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Abstract
MLIR (Multi-Level Intermediate Representation) compiler infras-
tructure has gained widespread popularity in recent years. It intro-
duces dialects to accommodate various levels of abstraction within
the representation. Due to its fundamental role in compiler con-
struction, it is critical to ensure its correctness. Recently, a grammar-
based fuzzing technique (i.e., MLIRSmith) has been proposed for it
and achieves notable e�ectiveness. However, MLIRSmith generates
test programs in a random manner, which restricts the exploration
of the input space, thereby limiting the overall fuzzing e�ective-
ness. In this work, we propose a novel fuzzing technique, called
MLIRod. As complicated or uncommon data/control dependencies
among various operations are often helpful to trigger MLIR bugs, it
constructs the operation dependency graph for an MLIR program
and de�nes the associated operation dependency coverage to guide
the fuzzing process. To drive the fuzzing process towards increas-
ing operation dependency coverage, MLIRod then designs a set
of dependency-targeted mutation rules. By applying MLIRod to
the latest revisions of the MLIR compiler infrastructure, it detected
63 previously unknown bugs, among which 38/48 bugs have been
�xed/con�rmed by developers.

CCS Concepts
• Software and its engineering! Software testing and debug-
ging.
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1 Introduction
MLIR is a novel compiler infrastructure for facilitating building
domain-speci�c compilers [24]. It not only provides a comprehen-
sive set of shared resources bene�ting multiple domains simultane-
ously, but also introduces dialects (de�ning a number of operations)
to support multi-level IRs and facilitate their transformations. Its
rapid adoption and recognition in both academia and industry have
promoted extensive research works [33, 38, 48] and empowered
a spectrum of compilers targeting diverse domains, such as the
FORTRAN compiler Flang [1] and the DL compiler IREE [3]. Given
the fundamental role of the MLIR compiler infrastructure, ensuring
its correctness is of paramount importance. Speci�cally, numer-
ous domain-speci�c compilers are built upon this infrastructure,
and thus any bugs in it could potentially result in unexpected be-
haviors across all these empowered compilers. That is, the bugs
in the MLIR compiler infrastructure can have a broader impact
than the bugs in an individual compiler, and particularly the per-
niciousness of the latter has been emphasized by lots of existing
studies [8, 17, 27, 37, 42, 50]. Hence, the practical signi�cance of
fuzzing the MLIR compiler infrastructure becomes self-evident.

MLIR exhibits unique characteristics, notably employing dialects
to handle multi-level IRs within the infrastructure and featuring
its proprietary data structure and semantics [24]. These distinctive
features make the existing compiler fuzzing techniques inapplicable
to the MLIR compiler infrastructure. Speci�cally, these techniques
are typically designed to generate high-level source programs as
test inputs for a speci�c compiler rather than the general com-
piler infrastructure, and also, they lack alignment in terms of data
structure and semantics with MLIR. Although the generated high-
level source programs can be transformed into MLIR programs by
corresponding frontends, such an indirect method limits test diver-
sity, which has been demonstrated ine�ective in fuzzing the MLIR
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compiler infrastructure [39]. Recently, the �rst fuzzing technique
speci�c to the MLIR compiler infrastructure (called MLIRSmith)
has been developed, which randomly constructs MLIR programs
according to its grammars [39]. Indeed, it helped detect a number
of bugs, but such a random manner for generating test programs
limits the e�ectiveness in exploring the input space largely, thereby
limiting its test e�ectiveness.

In this work, we propose a novel fuzzing technique for the MLIR
compiler infrastructure, called MLIRod (MLIR fuzzing guided by
operation dependencies), to improve the test e�ectiveness. Specif-
ically, MLIRod utilizes the dependencies between operations to
guide the fuzzing process, instead of the random strategy. This
is because complicated or uncommon data/control dependencies
among various operations are often helpful to trigger MLIR bugs,
which is also con�rmed by our preliminary manual investigation on
historical MLIR bugs. With this intuition, MLIRod �rst introduces
an operation dependency graph (ODG) and its associated operation
dependency coverage (OD coverage) for an MLIR program, and
employs this new type of coverage as the guidance of fuzzing. To
drive the fuzzing process towards increasing OD coverage, MLIRod
then elaborately designs a set of mutation rules to help construct
such high-quality MLIR programs, thereby enhancing the test ef-
fectiveness. In particular, OD coverage is measured in a black-box
manner, further improving the practicability of MLIRod.

We applied MLIRod to fuzz the latest version of the MLIR com-
piler infrastructure for 50 days. In total, MLIRod detected 63 previ-
ously unknown bugs, among which 38/48 bugs have already been
�xed/con�rmed by MLIR developers. To further investigate the
e�ectiveness of MLIRod, we compared MLIRod with the state-of-
the-art MLIR fuzzing technique, i.e. MLIRSmith [39]. During 24-
hour fuzzing (with �ve repeated experiments), MLIRod detected
31 bugs, while MLIRSmith detected only 14 bugs. The former im-
proves the latter by 121.43% in terms of the number of detected bugs.
The results demonstrate the signi�cant superiority of MLIRod over
MLIRSmith in fuzzing the MLIR compiler infrastructure. We also
con�rmed the contribution of each main component in MLIRod
through extensive ablation experiments.

In summary, our work makes the following contributions:
• We design a new type of coverage (operation dependency
coverage) to measure MLIR program diversity in terms of
data and control dependencies among operations from oper-
ation dependency graphs.

• We propose a novel fuzzing technique for the MLIR com-
piler infrastructure (called MLIRod) by guiding the fuzzing
process with operation dependency coverage and a set of
dependency-targeted mutation rules.

• We conducted an extensive study to demonstrate the e�ec-
tiveness of MLIRod, outperforming the state-of-the-art MLIR
fuzzing technique. In particular, MLIRod detected 63 previ-
ously unknown bugs, among which 38/48 bugs have been
�xed/con�rmed by developers.

2 Background and Motivation
2.1 MLIR Compiler Infrastructure
The MLIR compiler infrastructure is a general framework that sup-
ports building diverse domain-speci�c compilers without creating

a new Intermediate Representation (IR) with a single abstraction
for each domain. It achieves this by introducing dialects to sup-
port multi-level IR, and providing systematic passes that cater to a
broad spectrum of transformation and optimization functionalities,
bene�ting multiple domains simultaneously.

Dialects are employed to depict distinct levels of abstraction.
Introducing or modifying dialects enables convenient addition or
re�nement of abstraction levels, making the incorporation of new
domains or hardware targets straightforward. Each dialect de�nes
a set of operations tailored to a speci�c domain. For example, the
TOSA dialect de�nes a set of whole-tensor operations commonly
employed by deep neural networks for di�erent processors [5]. An
operation represents a fundamental unit of computation in MLIR.
For example, the reverse operation de�ned in the TOSA dialect
aims to return a tensor with identical type and values as the input,
wherein the data is reversed along the speci�ed axis.

Dialects enable MLIR to support the representation of operations
across various levels of abstraction. This collective representation
of operations in di�erent dialects forms an MLIR program, which is
regarded as a test input for the MLIR compiler infrastructure. An
illustrative example of an MLIR program is shown in Figure 1(c).
In this example, the func dialect provides the func operation to
de�ne a function, the arith dialect provides the constant oper-
ation to create constant values, the memref dialect provides the
alloc operation for memory allocation, and so on. An operation
can receive some operands and produce results. For example, the
result %f0 produced by the arith.constant operation at Line 9 is
used as an operand of the affine.store operation at Line 10. Such
a collective representation facilitates the optimization of various
operations at their respective appropriate levels, contributing to
enhanced code generation e�ciency and maximizing optimization
capabilities across di�erent hardware targets.

