod. https://github.com/tju-chenyaosuo/MLIRod.

2023. TOSA Dialect. https://mlir.llvm.org/docs/Dialects/TOSA/.

2024. M. Zalewski. american fuzzy lop. http://Icamtuf.coredump.cx/afl.

2024. MLIR Pass Documentation. https://mlir.llvm.org/docs/Passes.

Lukas Bernhard, Tobias Scharnowski, Moritz Schloegel, Tim Blazytko, and
Thorsten Holz. 2022. JIT-Picking: Differential Fuzzing of JavaScript Engines.
In Proceedings of the 2022 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS 2022, Los Angeles, CA, USA, November 7-11, 2022,
Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi (Eds.). ACM, 351-364.
https://doi.org/10.1145/3548606.3560624

Junjie Chen, Jibesh Patra, Michael Pradel, Yingfei Xiong, Hongyu Zhang, Dan
Hao, and Lu Zhang. 2020. A survey of compiler testing. ACM Computing Surveys
(CSUR) 53, 1 (2020), 1-36. https://doi.org/10.1145/3363562

Junjie Chen and Chenyao Suo. 2022. Boosting compiler testing via compiler opti-
mization exploration. ACM Transactions on Software Engineering and Methodology
(TOSEM) 31, 4 (2022), 1-33. https://doi.org/10.1145/3508362

Jeanne Ferrante, Karl J Ottenstein, and Joe D Warren. 1987. The program de-
pendence graph and its use in optimization. ACM Transactions on Programming
Languages and Systems (TOPLAS) 9, 3 (1987), 319-349. https://doi.org/10.1007/3-
540-12925-1_33

Andrea Fioraldi, Dominik Maier, Heiko Eif3feldt, and Marc Heuse. 2020. { AFL++ }:
Combining incremental steps of fuzzing research. In 14th USENIX Workshop on
Offensive Technologies (WOOT 20).

Tianchang Gao, Junjie Chen, Yingquan Zhao, Yuqun Zhang, and Lingming Zhang.
2023. Vectorizing Program Ingredients for Better JVM Testing. In Proceedings of
the 32nd ACM SIGSOFT International Symposium on Software Testing and Analysis,
ISSTA 2023, Seattle, WA, USA, July 17-21, 2023, René Just and Gordon Fraser (Eds.).
ACM, 526-537. https://doi.org/10.1145/3597926.3598075

Harrison Green and Thanassis Avgerinos. 2022. GraphFuzz: library API fuzzing
with lifetime-aware dataflow graphs. In Proceedings of the 44th International
Conference on Software Engineering. 1070-1081. https://doi.org/10.1145/3510003.
3510228

Samuel Grof3, Simon Koch, Lukas Bernhard, Thorsten Holz, and Martin Johns.
2023. FUZZILLI: Fuzzing for JavaScript JIT Compiler Vulnerabilities. In 30th
Annual Network and Distributed System Security Symposium, NDSS 2023, San
Diego, California, USA, February 27 - March 3, 2023. The Internet Society. https:
//doi.org/10.14722/ndss.2023.24290

Yu Hao, Hang Zhang, Guoren Li, Xingyun Du, Zhiyun Qian, and Ardalan Amiri
Sani. 2022. Demystifying the Dependency Challenge in Kernel Fuzzing. In
44th IEEE/ACM 44th International Conference on Software Engineering, ICSE 2022,
Pittsburgh, PA, USA, May 25-27, 2022. ACM, 659-671. https://doi.org/10.1145/
3510003.3510126

Xiaoyu He, Xiaofei Xie, Yuekang Li, Jianwen Sun, Feng Li, Wei Zou, Yang Liu, Lei
Yu, Jianhua Zhou, Wenchang Shi, and Wei Huo. 2021. SoFi: Reflection-Augmented
Fuzzing for JavaScript Engines. In CCS °21: 2021 ACM SIGSAC Conference on Com-
puter and Communications Security, Virtual Event, Republic of Korea, November 15
- 19, 2021, Yongdae Kim, Jong Kim, Giovanni Vigna, and Elaine Shi (Eds.). ACM,
2229-2242. https://doi.org/10.1145/3460120.3484823

