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ABSTRACT
Fairness has been a critical issue that a�ects the adoption of deep
learning models in real practice. To improve model fairness, many
existing methods have been proposed and evaluated to be e�ective
in their own contexts. However, there is still no systematic evalua-
tion among them for a comprehensive comparison under the same
context, which makes it hard to understand the performance dis-
tinction among them, hindering the research progress and practical
adoption of them. To �ll this gap, this paper endeavours to conduct
the �rst large-scale empirical study to comprehensively compare
the performance of existing state-of-the-art fairness improving tech-
niques. Speci�cally, we target the widely-used application scenario
of image classi�cation, and utilized three di�erent datasets and �ve
commonly-used performance metrics to assess in total 13 methods
from diverse categories. Our �ndings reveal substantial variations
in the performance of each method across di�erent datasets and
sensitive attributes, indicating over-�tting on speci�c datasets by
many existing methods. Furthermore, di�erent fairness evaluation
metrics, due to their distinct focuses, yield signi�cantly di�erent as-
sessment results. Overall, we observe that pre-processing methods
and in-processing methods outperform post-processing methods,
with pre-processing methods exhibiting the best performance. Our
empirical study o�ers comprehensive recommendations for enhanc-
ing fairness in deep learning models. We approach the problem
from multiple dimensions, aiming to provide a uniform evaluation
platform and inspire researchers to explore more e�ective fairness
solutions via a set of implications.
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1 INTRODUCTION
In recent years, Arti�cial Intelligence (AI) systems and Deep Learn-
ing (DL) models have attracted signi�cant attention for their re-
markable performance across diverse application domains, such
as image processing [28, 68], machine translation [6, 21, 47, 48]
and software engineering [39, 67, 92, 94]. However, the increasing
adoption of DL models in real practice also poses new challenges
to them. In particular, they have displayed troubling discrimina-
tory tendencies in certain applications, such as elevated error rates,
when confronted with speci�c groups or populations de�ned by
attributes deemed protected or sensitive [4, 16, 20, 25, 54, 97], includ-
ing factors like race, gender, and age, etc., causing ethical or even
safety issues that will largely a�ect the reliability and usability of
them in real practice. For example, AI judge [30, 36, 76, 91] may
exhibit biased decision-making, leading to unequal treatment of
individuals based on their sensitive attributes, such as race. This
bias can result in disparities in sentencing or legal outcomes, rais-
ing concerns about fairness and justice within the legal system.
Similarly, AI-powered hiring [33, 57] and loan systems [27, 84] tend
to favor applicants of a particular gender or race. In other words,
the manifestation of unfair behaviors in AI systems and DL models
has raised profound ethical concerns, transforming fairness into
an essential ethical and often legally mandated prerequisite for the
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widespread adoption and utilization of DL models across various
real-world contexts.

To improve the fairness of DL models, many approaches have
been proposed in the last decades, particularly in the application
domain of image classi�cation, which has been widely adopted
in diverse real-world applications. Typically, existing approaches
can be classi�ed into three categories according to the stage where
de-biasing is applied, i.e., pre-processing, in-processing, and post-
processing. Pre-processing techniques [8, 37, 62, 64, 70, 86, 93]
endeavor to mitigate model biases by optimizing the training data,
such as performing data transformation [93], augmentation [64],
sampling [8, 37, 62, 70, 86] and so on. In contrast, in-processing
techniques [35, 41, 45, 72, 81] dedicate to improve themodel fairness
by optimizing the model training process, such as updating the
training loss [35, 72] or model structures [41, 45]. Di�erent from
the former two categories, post-processing techniques [46] aim to
make the deployed models produce fairer outputs without changing
the model structures and parameters, such as optimizing the given
inputs [85, 96]. Since they do not change the original models, they
can be �exibly applied to improve the fairness of deployed models
in real practice.

Although these existing approaches have been evaluated to be
e�ective in their own contexts, as will be presented in Section 2.2,
they were often evaluated over di�erent datasets and utilized in-
consistent metrics for measuring the performance of the proposed
methods, making it hard to obtain a uniform conclusion about the
performance distinction among them over di�erent application
domains. In other words, there still lacks a comprehensive study to
systematically compare the performance of di�erent approaches un-
der the same setup and thus provide in-depth analysis and accurate
guidance for the better utilization of them in practice.