Passes execute a range of transformations or optimizations on
MLIR programs, focusing particularly on operations among diverse
dialects. It takes an MLIR program as input and outputs the trans-
formed or optimized MLIR program. Some passes provide common
transformations or optimizations across multiple dialects, such as
common subexpression elimination, while some passes are tailored
for speci�c dialects, such as the “-tosa-layerwise-constant-fold”
pass for the TOSA dialect, which enables folding of full-layer oper-
ations on constant tensors. In particular, a number of passes can
perform conversions between dialects or operations. For example,
the “-tosa-to-tensor” pass transforms the operations in the TOSA
dialect to the corresponding operations in the tensor dialect.

2.2 A Motivating Example
Figure 1(a) shows the Bug#76281 detected by MLIRod, which trig-
gers a null pointer de-reference at Line 1. The reason is that the
findAncestorOpInRegion function returns null that is not prop-
erly captured. Figure 1(b) shows the patch �xing the bug, where
a proper check for the return result of findAncestorOpInRegion is
added (Lines 2-3). The code in Figure 1(a) is in isEscapingMemrefaw
function, which is invoked by the LoopFusion::runOnOperation
function corresponding to the “-a�ne-loop-fusion” pass. This code
snippet begins by utilizing block->getParent() to obtain the re-
gion (a list of blocks) that de�nes block. Subsequently, it invokes
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1  if ( block -> getParent() 
-> findAncestorOpInRegion(*user) 
-> getBlock() != block )

2    return false;

(a) Buggy code of Bug#76281

1  auto ancestorOp = block -> getParent()
   -> findAncestorOpInRegion(*user); 

2  if ( !ancestorOp )
3    return true;
4  if ( ancestorOp -> getBlock() != block )
5    return false;

(b) Patch for �xing Bug#76281

 1 func.func @producer_consumer_with_outmost_user() {
 2   %c0 = arith.constant 0 : index
 3   %src = memref.alloc() : memref<f16, 1>
 4   %dst = memref.alloc() : memref<f16>
 5   %tag = memref.alloc() : memref<1xi32>
 6   %f1 = arith.constant 1.0 : f16
 7   affine.for %arg1 = 4 to 6 {
 8     affine.for %arg2 = 0 to 1 {
 9       %f0 = arith.constant 0.0 : f16
10       affine.store %f0, %src[] : memref<f16, 1>
11     }
12     affine.for %arg3 = 0 to 1 {
13       %0 = affine.load %src[] : memref<f16, 1>
14     }
15   }
16   affine.dma_start %src[], %dst[], %tag[%c0], %c0 : 
        memref<f16, 1>, memref<f16>, memref<1xi32>
17   return
18 }

(c) The MLIR program triggering Bug#76281

Figure 1: The motivation example with Bug#76281

the findAncestorOpInRegion function to determine if the de�ni-
tion of *user is within the region. If *user is de�ned within the
region, the function returns *user or its ancestor (i.e., the operation
de�ning the block that contains *user); Otherwise, a null pointer
is returned. Finally, it performs a comparison between two blocks.

The MLIR program presented in Figure 1(c) triggered this bug un-
der the “-a�ne-loop-fusion” pass. Speci�cally, the presence of two
fusionable affine.for operations within the same block (Lines
7-15) enables the triggering of the LoopFusion::runOnOperation
function corresponding to the “-a�ne-loop-fusion” pass. In this pro-
gram, the affine.store operation (Line 10) within the affine.for
operation (Lines 8-11) writes the memory location (i.e., %src[])
and the affine.dma_start operation (Line 16) outside the afore-
mentioned block (Lines 7-15) reads the same memory location.
This makes the LoopFusion::runOnOperation function invoke
the isEscapingMemrefaw function, executing Line 1 in Figure 1(a).
In this case, the block at Line 1 in Figure 1(a) refers to the block
(Lines 7-15) containing the affine.store operation (Line 10) in
Figure 1(c). Hence, block->getParent() returns the region con-
taining the only block (Lines 7-15) in Figure 1(c). The *user in Fig-
ure 1(a) refers to the affine.dma_start operation (Line 16) in Fig-
ure 1(c), which reads the samememory location as the affine.store
operation (Line 10). After calling the findAncestorOpInRegion

function on the affine.dma_start operation, null is returned
since Line 16 is not in the region returned by block->getParent().
This ultimately triggers a null pointer de-reference bug.

From this example, we can observe that the triggering of Bug#762-
81 requires to satisfy complicated scoping and data referencing
constraints, which are di�cult to achieve by randomly generating

Seed Pool Seed Program Mutated Program

Test Report

Pass

Select Mutate

Transformed Program

New Coverage

Discard

NO

OD Coverage

Figure 2: Overview of MLIRod

MLIR programs (like MLIRSmith [39]). We have explicitly marked
the bug-triggering constraints in Figure 1(c), where the arrows
show the def-use chains of variables and the boxes show the scope
of code (which can be captured by control dependencies). Note that
Bug#76281 was not introduced recently, but has persisted for an
extensive period (since the revision fe9d0a committed in 2022-12-
14). This also implies that the state-of-the-art MLIRSmith has failed
to detect it, since it had been applied to fuzzing all the revisions
from 2022-10-14 to 2023-03-13 according to its paper/artifact [39],
although all the operations involved in the bug-triggering MLIR
program have been supported by MLIRSmith. In other words, gen-
erating those operations is not di�cult for MLIRSmith, but it is
actually not the case that this bug can be triggered as long as the
test program contains these operations. This con�rms the limitation
of MLIRSmith, further motivating our technique that carefully
considers the dependencies among operations. In particular,
there are a large number of dialects and operations in the MLIR
compiler infrastructure, which forms the huge input space espe-
cially when considering various dependencies among operations.
Hence, this motivates us to design an e�ective strategy in our
fuzzing technique to guide the exploration of the huge space.

3 Approach
We propose a novel fuzzing technique for the MLIR compiler infras-
tructure, calledMLIRod, to improve the test e�ectiveness. MLIRod
proposes to exploit the dependencies between operations for guid-
ing the fuzzing process, in order to explore the input space more ef-
�ciently. Speci�cally, MLIRod constructs an operation dependency
graph (ODG) for each MLIR program and then measures the cor-
responding operation dependency coverage (OD coverage) based
on the graph. The fuzzing process is thus driven towards increas-
ing OD coverage, instead of the random manner employed by the
state-of-the-art MLIRSmith [39]. To produce the MLIR programs fa-
cilitating increasing OD coverage, MLIRod elaborately designs a set
of mutation rules, which focus on establishing new dependencies
or modifying the existing ones between operations.

Figure 2 shows the overview of MLIRod. In the following, we
�rst introduce ODG in Section 3.1 and its associated OD coverage
in Section 3.2, then present the mutation rules in MLIRod for con-
structing diverse MLIR programs in Section 3.3, and �nally describe
the overall fuzzing process of MLIRod guided by the de�ned ODG
and OD coverage as well as the mutation rules in Section 3.4.
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02:arith.constant

03:memref.alloc

04:memref.alloc

05:memref.alloc

06:arith.constant

07:affine.for

16:affine.dma_start

**

01:func.func
*

**

*

17:func.return

10:affine.store

13:affine.load

08:affine.for

12:affine.for

09:arith.constant

Figure 3: ODG of the MLIR program shown in Figure 1(c)

3.1 Operation Dependence Graph
As illustrated in our motivation example, the dependencies between
operations are relevant to the detection of bugs in the MLIR com-
piler infrastructure. Furthermore, certain optimizations in the MLIR
compiler infrastructure can only be activated with the occurrence
of some dependencies between operations in an MLIR program. For
example, the “-bu�er-loop-hoisting” optimization, which aims to
move allocation operation out of loop nests, requires the control
dependency between an allocation operation and a loop operation
(such as scf.for). Therefore, MLIRod takes operation dependen-
cies as the core to improve the fuzzing process.