Adrian Herrera, Hendra Gunadi, Shane Magrath, Michael Norrish, Mathias Payer,
and Antony L. Hosking. 2021. Seed selection for successful fuzzing. In ISSTA ’21:
30th ACM SIGSOFT International Symposium on Software Testing and Analysis,
Virtual Event, Denmark, July 11-17, 2021, Cristian Cadar and Xiangyu Zhang
(Eds.). ACM, 230-243. https://doi.org/10.1145/3460319.3464795

Christian Holler, Kim Herzig, and Andreas Zeller. 2012. Fuzzing with code
fragments. In 21st USENIX Security Symposium (USENIX Security 12). 445-458.
He Jiang, Zhide Zhou, Zhilei Ren, Jingxuan Zhang, and Xiaochen Li. 2021. CTOS:
Compiler testing for optimization sequences of LLVM. IEEE Transactions on
Software Engineering 48, 7 (2021), 2339-2358. https://doi.org/10.1109/TSE.2021.
3058671

Jiajun Jiang, Yumeng Wang, Junjie Chen, Delin Lv, and Mengjiao Liu. 2023.
Variable-Based Fault Localization via Enhanced Decision Tree. ACM Transactions
on Software Engineering and Methodology 33, 2 (2023), 1-32. https://doi.org/10.
1145/3624741

Jianfeng Jiang, Hui Xu, and Yangfan Zhou. 2021. RULF: Rust library fuzzing via
API dependency graph traversal. In 2021 36th IEEE/ACM International Conference
on Automated Software Engineering (ASE). IEEE, 581-592. https://doi.org/10.
1109/ASE51524.2021.9678813

Kyungtae Kim, Dae R. Jeong, Chung Hwan Kim, Yeongjin Jang, Insik Shin, and
Byoungyoung Lee. 2020. HFL: Hybrid Fuzzing on the Linux Kernel. In 27th
Annual Network and Distributed System Security Symposium, NDSS 2020, San
Diego, California, USA, February 23-26, 2020. The Internet Society. https://doi.
org/10.14722/ndss.2020.24018

Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis,
Jacques Pienaar, River Riddle, Tatiana Shpeisman, Nicolas Vasilache, and Olek-
sandr Zinenko. 2021. MLIR: Scaling Compiler Infrastructure for Domain Specific
Computation. In 2021 IEEE/ACM International Symposium on Code Generation

Chenyao Suo, Junjie Chen, Shuang Liu, Jiajun Jiang, Yingquan Zhao, and Jianrong Wang

1298

[25]

[26

[27

™
&,

[29

[30

(32

[33

[34

@
2

[36

[37

[38

[39

[40]

[41]

and Optimization (CGO). 2-14. https://doi.org/10.1109/CGO51591.2021.9370308
Vu Le, Mehrdad Afshari, and Zhendong Su. 2014. Compiler validation via
equivalence modulo inputs. ACM Sigplan Notices 49, 6 (2014), 216-226. https:
//doi.org/10.1145/2666356.2594334

Bastien Lecoeur, Hasan Mohsin, and Alastair F Donaldson. 2023. Program Recon-
ditioning: Avoiding Undefined Behaviour When Finding and Reducing Compiler
Bugs. Proceedings of the ACM on Programming Languages 7, PLDI (2023), 1801—
1825. https://doi.org/10.1145/3591294

Suyoung Lee, HyungSeok Han, Sang Kil Cha, and Sooel Son. 2020. Montage:
A Neural Network Language Model-Guided JavaScript Engine Fuzzer. In 29th
USENIX Security Symposium, USENIX Security 2020, August 12-14, 2020, Srdjan
Capkun and Franziska Roesner (Eds.). USENIX Association, 2613-2630.
Caroline Lemieux and Koushik Sen. 2018. FairFuzz: a targeted mutation strategy
for increasing greybox fuzz testing coverage. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, ASE 2018, Montpellier,
France, September 3-7, 2018, Marianne Huchard, Christian Késtner, and Gordon
Fraser (Eds.). ACM, 475-485. https://doi.org/10.1145/3238147.3238176