To �ll this gap, we conducted the �rst extensive empirical study
to comprehensively compare the performance of existing methods
for improving the fairness of deep learning models. Speci�cally, we
studied 13 state-of-the-art existing techniques for improving the
fairness of deep learning models as the representatives, all of which
are from the most recent research. To provide a comprehensive
and fair comparison, we adopted three widely-used benchmarks
that involve diverse image classi�cation tasks related to di�erent
sensitive attributes. Moreover, we employed all �ve widely-used
fairness metrics and two accuracy metrics in the result analysis for
a consistent measurement, which is the most comprehensive study
on model fairness as far as we are aware. According to the empirical
results, we have summarized a set of �ndings and implications that
can be valuable to guide future research and the utilization of them
in real practice. We highlight partial key �ndings as follows:

(1) While the best-performing fairness improvement method does
not exist, pre-processing and in-processing methods signi�-
cantly outperform post-processing methods.

(2) Existing methods tend to be insensitive to di�erent evaluation
metrics, and thus a subset of the metrics can be representative
in future studies.

(3) Existingmethods are sensitive to di�erent experimental datasets,
and thus the conclusions drawn from a certain dataset may not
be generalizable to others.

To sum up, our work makes the following major contributions:

• We conducted the �rst large-scale empirical study to compre-
hensively evaluate the performance of 13 state-of-the-art tech-
niques that aim to improve DL models’ fairness.

• We summarized a set of �ndings and implications by system-
atically analyzing and comparing the performance of di�erent
techniques under a uniform experimental setup.

• We re-implemented some of the state-of-the-art techniques and
built a uniform evaluation platform of DL fairness techniques,
which can facilitate the replication and comparison for future
research in this research area. We have published all our experi-
mental data.

2 BACKGROUND
Firstly, we would like to clarify the problem and concept of fairness
issues in deep learning models. Furthermore, we will also conduct
a succinct literature review of the most recent research on fairness
improvement and identify the limitations of them, which motivates
the necessity and signi�cance of this study.

2.1 Fairness Issues
Over the years, both researchers and practitioners have introduced
and investigated various fairness de�nitions [11, 19, 54]. These
de�nitions typically fall into two broad categories: individual fair-
ness and group fairness. Individual fairness requires that software
produces similar predictive outcomes for individuals with similar
characteristics, while group fairness mandates equitable treatment
of di�erent demographic groups. In particular, fairness is always
closely related to the concept of sensitive or protected attributes,
which represent characteristics demanding protection against dis-
criminatory practices, such as gender and race. In particular, if the
assigned value of a sensitive (or protected) attribute is considered
advantageous or bene�cial in a particular context, we call it a privi-
leged value. For example, in a job application process [65, 82, 83],
male would be a privileged value for the attribute of gender since
man may tend to be preferred over women for certain roles. There-
fore, given the sensitive attribute (e.g., gender), the input instances
of the deep learning models can be typically divided into two dis-
tinct groups: a privileged group that associates instances with priv-
ileged values (e.g., male) and an unprivileged group that associates
instances with unprivileged values (e.g., female). A fair DL model
should produce similar or even equivalent prediction results over
di�erent groups.

In fact, software fairness issues (i.e., unfair software predic-
tions) [24] have been a growing area of concern in both the Soft-
ware Engineering (SE) and Deep Learning (DL) research commu-
nities. For example, they are typically referred to as fairness de-
fects [7] or fairness bugs [20] in the SE community. In this study,
we refer to the unfair predictions produced by DL models as fair-
ness issues by following existing work [24], indicating a discor-
dance between existing and expected fairness criteria. Many test-
ing [2, 19, 26, 31, 59, 73, 75, 78, 79, 87] and repair studies [56, 71, 77]
aim to automatically identify and �x such issues. In this study, we
direct our attention speci�cally to the techniques that aim to re-
solve the fairness issues in image classi�cation models since they
have been already widely deployed in practice as explained in the
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introduction. In addition, this study focuses on the group fairness
of DL models.

2.2 Limitations in Existing Studies
In recent years, there has been a growing focus among researchers
on fairness issues, leading to various of fairness improvement meth-
ods being proposed. In order to gain a deeper understanding of
existing studies, we have conducted a succinct literature review
of relevant papers published recently in prominent conferences
and journals in the Software Engineering (SE) and Arti�cial Intel-
ligence (AI) domains, including ICSE, ESEC/FSE, TOSEM, AIES,
ICLR, ECCV, CVPR, NeurIPS, etc. Table 1 presents the details of
these methods that aim to improve DL models’ fairness.