Inspired by the concept of program dependency graph (PDG) [11],
we de�ne operation dependency graph (ODG) in MLIRod. Similarly,
we consider both data dependencies and control dependencies be-
tween operations in ODG. For ease of presentation, we call them
operation data dependencies and operation control dependencies in
this paper. As introduced in Section 2.1, an operation consists of
its name, operands, and results. If we just treat an operation with
a speci�c name as the basic unit for analyzing data dependencies
and control dependencies, it is relatively coarse-grained since some
bugs can be triggered under certain types of operands for an opera-
tion. If we treat an operation with speci�c values of operands and
results as the basic unit, it is relatively �ne-grained and thus leads
to the enormous space for ODG due to the huge value space for
operands and results. To balance e�ectiveness and e�ciency, we
consider the types of operands and results for an operation to form
the basic unit for subsequent analysis, which is called operation
instance for ease of presentation in this paper.

In the following, we formally de�ne operation instance, opera-
tion data dependency, operation control dependency, and operation
dependency graph (ODG).

D��������� 1 (O�������� I�������). The operation instance (oi)
can be de�ned as a tuple: (Oname,ODtypes, Rtypes), where Oname
is an operation name, ODtypes is a list of operand types, and Rtypes
is a list of result types.

D��������� 2 (O�������� D��� D���������). Let oi8 and oi9
be two operation instances in an MLIR program, oi9 is data dependent
on oi8 if oi8 de�nes a value E and oi9 accesses the value E . We use
a directed edge 4data8, 9 from oi8 to oi9 to represent that oi9 is data
dependent on oi8 .

D��������� 3 (O�������� C������ D���������). Let oi8 and
oi9 be two operation instances in an MLIR program, oi9 is control

dependent on oi8 if the execution of oi9 is dominated by the outcome
of the execution involving oi8 . We use a directed edge 4control8, 9 from oi8
to oi9 to represent that oi9 is control dependent on oi8 .

D��������� 4 (O�������� D��������� G���� (ODG)). ODG
is de�ned as a 2-tuple (N, E), where N is a set of nodes and E is a set
of edges. Each node is an operation instance and each edge represents
either operation data dependency or operation control dependency.

Figure 3 shows an example ODG corresponding to the MLIR
program depicted in Figure 1(c). In Figure 3, the dashed arrows
represent the operation control dependency and the solid arrows
represent the operation data dependency. The edges labeled with
“*” are the operation dependencies relevant to the triggering of this
bug presented in Section 2.2. Here, operation control dependency is
more about the block nesting relationship and variable accessibility.
Speci�cally, if an operation instance oi8 has a code block containing
an operation instance oi9 , then the edge 4control8, 9 exists.

3.2 Operation Dependency Coverage
Traditional white-box or grey-box code coverage is typically ex-
pensive, especially for larger-scale compiler infrastructure. To en-
able e�cient and e�ective guiding of the fuzzing process, MLIRod
de�nes a black-box coverage criterion from ODG, i.e., operation
dependency coverage (OD coverage), and utilizes the OD coverage
to guide the test generation process.

D��������� 5 (������ R�����������). Given an ODG G=(N, E)
and a node oi8 2 # , for each node oi9 2 # , we say oi9 is d-step
reachable from oi8 i� there exists a node sequence <oi0, oi1, · · · , oi;>,
where ;  3 ^ oi0 = oi9 ^ oi; = oi8 and 8: 2 [0, ; � 1], 4data:,:+1 2

⇢ _ 4control:,:+1 2 ⇢. We use (oi8
3
{ oi9 ) to represent this relation.

D��������� 6 (O�������� D��������� P������). Given an
ODG⌧ = (# , ⇢), the OD pattern within d-step reachability regarding
a given node oi8 2 # is the largest subgraph⌧ 0 = (# 0, ⇢0) of⌧ , where

# 0 ⇢ # ^ ⇢0 ⇢ ⇢ and 8>8 9 2 # 0, oi9 = oi8 _ (oi8
3
{ oi9 ).

According to this de�nition, the OD pattern with 0-step reacha-
bility regarding the node 13 in Figure 3 is⌧ = (# , ⇢), where # =
{oi13} and ⇢ = ;. Similarly, the OD pattern with 1-step reachability
regarding the node 13 is⌧ 0 = (# 0, ⇢0), where # 0 = {oi03, oi12, oi13}
and ⇢0 = {4control12,13 , 4data03,13}. Note that the corresponding nodes and
edges are the concrete operation instances in actual implementa-
tion. For example, the node oi13 denotes the operation instance
for affine.load at Line 13 (in Figure 1(c)), while the edge 4control12,13
denotes that the operation instance for affine.load at Line 13
is control-dependent on the operation instance for affine.for at
Line 12. In this way, we de�ne that two OD patterns are equal to
each other if they contain the same operation instances with the
same dependency relations, i.e., the same subgraph from an ODG.
Then, we de�ne the concept of operation dependency coverage.

D��������� 7 (O�������� D��������� C�������). The oper-
ation dependency coverage (OD coverage) of a given test suite ) of
MLIR programs is de�ned in formula (1),

ODcov =
| –C 2) P⌧C

3
|

| –C 0 2A P⌧C 0
3

|
(1)
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where ⌧C is the ODG for the MLIR program C , and P⌧C
3

is a set of
all possible OD patterns over ⌧C regarding d-step reachability, and
A is the set of all possible MLIR programs. That is, OD coverage is
measured on the entire input space rather than a single MLIR program.

It is impossible to enumerate all tests in A, and thus it is hard to
estimate the denominator of ODcov. One potential way to conduct
the estimation is to randomly generate a large number of MLIR
programs and calculate the number of unique OD patterns, until
the number of OD patterns does not increase, or increases very
slowly. However, this is rather expensive [43]. In our work, we only
use the OD coverage to guide the exploration of input space, rather
than use it for test adequacy evaluation. Hence, we can directly use
the enumerator, i.e., the concrete number of covered OD patterns in
the executed MLIR programs, to achieve the same purpose. In the
following, we mean the concrete number of covered OD patterns
in the executed MLIR programs when we refer to OD coverage.

Note that in MLIRod, we provide a method of de�ning OD cover-
age from ODG based on OD pattern. However, this may be not the
only method and also not the optimal one. For example, we could
also extract paths from ODG to de�ne OD coverage. Here, we aim
to provide a cost-e�ective method to enable our MLIRod idea and
then take the exploration of more (potentially better) methods for
further improving its e�ectiveness as our future work.

3.3 Mutation Rules
In MLIRod, we elaborately design a set of mutation rules to change
the existingMLIR programs towards increasing OD coverage. These
mutation rules aim to establish new dependencies or modify the
existing dependencies between operations. From the perspective of
ODG, they can operate both nodes and edges in an ODG to achieve
this goal. Speci�cally, we have designed four types of mutation
rules, including node insertion, node deletion, data dependency
modi�cation, and control dependency modi�cation. In the follow-
ing, we will introduce each mutation rule in detail. Due to the space
limit, we prepared a set of examples to facilitate understanding
these mutation rules at our project homepage [4].

Node Insertion (R1) denotes inserting a new random node
into the ODG of a given MLIR program and then constructing the
dependency edges between it and the existing nodes according to
the operands required by the new node. This mutation rule can
introduce new nodes to make the ODG more complicated and thus
have a larger possibility to detect hard-to-trigger bugs.

Formally, assuming that the newly inserted node (i.e., an oper-
ation instance) is represented as oi8 = (_,ODtypes8 , _)1. Then, for
each C: 2 ODtypes8 , MLIRod tries to �nd an accessible operation
instance oi4 = (_, _, Rtypes4 ) whose result types contain the type
C: , i.e., C: 2 Rtypes4 . In this way, a new data dependency edge
4: = 4data4,8 can be constructed. We use ⇢3 = {41, 42, ..., 4=} (= is
equal to the size of ODtypes8 ) to represent the set of data depen-
dency edges to be constructed according to the required operands
in oi8 . Here, we use “accessible” to denote that the referenced value
is de�ned before use. If no such existing operation instance oi4
exists for C: , MLIRod then generates a new node oi4 with a random

1For ease of presentation, we use “_” to denote any valid instances, symbols, or values
if they do not a�ect the understanding in the paper.

value of the corresponding type for this operand (which can be
implemented by invoking the APIs provided by MLIRSmith).