Zhen Li, Deqing Zou, Shouhuai Xu, Hai Jin, Yawei Zhu, and Zhaoxuan Chen. 2021.
Sysevr: A framework for using deep learning to detect software vulnerabilities.
IEEE Transactions on Dependable and Secure Computing 19, 4 (2021), 2244-2258.
https://doi.org/10.1109/TDSC.2021.3051525

Christopher Lidbury, Andrei Lascu, Nathan Chong, and Alastair F Donaldson.
2015. Many-core compiler fuzzing. ACM SIGPLAN Notices 50, 6 (2015), 65-76.
https://doi.org/10.1145/2737924.2737986

Jiawei Liu, Jinkun Lin, Fabian Ruffy, Cheng Tan, Jinyang Li, Aurojit Panda, and
Lingming Zhang. 2023. Nnsmith: Generating diverse and valid test cases for deep
learning compilers. In Proceedings of the 28th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems, Volume
2.530-543. https://doi.org/10.1145/3575693.3575707

Alessandro Mantovani, Andrea Fioraldi, and Davide Balzarotti. 2022. Fuzzing with
data dependency information. In 2022 IEEE 7th European Symposium on Security
and Privacy (EuroS&P). IEEE, 286-302. https://doi.org/10.1109/EuroSP53844.2022.
00026

William S Moses, Lorenzo Chelini, Ruizhe Zhao, and Oleksandr Zinenko. 2021.
Polygeist: Raising C to polyhedral MLIR. In 2021 30th International Conference on
Parallel Architectures and Compilation Techniques (PACT). IEEE, 45-59. https:
//doi.org/10.1109/PACT52795.2021.00011

Shankara Pailoor, Andrew Aday, and Suman Jana. 2018. MoonShine: Optimizing
OS Fuzzer Seed Selection with Trace Distillation. In 27th USENIX Security Sym-
posium, USENIX Security 2018, Baltimore, MD, USA, August 15-17, 2018, William
Enck and Adrienne Porter Felt (Eds.). USENIX Association, 729-743.

Richard Schumi and Jun Sun. 2021. SpecTest: Specification-Based Compiler
Testing. In Fundamental Approaches to Software Engineering - 24th International
Conference, FASE 2021, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2021, Luxembourg City, Luxembourg, March 27 - April
1, 2021, Proceedings (Lecture Notes in Computer Science, Vol. 12649), Esther Guerra
and Mariélle Stoelinga (Eds.). Springer, 269-291. https://doi.org/10.1007/978-3-
030-71500-7_14

Mayank Sharma, Pingshi Yu, and Alastair F Donaldson. 2023. RustSmith: Random
Differential Compiler Testing for Rust. In Proceedings of the 32nd ACM SIGSOFT
International Symposium on Software Testing and Analysis. 1483-1486. https:
//doi.org/10.1145/3597926.3604919

Qingchao Shen, Haoyang Ma, Junjie Chen, Yongqiang Tian, Shing-Chi Cheung,
and Xiang Chen. 2021. A Comprehensive Study of Deep Learning Compiler Bugs.
In Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (Athens,
Greece) (ESEC/FSE 2021). Association for Computing Machinery, New York, NY,
USA, 968-980. https://doi.org/10.1145/3468264.3468591

Nicolas Vasilache, Oleksandr Zinenko, Aart JC Bik, Mahesh Ravishankar, Thomas
Raoux, Alexander Belyaev, Matthias Springer, Tobias Gysi, Diego Caballero,
Stephan Herhut, et al. 2023. Structured Operations: Modular Design of Code
Generators for Tensor Compilers. In International Workshop on Languages and
Compilers for Parallel Computing. Springer, 141-156. https://doi.org/10.1007/978-
3-031-31445-2_10