In this table, besides the essential information of the method (e.g.,
method names and categories), we further classify the methods into
Tabular and Image based on the type of dataset they are designed
for. Additionally, we display the union sets of sensitive attributes
and fairness metrics adopted by all methods within each category.
Please note that there are also di�erent classi�cation methods [12].
In this paper we adopt the most widely-used one [4, 54, 97] for easy
understanding. After a careful examination, we have the following
two major observations regarding the limitations in existing studies.

Limitation 1 (Incomplete orUnrepresentativeDatasets):Most
of existing methods were evaluated on only one or two datasets,
with a strong preference towards facial datasets. While face datasets
o�er advantages such as ease of acquisition and mature application
scenarios, the real applications of such techniques are not limited
to the classi�cation based on the facial images, such as scenes or
objects. However, only a few methods have been evaluated on a
su�ciently diverse set of datasets and task scenarios, which is in-
deed inadequate. Furthermore, many methods use datasets that are
rarely employed by other works, e.g., DiF [55] and Waterbirds [69],
lacking the representation and making it harder to horizontally
compare the performance of di�erent techniques. In particular,
studies in the SE community primarily focus on tabular datasets,
which are too simple to assess the generalizability of the proposed
method for a broader range of applications. In contrast, image data
is more complex, and the models used are also more sophisticated.
Fairness research on image data is more widespread and holds high
research value. However, there still lacks a comprehensive evalua-
tion of existing approaches over image datasets aiming to provide
implications for future research.
Limitation 2 (Inconsistent Fairness EvaluationMetrics):Most
of the existing studies only adopted one or two metrics, which may
not o�er a complete assessment of model fairness. Moreover, some
works introduce unique fairness metrics [46, 50] tailored to their
speci�c task scenarios, but these metrics are rarely cited or adopted
by other research, raising questions about the reliability and gen-
eralizability of these metrics. In particular, the di�erent metrics
adopted by existing studies further hinder the comparison of di�er-
ent techniques.

The limitations above pose an emergent need to conduct a large-
scale empirical study for comprehensively comparing their per-
formance under a uniform context, which motivates this work.
In particular, to address these limitations, we have replicated the

experimental results of many existing approaches over their orig-
inal datasets and then further evaluated their e�ectiveness over
three di�erent datasets involving both facial and non-facial images
(i.e., objects). Furthermore, we have employed all the widely-used
performance metrics (i.e., �ve fairness metrics and two accuracy
metrics) for systematically demonstrating the e�ectiveness of them.
In this way, we can better understand the performance of existing
techniques and derive valuable insights for bias mitigation in deep
learning models. Ultimately, our aspiration is to provide meaningful
guidance that will facilitate more e�ective explorations of fairness
issues in the realm of image fairness.

3 STUDIED METHODS IN THIS STUDY
As summarized in Table 1, many novelmethods have been published
in a wide range of conferences and journals, aiming to enhance the
fairness of neural networks. The latest research [18] has explored
the performance of existing methods that focus on tabular datasets,
while those methods targeting image datasets have not been sys-
tematically investigated yet. Therefore, our study will primarily
focus on fairness improving methods for image datasets. Speci�-
cally, we follow the selection criteria below to select the methods
ultimately studied in our study.

Criterion 1 (Open-source or Reproducible): To ensure the cor-
rectness and reliability of our study, we have tried to reproduce
the results of the selected methods before conducting our experi-
ment. Then, we selected the methods that are open-source or can
be replicated via our re-implementation according to the reported
con�gurations, while ignored those that cannot replicate. In partic-
ular, we appreciate the corresponding authors that assisted us in
re-implementing and reproducing their results.
Criterion 2 (Covering Di�erent Categories): To ensure the
comprehensiveness of our study, we have selected methods for
investigation in all three categories: pre-processing, in-processing,
and post-processing, ensuring coverage across all categories.
Criterion 3 (Latest Studies): To ensure the e�ectiveness and rep-
resentativeness of our study, we prefer to select the methods that
were most recently proposed since they usually can achieve much
better performance than the previous ones.

As a result, 13 state-of-the-art methods (including two variants
of FR [96]) were included, involving all the three categories, i.e., pre-
processing, in-processing, and post-processing.We also emphasized
these methods in bold in Table 1 and introduced them as follows.