To construct more complicated MLIR programs for fuzzing the
MLIR compiler infrastructure with higher OD coverage, MLIRod
prefers to insert the new node to some location where it can be
controlled by a certain existing operation instance oi2 . In this way,
a new control dependency edge 4control2,8 can be introduced. As a
result, given that the ODGs before and after applying this mutation
rule as ⌧ = (# , ⇢) and ⌧ 0 = (# 0, ⇢0) respectively, we have # 0 =
# [ {oi8 , oi4 } ^ ⇢0 = ⇢ [ ⇢3 [ {4control2,8 }.

NodeDeletion (R2) denotes randomly deleting an existing node
from the OGD of a given MLIR program and then updating the data
and control dependencies broken by the deletion. Speci�cally, new
data dependencies have to be constructed for those nodes that are
data dependent on the deleted one in order to make the mutated
program valid. This mutation rule can help cover more diverse OD
patterns by changing nodes in the ODG and the corresponding
dependency edges, thereby increasing OD coverage.

Formally, assuming that the deleted node is represented as oi3
and the original ODG is ⌧ = (# , ⇢). The deletion of oi3 may a�ect
some other node oi4 that is either dependent on or depended by oi3 ,
and the edges a�ected by this deletion are denoted as 4data4,3 , 4control4,3 ,
4data3,4 , and 4control3,4 . Here, 4data4,3 and 4control4,3 , denoting that the deleted
node oi3 is data or control dependent on some existing node oi4 ,
can be directly deleted. However, for 4data3,4 and 4control3,4 , additional
modi�cations are required to ensure the validity of the mutated
program. Speci�cally, 4data3,4 represents that some existing node oi4
uses the result of oi3 , and thus is data dependent on oi3 . For this
case, similar to the rule of node insertion, this mutation rule tries to
�nd another accessible node oiA with the same result type as oi3 , and
then updates the edge 4data3,4 to 4dataA ,4 . In other words, the operand
of oi4 is updated to be another value. For 4control3,4 , representing that
some existing node oi4 is control dependent on oi3 , this mutation
rule deletes it from ⇢ and its associated node oi4 from# accordingly.
Note that this process is recursive since the deletion of the node oi4
can be viewed as another round of node deletion, where another
updating procedure has to be conducted.

Data Dependency Modi�cation (R3) denotes replacing all
the nodes that are data depended by a randomly selected node
in the ODG of a given MLIR program with other accessible and
type-compatible nodes. In other words, all the operand values of
the selected node are replaced with other type-compatible ones.
This mutation rule can help establish new data dependencies in the
MLIR program by reorganizing some data dependencies associated
with this node, which facilitates the detection of more diverse bugs.

Formally, assuming that the node oidm = (_,ODtypes, _) is the
selected node, whose operands (or data dependencies) are required
to be updated in the given ODG⌧ = (# , ⇢). For each operand type
C: 2 ODtypes, if there is an associated edge 4data9,dm 2 ⇢ (i.e., oidm
is data dependent on oi9 ), MLIRod tries to �nd another accessible
node oiA = (_, _, Rtypes), where C: 2 Rtypes^oiA < oi9 , for updating
the data dependency from 4data9,dm to 4dataA ,dm. More explicitly, the : th

operand value of oidm is updated to use the result of oiA rather than
oi9 . If there is no alternative oiA found for replacing oi9 , it keeps
unchanged. Finally, if no data dependency edge is updated in ⇢,
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a new node oidm will be selected to perform the same mutation
process until it succeeds or reaches a given constraint (e.g., a time
budget or times of mutation).

Control Dependency Modi�cation (R4) denotes updating
the control dependency of a randomly selected node in the ODG
of a given MLIR program, while keeping all the data dependencies
unchanged. Speci�cally, this mutation rule aims to move the opera-
tion instance from an inner conditional block to the outer one, and
thus achieves the modi�cation of the control dependency, which
can complement the other mutation rules to a large extent.

Formally, assuming that the selected node is oicm for control
dependency modi�cation and the associated ODG is ⌧ = (# , ⇢).
If there exist nodes oi9 2 # and oiA 2 # that satisfy 4control9,cm 2
⇢^4controlA , 9 2 ⇢, then this mutation rule is to change 4control9,cm to 4controlA ,cm .
In other words, the control dependent node of oicm is updated from
oi9 to oiA . That is, the operation instance oicm is moved from an
inner conditional block to the outer one. However, this change may
break the data dependencies of the node oicm since the movement
may cause the reference to some existing node to be invalid. To
keep the data dependencies unchanged and ensure the validity of
the mutated MLIR program, this rule also moves the dependent
nodes of oicm accordingly. That is, for each node oi4 2 # , if 4data4,cm 2
⇢ ^ 4control9,4 2 ⇢ (i.e., oicm is data dependent on oi4 and they are
in the same conditional block), it then updates 4control9,4 to 4controlA ,4 .
That is, the node oi4 is moved from the inner conditional block
to the outer one together. In this way, the data dependency 4data4,cm
can keep unchanged as long as their relative order is preserved.
Similarly, the movement of the node oi4 may further a�ect other
nodes. We recursively handle this issue by following the same
process presented above.

3.4 Overall Fuzzing Process
The general work�ow of MLIRod for fuzzing the MLIR compiler
infrastructure, as shown in Figure 2, consists of seed pool initializa-
tion, mutation-based MLIR program generation, MLIR-pass-based
fuzzing, and OD-coverage-based seed pool maintenance.

Seed Pool Initialization: MLIRod initializes the seed pool by
utilizing the state-of-the-art MLIR program generator (i.e., MLIR-
Smith [39]) to generate # MLIR programs. Note that MLIRod is
not speci�c to MLIRSmith, and in theory, the seed pool can be
initialized by any MLIR program generators (however, MLIRSmith
is the only one until now) or open source MILR programs. Then,
MLIRod calculates the OD coverage of these seed programs.

Mutation-based MLIR Program Generation: In each fuzzing
iteration, MLIRod randomly selects a seed program from the seed
pool and randomly selects a mutation rule to mutate it. In this
way, a new MLIR program can be generated for fuzzing the MLIR
compiler infrastructure.

MLIR-Pass-based Fuzzing: MLIRod collects the entire set of
MLIR passes from documentation [7]. For a generated MLIR pro-
gram, MLIRod randomly selects : passes with replacement from
the entire set of MLIR passes and randomly determines the order
of these selected passes to form an MLIR pass sequence. Then,
MLIRod applies each pass in the sequence to the MLIR program.
If a crash occurs during this process, we regard that this MLIR

program detects a bug. Note that since we just considered crash
as the test oracle, we did not specially investigate lowering paths,
which can be regarded as our future work. Each speci�ed pass
is designed to produce a newly transformed or optimized MLIR
program, potentially introducing new dialects and operations. To
broaden the scope of dialects and operations under fuzzing, MLIRod
gathers all the newly transformed or optimized MLIR programs for
OD-coverage-based seed pool maintenance.

OD-Coverage-based Seed Pool Maintenance: If a generated
MLIR program via mutation achieves new OD coverage, MLIRod
puts the generated MLIR program into the seed pool, inspired by
the general coverage-based fuzzing practice (coverage-increasing
test cases tend to help generate more e�ective tests) [6, 12, 44].
Furthermore, MLIRod checks whether the transformed program by
each MLIR pass improves the OD coverage. If the improvement is
identi�ed, MLIRod also puts it into the seed pool. In this way, the
fuzzing process can be e�ectively driven towards increasing OD
coverage, and thus the fuzzing e�ectiveness can be improved.