Haoyu Wang, Junjie Chen, Chuyue Xie, Shuang Liu, Zan Wang, Qingchao Shen,
and Yingquan Zhao. 2023. MLIRSmith: Random Program Generation for Fuzzing
MLIR Compiler Infrastructure. In Proceedings of the 38th IEEE/ACM International
Conference on Automated Software Engineering. https://doi.org/10.1109/ASE56229.
2023.00120

Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. 2017. Skyfire: Data-Driven
Seed Generation for Fuzzing. In 2017 IEEE Symposium on Security and Privacy,
SP 2017, San Jose, CA, USA, May 22-26, 2017. IEEE Computer Society, 579-594.
https://doi.org/10.1109/SP.2017.23

Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. 2019. Superion: grammar-aware
greybox fuzzing. In Proceedings of the 41st International Conference on Software
Engineering, ICSE 2019, Montreal, QC, Canada, May 25-31, 2019, Joanne M. Atlee,
Tevfik Bultan, and Jon Whittle (Eds.). IEEE / ACM, 724-735. https://doi.org/10.
1109/ICSE.2019.00081

https://doi.org/10.1145/3548606.3560624
https://doi.org/10.1145/3363562
https://doi.org/10.1145/3508362
https://doi.org/10.1007/3-540-12925-1_33
https://doi.org/10.1007/3-540-12925-1_33
https://doi.org/10.1145/3597926.3598075
https://doi.org/10.1145/3510003.3510228
https://doi.org/10.1145/3510003.3510228
https://doi.org/10.14722/ndss.2023.24290
https://doi.org/10.14722/ndss.2023.24290
https://doi.org/10.1145/3510003.3510126
https://doi.org/10.1145/3510003.3510126
https://doi.org/10.1145/3460120.3484823
https://doi.org/10.1145/3460319.3464795
https://doi.org/10.1109/TSE.2021.3058671
https://doi.org/10.1109/TSE.2021.3058671
https://doi.org/10.1145/3624741
https://doi.org/10.1145/3624741
https://doi.org/10.1109/ASE51524.2021.9678813
https://doi.org/10.1109/ASE51524.2021.9678813
https://doi.org/10.14722/ndss.2020.24018
https://doi.org/10.14722/ndss.2020.24018
https://doi.org/10.1109/CGO51591.2021.9370308
https://doi.org/10.1145/2666356.2594334
https://doi.org/10.1145/2666356.2594334
https://doi.org/10.1145/3591294
https://doi.org/10.1145/3238147.3238176
https://doi.org/10.1109/TDSC.2021.3051525
https://doi.org/10.1145/2737924.2737986
https://doi.org/10.1145/3575693.3575707
https://doi.org/10.1109/EuroSP53844.2022.00026
https://doi.org/10.1109/EuroSP53844.2022.00026
https://doi.org/10.1109/PACT52795.2021.00011
https://doi.org/10.1109/PACT52795.2021.00011
https://doi.org/10.1007/978-3-030-71500-7_14
https://doi.org/10.1007/978-3-030-71500-7_14
https://doi.org/10.1145/3597926.3604919
https://doi.org/10.1145/3597926.3604919
https://doi.org/10.1145/3468264.3468591
https://doi.org/10.1007/978-3-031-31445-2_10
https://doi.org/10.1007/978-3-031-31445-2_10
https://doi.org/10.1109/ASE56229.2023.00120
https://doi.org/10.1109/ASE56229.2023.00120
https://doi.org/10.1109/SP.2017.23
https://doi.org/10.1109/ICSE.2019.00081
https://doi.org/10.1109/ICSE.2019.00081

Fuzzing MLIR Compiler Infrastructure via Operation Dependency Analysis ISSTA °24, September 16-20, 2024, Vienna, Austria

OOPSLA2 (2024).
Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and un-

[42] Junjie Wang, Zhiyi Zhang, Shuang Liu, Xiaoning Du, and Junjie Chen. 2023.
Fuzz]JIT: Oracle-Enhanced Fuzzing for JavaScript Engine JIT Compiler. In 32nd [47

USENIX Security Symposium, USENIX Security 2023, Anaheim, CA, USA, August 9-
11, 2023, Joseph A. Calandrino and Carmela Troncoso (Eds.). USENIX Association,
1865-1882.