3.1 Pre-processing
Pre-processing methods, as a general practice, are primarily con-
cerned with reducing discrimination and bias within the training
data, with the ultimate objective of improving the fairness of the
resulting trained model. These techniques involve data transfor-
mations and augmentations designed to mitigate inherent forms
of discrimination. Pre-processing strategies are employed when
the algorithm has the capacity to modify the training data to mit-
igate bias. From the plethora of available pre-processing meth-
ods [8, 9, 37, 40, 62, 63, 70, 86, 93], we speci�cally concentrate on
the following four approaches as the representative based on the
selection criteria.



ISSTA ’24, September 16–20, 2024, Vienna, Austria Junjie Yang, Jiajun Jiang, Zeyu Sun, and Junjie Chen

Table 1: Summary of fairness improving methods.

Category Data Type Methods Sensitive Attributes Fairness Metrics

Pre-processing

Tabular OP [10], Fair-SMOTE [14], RW [42], DIR [23],
LTDD [49], FairPreprocessing [5], Fairway [15] gender, age, race, black AAOD, EOD, BER,

SPD, DI, FPR, ERD

Image FairHSIC [63], US [70], OS [86], UW [62],
GAN-debiasing [64], CGL [40], BM [62]

gender, background,
age, race, color/grayscale

EOD, DEO,
BA, BC, KL

In-processing

Tabular META [13], AD [95], GR [1], MAAT [20],
PR [44], FMT [38], CARE [77], Parfait-ML [80] gender, age, race NMI, PI/MI, NPI, UEI,

CVS, SPD, AAOD, EOD

Image
Adv [86], DI [86], BC+BB [35],
MFD [41], FairBatch [66], FSCL [58],
FairGRAPE [50], FDR [53], FLAC [72]

background color,
color (bright/dark),
age, race, texture bias,
gender, color/grayscale

EOD, BC, WA,
DEO, SPD, AED

Post-processing
Tabular EO [32], CEO [61], ROC [43], Fax-AI [29] gender, age, race DEO, EOD

Image FairReprogram [96],
Multiaccuracy [46], FAAP [85] gender DEO, SPD

• Undersampling (US) [8, 37, 70] aims at achieving class balance
by reducing samples from the majority class. It has also been
extended to tackle bias by selectively dropping samples from
speci�c subgroups, which include samples that share common
class and bias attributes. This approach e�ectively balances the
sizes of these subgroups. However, a notable challenge arises as
the model’s exposure to samples becomes constrained by the size
of the smallest subgroup.

• Oversampling (OS) [86] is employed to rectify class imbalance
by duplicating samples, thereby equalizing class sizes. This ap-
proach has been adapted to e�ectively address bias by ensuring
balance within sensitive subgroups. In practice, we ascertain the
size of the largest subgroup and then replicate samples in other
subgroups proportionally. However, it’s important to exercise
caution, as excessive sample duplication can result in over�tting,
especially when dealing with highly parameterized models like
deep neural networks.

• Upweighting (UW) [9, 62] balances the impact of di�erent sam-
ples on the loss function by scaling the loss value with the inverse
of the sample’s class frequency. Therefore, this technique can
mitigate bias across di�erent subgroups rather than individual
classes. We classify it into the pre-processing category since it
depends on the statistics of the training data. Nevertheless, Up-
weighting possesses a notable limitation—it can exhibit instability
when used in conjunction with stochastic gradient descent [3].

• Bias Mimicking (BM) [62] was proposed to address dataset bias
in Visual Recognition tasks. It achieves statistical independence
between bias and class labels by emulating bias distributions
across classes. This method involves subsampling the dataset
into diverse distributions per class, striking a balance between
simplicity and performance enhancement, e�ectively bridging
the gap between sampling and non-sampling methods.

3.2 In-processing
In-processing methods endeavor to modify state-of-the-art learn-
ing algorithms during the model training process to eliminate dis-
crimination. This is primarily achieved through the integration of

adjustments into the objective function or the imposition of con-
straints on the learning process, provided that the model’s learning
procedure is adaptable to such modi�cations. These techniques
employ various means to adjust the model and mitigate bias in its
predictions. In our study, we employ the following six methods.

• Adversarial Training (Adv) with uniform confusion [62, 81]
introduces an adversarial loss to induce a randomized feature rep-
resentation of target labels and bias groups within the model. It
introduces an innovative CNN architecture speci�cally crafted to
leverage unlabeled and sparsely labeled data in the target domain.
Additionally, the architecture incorporates domain confusion and
softmax cross-entropy losses for model training.