4 Evaluation
To evaluate MLIRod, we conducted an extensive study to answer
the following research questions (RQs):

• RQ1: How does MLIRod perform in detecting previously
unknown bugs in the MLIR compiler infrastructure?

• RQ2: How does MLIRod perform in bug detection compared
with the state-of-the-art MLIRSmith?

• RQ3: How does each main component in MLIRod contribute
to the overall e�ectiveness?

• RQ4: How does the step of reachability 3 in measuring OD
coverage a�ect the e�ectiveness of MLIRod?

4.1 Experimental Setup
To answer RQ1, we applied MLIRod to fuzz the latest revisions of
the MLIR compiler infrastructure (from revision fe5370d to revision
6e90f1) for 50 days. It aims to detect previously unknown bugs.
To answer RQs 2-4, we selected the revision eb6014 (the latest
one when we started the experiments for RQs 2-4), totaling 429.5K
lines of code, as the subject for 24-hour fuzzing to perform fair
comparisons. To reduce the in�uence of randomness, we repeated
the experiments in RQs 2-4 for �ve times, and aggregated the results
same as the existing study [39]. To balance the testing e�ectiveness
and e�ciency, we set the step of reachability in measuring OD
coverage (3) to 2, the number of passes for constructing an MLIR
pass sequence (:) to 10, and the number of initial seed programs
(# ) to 50 in MLIRod by default. In RQ4, we will investigate the
in�uence of an important parameter (i.e., 3) on the e�ectiveness of
MLIRod. All our experiments were conducted on a machine with
Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40GHz and 128G Memory,
Ubuntu 20.04.6 LTS.

4.1.1 Compared Techniques. To answer RQ2, we comparedMLIRod
with the state-of-the-art technique for fuzzing the MLIR compiler
infrastructure (i.e., MLIRSmith [39]). We adopted the released im-
plementation of MLIRSmith and used the recommended parameter
settings in the work of MLIRSmith for fair comparison [39].

MLIRod is orthogonal to MLIRSmith to some extent, since the
former can produce more MLIR programs through mutation based
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on the programs generated by the latter. Nevertheless, it is still
important to compare their fuzzing e�ectiveness. To more clearly
highlight the contribution of our mutation-based MLIRod, we used
MLIRSmith to generate only 50 programs as the initial seed pro-
grams in MLIRod. During the 24-hour fuzzing, MLIRSmith gen-
erates 12,855 programs, which is signi�cantly more than the 50
initial seed programs employed by MLIRod, while MLIRod gener-
ates 9,291 programs through mutations (whose sizes are ranging
from 94 to 18,776 lines of code). That is, MLIRod under this setting
does not incorporate too much from MLIRSmith. Hence, such an
experiment can help compare the mutation-based MLIRod and the
grammar-based MLIRSmith clearly.

Note that the existing study [39] has demonstrated MLIRSmith
outperforms the indirect method of transforming high-level source
programs generated by NNSmith [31] (the state-of-the-art test gen-
erator for fuzzing deep learning compilers by generating ONNX
computation graphs) into MLIR programs through available fron-
tends. Hence, we chose the better one (MLIRSmith) as our com-
pared technique in our study. For su�cient comparison, we also
conducted an experiment to compare MLIRod with the method
using NNSmith, but put the detailed results on our project home-
page [4] due to the space limit. In summary, during 24-hour fuzzing,
MLIRod (31) indeed detected much more bugs than NNSmith (10).

In RQ3, we investigated the contributions of each mutation rule,
the mechanism of enriching dialects and operations with MLIR
passes, and our OD coverage guidance in MLIRod. Accordingly, we
constructed seven variants of MLIRod for comparison.MLIRodR1w/o,
MLIRodR2w/o, MLIRodR3w/o, and MLIRodR4w/o remove each mutation
rule (R1, R2, R3, or R4) from MLIRod, respectively. MLIRodpassw/o
removes the mechanism of putting pass-produced programs for
seed pool maintenance from MLIRod. MLIRodrand removes the
OD coverage guidance from MLIRod and randomly puts each gen-
erated MLIR program into the seed pool. MLIRodedge replaces
the OD coverage with the widely-studied edge coverage [12] as
the guidance in MLIRod. We collected edge coverage following
AFL++ [12].

To answer RQ4, we studied several settings for the step of reach-
ability 3 in measuring OD coverage in MLIRod, i.e., 0, 1, 2, 3. The
0-step OD coverage means that MLIRod only collects individual
operation instances in the MLIR program for measuring coverage.

4.1.2 Metrics. We adopted two metrics to measure the e�ective-
ness of each technique: 1) the number of detected bugs and 2) the
number of covered lines in the subject. Both of them have been
widely used in the existing work on fuzzing [25, 47, 49]. During the
fuzzing process, a number of crashes may be triggered, but many of
them may be caused by the same root causes. Hence, it is important
to de-duplicate them to accurately measure the number of detected
bugs. We de-duplicated them according to crash messages same
as the existing work [39]. Then, we submitted unique crashes to
MLIR compiler infrastructure developers, and counted the number
of detected bugs based on their feedback. Note that developers
may directly �x bugs without updating issue reports. As our bugs
were detected on the latest revisions at the time of our fuzzing and
reporting, we also checked whether each bug without developers’
response still existed on subsequently-commited revisions follow-
ing the existing work [10]. If it is a crash bug and did not exist

on subsequently-commited revisions, we regard it as the case of
developer �xing without updating reports. Regarding line coverage,
we collected it using the widely-used gcov [2].

4.2 RQ1: New Bugs Detected by MLIRod
In total, MLIRod detected 63 previously unknown bugs during 50-
day fuzzing, among which 48/38 bugs have been con�rmed/�xed by
developers and 15 bugs are still awaiting feedback. Table 1 shows the
details of these detected bugs, including the bug ID, the root cause
for each �xed bug (identi�ed by developers), the type of the MLIR
pass where each bug occurs, and the bug status. The bugs detected
by MLIRod exhibit diversity, spanning across a broad spectrum
of MLIR passes and root causes. Subsequently, we conducted a
comprehensive analysis of these bugs from these two aspects.

Bug-occurring Pass Analysis: As introduced in the existing
work [39], in general, there are four types of passes in the MLIR
compiler infrastructure:

• Conversion passes perform transformations between dialects
to lower the abstraction level. 14 out of 63 bugs are identi�ed
within conversion passes.

• Bu�erization passes transform the operations that exhibit
tensor semantics into the operations with memref semantics.
4 bugs are associated with bu�erization passes.

• General transformation passes are universally applicable
to all dialects and are designed to perform common opti-
mizations/transformations. 20 bugs manifest within general
transformation passes.

• Domain-speci�c passes perform domain-speci�c optimiza-
tions/transformations within each speci�c dialect. 25 bugs
occur in domain-speci�c passes.

Root Cause Analysis: The detected bugs by MLIRod covered
all the �ve root causes introduced in the existing work [39], i.e.,
Incomplete Veri�er (IV), Incorrect Pattern (IP), Incorrect Rewrite
Logic (IRL), Unregistered Dialect (UD), and Incorrect Assertion (IA).
Note that the root causes were identi�ed by the developers of the
MLIR compiler infrastructure and thus only the 38 �xed bugs have
been labeled with the corresponding root causes.