Zan Wang, Yingquan Zhao, Shuang Liu, Jun Sun, Xiang Chen, and Huarui Lin.
2019. Map-coverage: A novel coverage criterion for testing thread-safe classes. In
2019 34th IEEE/ACM International Conference on Automated Software Engineering
(ASE). IEEE, 722-734. https://doi.org/10.1109/ASE.2019.00073

Mingyuan Wu, Minghai Lu, Heming Cui, Junjie Chen, Yuqun Zhang, and Ling-
ming Zhang. 2023. JITfuzz: Coverage-guided Fuzzing for JVM Just-in-Time
Compilers. In 45th IEEE/ACM International Conference on Software Engineer-
ing, ICSE 2023, Melbourne, Australia, May 14-20, 2023. IEEE, 56-68. https:
//doi.org/10.1109/ICSE48619.2023.00017

Chungqiu Steven Xia, Matteo Paltenghi, Jia Le Tian, Michael Pradel, and Lingming
Zhang. 2024. Fuzz4all: Universal fuzzing with large language models. Proc.
IEEE/ACM ICSE (2024). https://doi.org/10.1145/3597503.3639121

Chen Yang, Junjie Chen, Jiajun Jiang, and Yuliang Huang. 2024. Dependency-
aware code naturalness. Proceedings of the ACM on Programming Languages

derstanding bugs in C compilers. In Proceedings of the 32nd ACM SIGPLAN
conference on Programming language design and implementation. 283-294. https:
//doi.org/10.1145/1993316.1993532

Hongbin Zhang, Mingjie Xing, Yanjun Wu, and Chen Zhao. 2023. Compiler
Technologies in Deep Learning Co-Design: A Survey. Intelligent Computing
(2023). https://doi.org/10.34133/icomputing.0040

Yingquan Zhao, Zan Wang, Junjie Chen, Mengdi Liu, Mingyuan Wu, Yuqun
Zhang, and Lingming Zhang. 2022. History-driven test program synthesis for JVM
testing. In Proceedings of the 44th International Conference on Software Engineering.
1133-1144. https://doi.org/10.1145/3510003.3510059

Zhide Zhou, Zhilei Ren, Guojun Gao, and He Jiang. 2021. An empirical study
of optimization bugs in GCC and LLVM. Journal of Systems and Software 174
(2021), 110884. https://doi.org/10.1016/j.jss.2020.110884

Received 2024-04-12; accepted 2024-07-03

https://doi.org/10.1109/ASE.2019.00073
https://doi.org/10.1109/ICSE48619.2023.00017
https://doi.org/10.1109/ICSE48619.2023.00017
https://doi.org/10.1145/3597503.3639121
https://doi.org/10.1145/1993316.1993532
https://doi.org/10.1145/1993316.1993532
https://doi.org/10.34133/icomputing.0040
https://doi.org/10.1145/3510003.3510059
https://doi.org/10.1016/j.jss.2020.110884

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 MLIR Compiler Infrastructure
	2.2 A Motivating Example

	3 Approach
	3.1 Operation Dependence Graph
	3.2 Operation Dependency Coverage
	3.3 Mutation Rules
	3.4 Overall Fuzzing Process

	4 Evaluation
	4.1 Experimental Setup
	4.2 RQ1: New Bugs Detected by MLIRod
	4.3 RQ2: MLIRod v.s. MLIRSmith
	4.4 RQ3: Contribution of Each Main Component in MLIRod
	4.5 Influence of the Step of Reachability in Measuring OD Coverage
	4.6 Threats to Validity

	5 Discussion
	6 Related Work
	7 Conclusion
	8 Data Availability
	Acknowledgments
	References