• Domain Independent Training (DI) [62, 86] involves the uti-
lization of extra prediction heads for each bias group. In re-
sponse to the issue of discriminativemodels learning unnecessary
domain-speci�c class boundaries, DI promotes the adoption of
distinct domain-speci�c classi�ers. Nonetheless, training sepa-
rate classi�ers diminishes data exposure. To address this concern,
DI proposes a shared feature representation alongside an en-
semble of classi�ers. It recommends direct reasoning on class
boundaries of domains, e�ectively eradicating class-domain cor-
relations.

• Bias-Contrastive and Bias-Balanced Learning (BC+BB) [35,
62] introduces an innovative method to mitigate bias by combin-
ing two distinct losses. The Bias-Contrastive (BC) loss incorpo-
rates contrastive learning, leveraging bias labels to e�ectively
mitigate bias. Furthermore, the Bias-Balanced (BB) regression
loss enhances debiasing performance by optimizing the model
to achieve a uniform target-bias correlation distribution.

• FLAC [72] mitigates bias in DL models by reducing mutual in-
formation between model-extracted features and a protected
attribute. It utilizes a sampling strategy to highlight underrepre-
sented data and transforms fair representation learning into a
probability matching task using representations obtained from
a bias-capturing classi�er. This approach disentangles the tar-
get representation from bias and protected attributes, ultimately
leading to fairer outcomes.
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• MMD-based Fair Distillation (MFD) [41] combines feature
distillation with maximum mean discrepancy (MMD) to enhance
both prediction accuracy and fairness simultaneously. The the-
oretical foundation demonstrates that its MMD-based regular-
ization fosters fairness by aligning group-conditioned features
of the student model across sensitive groups and aligning them
with the teacher model’s group-averaged features, resulting in
improved accuracy as well.

• Fair Deep Feature Reweighting (FDR) [53] is a simple and
straightforward method that improves the model fairness by
�ne-tuning, where the fairness metrics are incorporated when
computing the loss for model updating. In particular, only the
last-layer will be updated during the tuning process.

3.3 Post-processing
Post-processing methods are employed to improve fairness in deep
learning software by modifying prediction outcomes. These meth-
ods are applied after the model training process. When dealing with
models as black boxes without the capability to modify training
data or algorithms, post-processing becomes essential and easy to
use in practice. In this study, we adopted three methods in this
category, including two variants of the FairReprogram.

• FairReprogram (FR) [96] leverages model reprogramming tech-
niques to address scenarios where it’s not feasible to modify ex-
isting models. Instead, it appends a set of perturbations known
as the "fairness trigger" to the input data, optimizing it in a min-
max framework to align with fairness criteria. In particular, FR
applies two methodologies to append the trigger, corresponding
to its 2 variants, named FR-P (appending the trigger like a patch
to the original image) and FR-B (appending the trigger at the
border of the original image). We applied both of them in our
study. Speci�cally, they perturb the inputs by adding a constant
global vector/feature, which is tailored to improve fairness while
keeping the deep learning model unchanged. FairReprogram is
a versatile framework applicable to various tasks and domains,
making it a generic solution.

• Fairness-Aware Adversarial Perturbation (FAAP) [85] miti-
gates unfairness in deployed deep models by updating the given
input without modifying model parameters or structures. Speci�-
cally, it achieves this by learning to perturb input data, e�ectively
blinding deployed models on fairness-related attributes such as
gender or ethnicity. FAAP employs a discriminator-generator
adversarial framework to ensure that protected attributes are
not correlated with model predictions, making it �exible and
practical to addressing fairness bugs in real-world AI systems.

4 EXPERIMENTAL SETUP
4.1 Dataset Selection
As aforementioned, existing studies tend to employ di�erent datasets
to evaluate the performance of the proposed method. In this study,
we aim to provide a comprehensive and uniform comparison among
existing techniques. Speci�cally, we selected the datasets with re-
gard to the following criteria.

Criterion 1 (Di�erent Image Types):We selected the datasets
that associate to di�erent image types (i.e., facial and non-facial),

involve di�erent sensitive attributes (e.g., age, race and gender),
and are used for di�erent classi�cation tasks.
Criterion 2 (Universal and Adaptable): To make the adaptation
of those studied methods easy to our experiment, we preferred the
datasets that were widely used by existing studies.