7 bugs are caused by Incomplete Veri�er. Speci�cally, each pass
is equipped with a veri�er to assess the compatibility between
the pass and speci�c operations. This root cause is the absence or
incompleteness of a necessary veri�er for a pass. This de�ciency
results in the pass operating on incompatible operations, ultimately
leading to a crash. That is, compilers should normally reject invalid
programs rather than directly crash. For example, Bug#70418 (Fig-
ure 4) was triggered when the “-convert-func-to-spirv” pass was
applied to the program with the affine.vector_load operation,
which uses an invalid value for the %dim operand. Such an invalid
value can be produced only if the memref.dim operation takes an
out-of-bound index as its operand (i.e., the value of %c6 is larger
than the shape of %alloc_4). The root cause lies in missing a veri-
�er between this pass and the affine.vector_load operation to
capture such an exception in advance, resulting in a crash. Also, the
data dependency between memref.dim and affine.vector_load

makes a large contribution to detecting this bug, demonstrating the
importance of considering data dependencies between operations
in MLIRod. Regarding MLIRSmith, it adopts the random strategy
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Table 1: Previously unknown bugs detected by MLIRod

Bug Id Root Cause1 Pass Category Status Bug Id Root Cause Pass Category Status

64385* IP Conversion �xed 71281 UD Domain Speci�c(async) �xed
64408 IP Domain Speci�c(linalg) �xed 73190 IRL General Transformation �xed
64409 IP Conversion �xed 73191 — Bu�erization con�rmed
64622 IRL Domain Speci�c(linalg) �xed 73285 — General Transformation submitted
64638 — Bu�erization submitted 73288* IRL Domain Speci�c(linalg) �xed
64639 — Domain Speci�c(GPU) con�rmed 73289 IP Conversion �xed
64674 IP General Transformation �xed 73381 — Domain Speci�c(arith) submitted
67760 IV Domain Speci�c(TOSA) �xed 73382 IA General Transformation �xed
67761 IV Conversion �xed 73383 IP General Transformation �xed
67763 IP Domain Speci�c(TOSA) �xed 73532 — General Transformation submitted
67977 IRL Bu�erization �xed 73534 — Conversion submitted
68187 IV Domain Speci�c(TOSA) �xed 73540 — Domain Speci�c(a�ne) submitted
68481 IV Conversion �xed 73547 — General Transformation con�rmed
68483 IP Domain Speci�c(memref) �xed 74227* IRL Domain Speci�c(sparse_tensor) �xed
68486 IV Conversion �xed 74234 — Domain Speci�c(arith) con�rmed
68948 IRL Bu�erization �xed 74236 — General Transformation con�rmed
68950* IP Domain Speci�c(transform) �xed 74237 IP Domain Speci�c(TOSA) �xed
70180 IP Domain Speci�c(memref) �xed 74301 — General Transformation submitted
70183 — General Transformation submitted 74306 IP General Transformation �xed
70278 — Conversion con�rmed 74308 — Conversion submitted
70415 IV Domain Speci�c(TOSA) �xed 74313* IRL General Transformation �xed
70418 IV Conversion �xed 74453 IRL Domain Speci�c(llvm) �xed
70439 — Domain Speci�c(a�ne) submitted 74461 — General Transformation con�rmed
70633 IP General Transformation �xed 74466 — Conversion submitted
70884 IP General Transformation �xed 74937 — Domain Speci�c(arith) con�rmed
70887 IP General Transformation �xed 74940 — Conversion submitted
70902 IP General Transformation �xed 75758 IP Domain Speci�c(scf) �xed
70913 — General Transformation submitted 75770 — Conversion con�rmed
71036 IP Domain Speci�c(vector) �xed 76281 IRL Domain Speci�c(a�ne) �xed
71147 — Domain Speci�c(a�ne) submitted 76309 — Domain Speci�c(a�ne) submitted
71150 IP Conversion �xed 77420 — General Transformation con�rmed
71153 IP General Transformation �xed
1 Full Name of Root Cause: IV (Incomplete Veri�er), IP (Incorrect Pattern), IRL (Incorrect Rewrite Logic), UD (Unregistered Dialect), IA (Incorrect Assertion)
* These bugs belong to the cases of developer �xing without updating reports.

-  ··· 
1  %dim = memref.dim %alloc_4, %c6 : 

  memref<4xi64> // out-of-bound
2  %70  = affine.vector_load %alloca_100[%dim] :  

  memref<100xi64>, vector<31xi64> 
-  ··· 
Figure 4: Program snippet for triggering Bug#70418 (IV)

-  ··· 
1  memref.dealloc %arg0 : memref<?xf32>
2  %0 = bufferization.clone %arg0 : memref<?xf32> to   

memref<32xf32>
-  ···Figure 5: Program snippet for triggering Bug#74306 (IP)

for program generation, and thus it is hard for it to construct such
a data dependency and thus detect this bug.

20 bugs are caused by Incorrect Pattern. Speci�cally, a set of
patterns is employed by each pass to identify the operations that
this pass intends to transform or optimize. If certain patterns are
incorrect, this pass may inadvertently transform or optimize un-
expected operations, resulting in a crash. For example, Bug#74306
(Figure 5) was caused since the “-canonicalize” pass improperly
optimizes the bufferization.clone operation. This optimization
relies on the assumption that the memref.dealloc operation fol-
lows the bufferization.clone operation. However, there is an
memref.dealloc operation preceding the bufferization.clone
operation in this program, causing that this optimization processes
the variable (%arg0) that has been released by this memref.dealloc
operation and thus crashes. This bug has been �xed by modify-
ing the pattern to avoid activating this optimization under such

1 llvm.func @func1() {
2   scf.parallel (%arg0) = (%c0) to (%c22) step (%c1) {
-    ··· 
3   }
4 }

Figure 6: Program snippet for triggering Bug#71281 (UD)

cases. The data dependency between bufferization.clone and
memref.dealloc on %arg0 contributes to the triggering of this bug.

9 bugs are caused by Incorrect Rewrite Logic. Speci�cally, passes
rewrite matched operations into new forms. However, if the logic
governing this rewriting is �awed, the pass may generate incorrect
operations. We have introduced such a bug in Section 2.2.

One bug is caused by Unregistered Dialect. Speci�cally, to facil-
itate the transformation from an operation in one dialect to an
operation in another dialect, the latter dialect must be registered
within the pass. Without this registration, the transformation pro-
cess will crash. For example, Bug#71281 (Figure 6) was caused due
to missing to register the func dialect for the “-async-parallel-for”
pass. Speci�cally, when the “-async-parallel-for” pass is activated
by the scf.parallel operation, it requires the information of the
func dialect. However, this dialect is not loaded due to missing
registration, ultimately leading to a crash. This bug cannot be trig-
gered by MLIRSmith, since all programs generated by it use the
func dialect. This bug-triggering program is produced by MLIRod
on the seed program complemented by the “-convert-func-to-llvm”
pass, which lowers all the operations in the func dialect to the
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1 scf.for %arg4 = %c0 to %c22 step %c1 {
2   %dim = memref.dim %alloc, %c1 : 

   memref<?xi1> // undefined behavior
- ··· 
3 }

Figure 7: Program snippet for triggering Bug#73382 (IA)

corresponding operations in the llvm dialect. It leads to the disap-
pearance of the func dialect in the seed program as well as this
bug-triggering program. This demonstrates the necessity of the
mechanism of putting pass-produced programs for seed pool main-
tenance in MLIRod.

One bug is caused by Incorrect Assertion. Speci�cally, the MLIR
compiler infrastructure includes numerous assertions designed to
verify internal states. Incorrect assertions will make the transforma-
tion/optimization process crash, even if internal states are correct.
For example, Bug#73382 (Figure 7) was caused due to an incorrect
assertion in the “-loop-invariant-code-motion” pass. Speci�cally,
this pass works since there is an scf.for operation in this program.
However, the memref.dim operation within the scf.for operation
has an out-of-bound dimension index, which is an unde�ned behav-
ior. The assertion in this pass incorrectly processes this unde�ned
behavior, leading to a crash. The control dependency between the
scf.for operation and the memref.dim operation with an out-of-
bound dimension index contributes to the triggering of this bug.