As a result, we selected three datasets (i.e., CelebA, UTKFace, and
CIFAR-10S) for conducting the empirical study. The summary of the
datasets is shown in Table 2, which presents the sensitive attribute
considered in the study, the labels of the classi�cation tasks, and the
studied methods that previously used the same settings. In addition,
we also present the number of instances for model training and
testing per each dataset by following existing studies.

Table 2: Summary of adopted benchmark datasets.

Dataset Sensi. Attr. Task Label Used By #Train #Valid #Test

CelebA Gender BlondHair All 93,141 19,867 19,962

UTKFace Age Gender UW,BM,FLAC 10,521 2,220 2,221
Race UW,BM,BC+BB,MFD,FLAC 10,744 2,370 2,370

CIFAR-10S Color Objects OS,UW,BM,Adv,DI,MFD, 50,000 2,000 18,000

Speci�cally, CelebA and UTKFace datasets represent human-
centric datasets that involve sensitive attributes (e.g., age and race)
re�ected in facial images, while CIFAR-10S is a more general dataset
in fairness study, which introduces biases related to image colors
of objects (non-facial images). They were previously used for eval-
uation by partial/all methods under di�erent conditions, e.g., using
di�erent metrics. From the table we can also �nd that previous
studies tend to employ di�erent datasets, hindering their compre-
hensive comparison. In this study, we aim to provide an extensive
study through a systematic evaluation by employing all of them,
which vary in multiple perspectives.

4.2 Measurement Metrics
4.2.1 FairnessMetrics. Numerous prior studies have predominantly
assessed fairness using a restricted set of fairness metrics. Although
certain approaches have introduced their unique fairness metrics,
thesemetrics have not achievedwidespread adoption and lack broad
applicability. To address these limitations, we employ the widely-
used �ve metrics while excluding the self-de�ned metrics for mea-
suring the fairness of models, i.e., SPD [4, 5, 20, 54],DEO [41, 54, 96],
EOD [4, 5, 20, 54], AAOD [4, 5, 20], and AED [4, 5, 53], following
previous work. The reason we chose these �ve metrics is twofold:
(1) They have been integrated into the well-known AIF360 and
Fairlearn toolkits, indicating the importance and representativeness
of them. (2) They have been well recognized and adopted by at least
three previous studies shown in Table 1.

Before delving into a detailed explanation of each metric, we
will provide some de�nitions for the symbols used. Formally, let
� be a sensitive (or protected) attribute, and � = 1 represents the
instance that belongs to the privileged group while � = 0 to the
unprivileged group. We use . and .̂ to denote the expected and
actual prediction labels, respectively, with 1 as the favorable label
and 0 as the unfavorable label. We use % to represent the probability
of model prediction. Then, the de�nitions of the above metrics are
de�ned as follows.
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• SPD (Statistical Parity Di�erence): the di�erence of probabilities
that the (un)privileged groups receive favorable outcomes:

(%⇡ = % [.̂ = 1 |� = 0] � % [.̂ = 1 |� = 1] . (1)

• DEO (Equalized Odds Di�erence): the max of di�erences about
true/false positive rates for unprivileged and privileged groups:
⇡⇢$ =<0G { |% [.̂ = 1 |� = 0,. = 0] � % [.̂ = 1 |� = 1,. = 0] |,

|% [.̂ = 1 |� = 0,. = 1] � % [.̂ = 1 |� = 1,. = 1] | } .
(2)

• EOD (Equal Opportunity Di�erence): the true positive rate dif-
ference between unprivileged and privileged groups:

⇢$⇡ = % [.̂ = 1 |� = 0,. = 1] � % [.̂ = 1 |� = 1,. = 1] . (3)

• AAOD (Average Absolute Odds Di�erence): the average of abso-
lute di�erence of true/false positive rates between unprivileged
and privileged groups:

��$⇡ =
1
2
( |% [.̂ = 1 |� = 0,. = 0] � % [.̂ = 1 |� = 1,. = 0] |

+|% [.̂ = 1 |� = 0,. = 1] � % [.̂ = 1 |� = 1,. = 1] | ) .
(4)

• AED (Accuracy Equality Di�erence): the di�erence of model
misclassi�cation rates across di�erence sensitive groups:

�⇢⇡ = % [.̂ < . |� = 0] � % [.̂ < . |� = 1] . (5)

Considering that the classi�cation task for CIFAR-10S involves
multi-class classi�cation, whereas the classic fairness metrics men-
tioned earlier are primarily designed for binary classi�cation tasks,
we employ the "ovr (one-vs-rest)" strategy, inspired by [41, 96]
and sklearn to decompose the N-ary classi�cation problem into N
binary classi�cation subproblems. In our experiments, we initiate
the process by computing the bias score for each class, following
the same procedure as described for binary classi�cation. Specif-
ically, we calculate the fairness metrics for each class against the
rest and then average the results across di�erent classes to derive
the multi-class versions of these fairness metrics.

According to the de�nitions of fairness metrics, a smaller metric
value indicates a fairer model. 0 denotes absolute fairness.

4.2.2 Performance Metrics. To evaluate the quality of a model’s
predictions, we use traditional classi�cation metrics, including Ac-
curacy and Balanced Accuracy, which are de�ned by formulas 6
and 7. In particular, the latter can mitigate the e�ect of imbalanced
dataset to the �nal result. In the formulas, TP/TN denotes the num-
ber of instances that are correctly classi�ed as positive/negative,
while FP/FN denotes the number of instances incorrectly classi�ed
as positive/negative.

Accuracy = ()% +)# )/()% + �% + �# +)# ) (6)

Balanced-Accuracy = ()%/()% + �# ) +)# /()# + �% ) ) /2 (7)

These two metrics are applicable to both binary and multi-class
problems. For all metrics, larger values indicate better performance.
The values of performance metrics are between 0 and 1.

4.3 Implementation Details
For all experiments, we use ResNet-18 [34] as the backbone architec-
ture by following existing studies [41, 62, 72, 85, 96]. Moreover, we
used the best default con�gurations of the studied techniques pro-
vided in the respective papers. Speci�cally, we �rstly preprocessed
the selected three datasets to ensure uniform data partitioning for

consistency. Then, for each studied method, we utilized the optimal
default con�guration hyper-parameters provided in their respective
papers to ensure the reliability of the experiments. However, since
some methods originally did not utilize all of the studied datasets
used in this paper, we adhered to their principles and adapted them
to the new datasets , �ne-tuning them for optimal results. In sum-
mary, to e�ectively and fairly compare the experimental results
of each method, we standardized various factors such as data par-
titioning, model backbone, experiment repetition, experimental
environment and so on. In particular, to mitigate the e�ect of ran-
domness, we have also repeated all our experiments 10 times to
ensure the reliability and stability of the results, which took about
40 days apart from the costs of tool implementation and con�gu-
ration. It’s worth noting that since some approaches depend on a
well-trained model (i.e., post-processing) while some approaches
train the models from scratch (e.g., pre-processing), we compare the
performance of the �nal optimized models directly. For methods
that depend on existing well-trained models, we �rst conducted a
grid search process to obtain the best-performing models as their
inputs. We have published all the implementation details in our
open-source repository.

Both our performance and fairness metrics are implemented
based on sklearn [60] and Fairlearn [88] libraries. Particularly, we
have implemented them in an easy-to-use framework for future
studies. It is available in our open-source repository. All experi-
ments are implemented with Python 3.8.18 and PyTorch 1.10.1, and
executed on an Ubuntu 20.04.6 LTS with 2.90GHz Intel(R) Xeon(R)
Gold 6326 CPUs and eight NVIDIA GeForce RTX 3090 GPUs.

4.4 Research Questions
Our empirical study focuses on the following research questions.
• RQ1 (Overall e�ectiveness of fairness improving methods):
How do di�erent fairness improvement methods perform in terms
of accuracy and fairness?

• RQ2 (In�uence of evaluation metrics): How do di�erent accu-
racy and fairness metrics a�ect the evaluation results of DLmodels?

• RQ3 (In�uence of datasets): How do di�erent dataset settings
(dataset characteristics, variations in sensitive attributes and so on)
impact fairness improvements?

• RQ4 (E�ciency of fairness improving methods):What are
the time costs of di�erent fairness improvement methods?

5 EVALUATION RESULTS
5.1 RQ1: Overall E�ectiveness
This research question assesses the overall performance of studied
methods in terms of both the fairness and performance metrics.
Our analysis takes both fairness and accuracy into consideration
since an excellent fairness improving method should achieve good
fairness scores without excessively sacri�cing the accuracy, striking
a balance or "trade-o�" between the two. Its objective is to see
whether the best-performing method exists, and thereby o�ering
valuable choices and insights for software engineering researchers
engaged in addressing fairness-related issues.