4.3 RQ2: MLIRod v.s. MLIRSmith
Figure 8(a) shows the number of bugs detected by each technique
as the fuzzing process progresses for 24 hours. As aforementioned,
we repeated the experiments for �ve times and aggregated the re-
sults to reduce the in�uence of randomness involved in fuzzing.
Overall, MLIRod detected 31 bugs, while MLIRSmith just detected
14 bugs during the same fuzzing time. The improvement of MLIRod
over MLIRSmith is 121.43%. From this �gure, MLIRSmith reached
saturation in bug detection quickly, while MLIRod can detect bugs
continuously within the fuzzing time. The results demonstrate the
superiority of MLIRod overMLIRSmith in bug detection.We also an-
alyzed the overlap of the bugs detected by MLIRod and MLIRSmith.
21 bugs detected by MLIRod cannot be detected by MLIRSmith
during the given fuzzing time, while only 4 bugs detected by the
latter cannot be detected by the former, further con�rming the
e�ectiveness of MLIRod. The possible reason behind the 4 missed
bugs by MLIRod is that, the random fuzzing strategy employed in
MLIRSmith could make it explore a portion of input space that is
still unexplored by MLIRod within the given fuzzing time.

We further investigated why MLIRod outperforms MLIRSmith
signi�cantly. Speci�cally, during the given fuzzing time, MLIRod
covered 116,641 lines of code for the MLIR compiler infrastructure,
while MLIRSmith covered 113,971 lines. Among the lines covered
by MLIRod, 13,373 lines cannot be covered by MLIRSmith. The
maximum branch depth achieved by MLIRod is 7, same as that by
MLIRSmith, but MLIRod covered 715 more branches than MLIR-
Smith. Besides, the MLIR programs produced by MLIRod involved
430 operations from 20 dialects (including the 13 dialects supported
by MLIRSmith and the 7 dialects produced through lowering/opti-
mizations), while those by MLIRSmith just involved 256 operations
from 13 dialects during the given fuzzing time. Note that all dialects
and operations generated by MLIRod and MLIRSmith can be found

at our homepage [4]. That is, MLIRod explored larger input space
due to its ability of guiding the fuzzing process with OD cover-
age and e�ciently supporting more dialects and operations with
MLIR passes. Hence, the fuzzing e�ectiveness of MLIRod can be
signi�cantly enhanced.

4.4 RQ3: Contribution of Each Main
Component in MLIRod

To evaluate the contribution of each component, we applied the
seven variants (introduced in Section 4.1.1) to fuzzing the MLIR
compiler infrastructure, respectively. Figure 8(b) shows the number
of bugs detected by each variant during the given fuzzing time (24
hours with �ve repeated experiments).

By comparing MLIRod with MLIRodR1w/o, MLIRodR2w/o, MLIRodR3w/o,
and MLIRodR4w/o, MLIRod detected more bugs than all the four vari-
ants, demonstrating the contribution of each mutation rule. Among
the four variants, MLIRodR3w/o detected the smallest number of bugs
(i.e., 16), indicating the most signi�cant contribution of data depen-
dency modi�cation. The possible reasons are that (1) the mutation
rule of data dependency modi�cation has larger mutation space
than that of control dependency modi�cation, since the former may
involve the combinations of various operations while the latter
just involves the combinations with the control-related operations
(e.g., scf.if and scf.for); (2) data dependency modi�cation is
more e�cient than node insertion and node deletion to generate
a mutated MLIR program, which can generate more programs for
fuzzing during the same time.

By comparing with MLIRodpassw/o , we found that the former (i.e.,
31) outperforms the latter (i.e., 28) in bug detection during the
given fuzzing time. The results demonstrate the contribution of the
mechanism of putting pass-produced programs for seed pool main-
tenance. Through further analysis, the MLIR programs generated
by MLIRod involved 430 operations from 20 dialects while those
by MLIRodpassw/o involved 256 operations from 13 dialects. That is,
MLIRod explored larger input space than MLIRodpassw/o , explaining
the superiority of MLIRod over MLIRodpassw/o . In fact, MLIRodpassw/o
has the same space of dialects and operations as MLIRSmith, but
the former (i.e., 28) still detected more bugs than the latter (i.e.,
14) during the given fuzzing time. These results demonstrate the
e�ectiveness of the remaining components in MLIRod.

By comparing MLIRod with MLIRodrand, we found that the for-
mer detected 31 bugs while the latter detected 20 bugs during the
given fuzzing time. Also, the former achieved 429.6K OD coverage
while the latter achieved 240.7K OD coverage. The results demon-
strate the contribution of guiding the fuzzing process with OD
coverage inMLIRod. Moreover, we compared our OD coverage guid-
ance with the widely-used edge coverage guidance in the area of
fuzzing by constructing the corresponding variant (i.e., MLIRodedge).
From Figure 8(b), we found that MLIRodedge just detected 3 bugs
during the same fuzzing time, which even performs worse than
MLIRodrand. After investigation, we found that edge coverage is
hard to increase during the fuzzing process for the MLIR compiler
infrastructure, causing that very few generated programs were put
into the seed pool for further mutations. The results indicate that
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(a) Number of detected bugs by MLIRod and MLIRSmith (b) Number of detected bugs by MLIRod and its variants

Figure 8: Number of detected bugs by MLIRod and comparison approaches (M in variant names refers to MLIRod)

OD coverage seems more proper than the widely-used edge cover-
age in our scenario of fuzzing the MLIR compiler infrastructure.

4.5 In�uence of the Step of Reachability in
Measuring OD Coverage

We �nally investigated the in�uence of one important parameter in
MLIRod (i.e., the step of reachability 3 in measuring OD coverage).
As presented in Section 4.1.1, we studied four di�erent settings (3
= 0, 1, 2, 3, respectively). For ease of presentation, we call them
MLIRod0, MLIRod1, MLIRod2 (i.e., MLIRod), MLIRod3, respectively.

Figure 8(b) presents the number of detected bugs by MLIRod un-
der di�erent settings of 3 during the given fuzzing time. We found
that they detected 10, 28, 31, and 25 bugs, respectively. Among them,
MLIRod0 performs the worst signi�cantly, since it solely considers
the diversity of operation instances (leading to saturated cover-
age quickly) but ignores the dependencies between them. Under
the remaining three settings, MLIRod can consistently outperform
MLIRSmith. The results demonstrate the necessity of consider-
ing the dependencies between operation instances in MLIRod for
fuzzing the MLIR compiler infrastructure. Besides, we found that
MLIRod2 (i.e., MLIRod) performs better than both MLIRod1 and
MLIRod3, showing that 3 = 2 seems to achieve a balance between
e�ectiveness and e�ciency. Speci�cally, MLIRod2 collects more
su�cient OD information than MLIRod1, and meanwhile it spends
less time on coverage collection than MLIRod3, leading to generat-
ing more programs for fuzzing during the given time. Hence, we
recommend 3 = 2 as the default setting in MLIRod for practical use.

4.6 Threats to Validity
The threat to internal validity mainly lies in the implementation of
MLIRod. To reduce this kind of threat, two authors have carefully
checked all source code and written unit tests for guaranteeing the
correctness. Regarding the compared technique (i.e., MLIRSmith),
we directly adopted the released implementation and the recom-
mended settings. The threat to external validity mainly lies in the
used subject. Here, we adopted the latest revision (at the time of
starting our experiments) for comparisons between MLIRod and
both MLIRSmith and the variants of MLIRod, even though there are
many versions for the MLIR compiler infrastructure. This is because
it is helpful to detect previously unknown bugs by fuzzing the latest
revision, which tends to be more signi�cant following the existing
work [39]. To further reduce this kind of threat, we also performed
continuous fuzzing with MLIRod on more revisions for longer time
(i.e., 50 days) as presented in Section 4.1, and our results indeed

demonstrate that MLIRod can continuously detect new bugs on
these studied revisions. The threat to construct validity mainly lies
in parameter settings in MLIRod. To reduce this kind of threat, we
have presented the speci�c settings of all the parameters in MLIRod
for future replication. Moreover, we empirically investigated the
in�uence of one important parameter (i.e., 3) in MLIRod in RQ4 and
left the investigation on other parameters as our future work due to
the signi�cant fuzzing cost on such experiments. Particularly, we
took 50 randomly-generated programs by MLIRSmith without spe-
cial selection as MLIRod’s seeds in our study. As a mutation-based
fuzzer, MLIRod is supposed to follow the general conclusion that
seeds could a�ect the e�ectiveness of mutation-based fuzzers [18].
We will evaluate MLIRod with di�erent sets of seeds. Currently,
our work has provided a set of e�ective seeds for practical use with
MLIRod.

5 Discussion
Novelty in Using ProgramDependencies for Fuzzing. Program
dependency has been used in fuzzing [14, 22, 32], vulnerability
detecting [29], code naturalness [46], and software debugging [21].
These existing fuzzing works utilizing data/control dependencies
focused on library-API fuzzing. Their test cases are API sequences,
which can be clearly mapped to library’s functionalities. Therefore,
during test case generation, they mainly focused on the sequences
of invoked APIs and parameter values within APIs, which considers
data dependencies to some degree. However, control dependencies
are built for the target library rather than test cases, guiding to
achieve higher branch coverage.

Di�erent from them, we focus on fuzzing MLIR compilers, which
has two new challenges. First, test cases for MLIR compilers are pro-
grams written according to MLIR’s language constraints, making it
di�cult to map MLIR programs directly to MLIR compiler function-
alities. For example, testing the dead-code-elimination optimization
requires analyzing program structure and def-use relationships
between variables, and determining whether certain branch condi-
tions are unsatis�able in MLIR programs. This mapping involves
complex data and control dependencies. To solve it, MLIRod con-
siders both types of dependencies and their various combinations
in generating MLIR programs by designing OD patterns and cor-
responding mutation rules. Note that while existing graph-level
mutations generally involve node and edgemodi�cations, MLIRod’s
mutations are speci�cally designed to cover more OD patterns. Sec-
ond, ensuring the validity of MLIR programs during mutation is
challenging due to MLIR’s language constraints. We thus designed
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corresponding mechanisms in mutations to ensure program va-
lidity. Particularly, we used MLIR-program dependencies to guide
mutation, which prior library-API fuzzing works did not do.
Signi�cance of MLIRod.While MLIRod is implemented to fuzz
the MLIR compiler infrastructure, its signi�cance is not limited to
the single system. This is because many compilers (such as Flang [1]
and IREE [3]) are built on top of it, fuzzing the MLIR compiler infras-
tructure can contribute to ensuring the quality and robustness of all
compilers leveraging this infrastructure. That is, fuzzing the MLIR
compiler infrastructure can have a broader impact than fuzzing a
single compiler system.

Moreover, the idea of MLIRod could be generalized to the com-
pilers for other programming languages by adjusting dependency
patterns and mutation rules according to compilers’ and languages’
characteristics. It can be also generalized to other kinds of systems
sharing similar characteristics in the form of test inputs to MLIR
programs (especially operations in them). For instance, the test
input for operating systems involves a set of system calls. Like
operations, each system call includes its name, operand types, and
result types, and these system calls can also involve complicated de-
pendencies, even though system calls have di�erent constraints and
semantics from MLIR operations. Hence, transferring the idea of
operation dependency graph/coverage and the associated mutation
rules in MLIRod to exploit the dependencies between system calls
may help improve the fuzzing e�ectiveness for operating systems.
Future Work. Both MLIRod and MLIRSmith take crash as the
test oracle for fuzzing the MLIR compiler infrastructure. In fact,
comparing the execution results of anMLIR programunder di�erent
pass sequences is also a natural test oracle. However, they do not
incorporate it since the MLIR programs generated by them may
have unde�ned behaviors [26], leading to potential false positives
under this execution-output-based test oracle. That is, the current
MLIRod cannot detect the bugs that make MLIR compiler produce
wrong code without crash. In the future, we can improve MLIRod
by incorporating some mechanisms to identify and avoid unde�ned
behaviors during program generation.

6 Related Work
Fuzzing has been widely studied to guarantee the quality of various
software systems, such as compilers [9, 20, 30, 36, 45, 47], operating
systems [16, 23, 34], and browser engines [8, 17, 27, 42]. Our work
is related to compiler fuzzing.

The most related work to ours is MLIRSmith [39], which is the
�rst technique to fuzz the MLIR compiler infrastructure. It belongs
to grammar-based fuzzing and there are also some grammar-based
fuzzing techniques for other types of compilers, e.g., Csmith [47] for
C compilers, CLSmith [30] for OpenCL compilers, NNSmith [31] for
deep learning compilers, and Sky�re [40] for JS compilers. Di�erent
from them, MLIRod is a mutation-based fuzzing technique guided
by OD coverage, and it designs dependency-targeted mutation rules
to e�ciently explore the input space.

There are some mutation-based compiler fuzzing techniques [8,
13, 15, 17, 27, 35, 49]. For example, Le et al. [25] proposed semantic-
preserving mutation rules (e.g., mutating dead code) for compiler
fuzzing. Holler et al. [19] proposed LangFuzz to generate JS pro-
grams via program synthesis. Schumi et al. [35] designed semantic

coverage based on language speci�cation for guiding fuzzing, but
we did not compare to it because it is based on the K Framework,
which does not support MLIR. Wang et al. [42] proposed FuzzJIT to
generate JS programs by mutating seed programs with JIT-related
program elements and structures. These techniques were typically
designed to generate high-level source programs as tests for speci�c
compilers rather than the general compiler infrastructure. They
are inapplicable to the MLIR compiler infrastructure due to lacking
alignment in terms of data structure and semantics withMLIR. Even
though MLIRod is a mutation-based technique, di�erent from the
existing ones, it designs a set of mutation rules associated to ODG
for MLIR programs by carefully considering the data dependencies
and control dependencies between MLIR operations.

In addition,MLIRod can be categorized as coverage-guided fuzzing
by designing ODG and OD coverage corresponding to MLIR pro-
gram characteristics. In the area of fuzzing, most of the existing
coverage-guided fuzzing techniques take edge coverage as the guid-
ance [6, 15, 28, 41, 44]. Among them, AFL (American Fuzzy Lop) [6],
which generates test inputs by applying byte-level and token-level
mutations to increase edge coverage, is the most representative one.
Based on AFL, Wang et al. [41] proposed Superion to support the
generation of structured test inputs. Wu et al. [44] proposed JIT-
Fuzz, which employs edge coverage to guide program mutation for
fuzzing JIT compilers. Our evaluation also compared OD coverage
and edge coverage for guiding the fuzzing process on the MLIR
compiler infrastructure. Our results demonstrate the superiority
of MLIRod with OD coverage in fuzzing MLIR infrastructure. In
particular, OD coverage is collected in a black-box manner, making
MLIRod more practical (compared to the gray-box edge-coverage-
guided fuzzing techniques).

7 Conclusion
We propose a mutation-based MLIR compiler infrastructure fuzzing
technique, MLIRod, for better MLIR compiler infrastructure fuzzing.
To generate diverse MLIR programs, MLIRod designs the ODG cov-
erage to systematically take data and control dependence into con-
sideration to evaluate the diversity of generatedMLIR programs and
recognize valuable MLIR programs. MLIRod also designs several
mutation rules based on ODG to improve ODG coverage. MLIRod
has detected 63 previously unknown bugs during 50 days fuzzing,
38/48 bugs in which have been �xed/con�rmed by developers.

8 Data Availability
We released our tool MLIRod (totaling 11.5K lines of C++ code)
and experimental data at our project homepage for experimental
replication and practical use [4].
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