As introduced in Sections 3 and 4, we have systematically studied
13 fairness improving methods over 3 diverse datasets. The experi-
mental results are presented in Table 3 and Figure 1. According to
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the experimental results, the performance of di�erent approaches
varies greatly over di�erent datasets and even over di�erent evalu-
ation metrics. In particular, the best-performing method does not
exist. For example, although the method DI performs better over the
UTKFace-race and CIFAR-10S datasets than all the other methods,
its performance over the other two datasets su�er a large decline
compared with many others, e.g., US and FDR. However, we can
observe that the methods in pre-processing and in-processing cate-
gories are more e�ective to improve model fairness than those in
the post-processing category, which yield less satisfactory results.

Furthermore, pre-processing and in-processing methods also
tend to achieve higher model accuracy together with improving
model fairness. This aligns with our intuition, as the sources of
bias in fairness mainly originate from the dataset and the training
procedure, making direct improvements in these aspects should
be the most straightforward and e�ective approach. Nevertheless,
post-processing methods remain essential, particularly with the
increasing prevalence of large-scale models in industry. When deal-
ing with many already deployed industrial-scale models, improving
their fairness may only be achievable through �ne-tuning spe-
ci�c layers or enhancing the entire model as a black box. Exist-
ing post-processing methods often employ adversarial perturba-
tions on input images or introduce fairness triggers to obscure
the model’s identi�cation of sensitive attributes so as to make fair
predictions. However, we should acknowledge that their e�ective-
ness still has much room for further improvement. More e�ective
post-processing methods are urgent to be proposed.
Finding 1:While the best-performing fairness improvement
method does not exist, pre-processing and in-processing meth-
ods have presented much better e�ectiveness than the post-
processing methods.

Considering the methods belonging the same categories, their
e�ectiveness is very close although di�erent methods may perform
slightly better in some cases than the others for the pre-processing
and in-processing methods regarding improving model fairness.
For example, US slightly outperforms other pre-processing methods
on the CelebA dataset, but slightly worse than BM on the CIFAR-
10S dataset. Similarly, while FLAC and FDR achieve better model
fairness than the other in-processing methods on the CelebA and
UTKFace-age, they perform relatively poor than DI on the other
two datasets. In contrast, FAAP in the post-processing category
stands out as it achieve better than the other two methods (i.e., FR-B
and FR-P) over almost all the datasets. However, when taking the
model accuracy into consideration, the conclusion will be di�erent.
For example, BM in the pre-processing category achieves the best
accuracy over almost all the datasets. In fact, BM achieves the best
model accuracy than almost all the other methods regardless of
their categories. Recall the fairness performance of BM in Table 3,
we can reasonably conclude that BM achieves the best performance
for balancing the model fairness and accuracy. It is important to
note that BM actually combines pre-processing and in-processing
techniques as it �rst samples the original dataset to create di�erent
distributions for each class and then it employs a specialized train-
ing and inference process to achieve the desired trade-o� between
accuracy and fairness by considering the distributions. Further-
more, from Table 3 we can also observe that the performance of

di�erent methods over di�erent datasets vary greatly, most of them
tend to be a�ected. We leave a more comprehensive analysis on
this point to Section 5.3.
Finding 2: BM achieves the best performance for balancing
the model fairness and accuracy by combining the strength of
both pre-processing and in-processing techniques.

For further analysis of the reasons for the di�erent e�ectiveness
of methods belonging to the same category, we �rst take the pre-
processing category as an example. We believe that the main reason
is due to their underlying principles and their suitability for address-
ing class imbalance and bias in the data. For example, US works well
when the class imbalance is signi�cant, as it directly addresses this
issue by reducing the majority class. Additionally, by selectively
dropping samples from speci�c subgroups, it can e�ectively miti-
gate bias by balancing the sizes of these subgroups. However, OS
may result in over-�tting, especially with complex models like deep
neural networks, when samples are excessively duplicated. This can
lead to poorer generalization on the test set, which might explain its
lower performance. To our surprise, as a newly proposed method,
BM might not always outperform other techniques, such as US, in
terms of fairness. The possible reason is that BM might introduce
additional complexity to the pre-processing pipeline by emulating
bias distributions across classes. This added complexity may lead to
over-�tting or decreased generalization performance. In this case,
a simpler method like US might su�ce and even outperform BM
on fairness. However, as aforementioned, when considering both
model fairness and accuracy, BM should still be the best.
Finding 3: For pre-processingmethods, over-�tting often proves
to be a key factor a�ecting the performance of various methods.

(a) CelebA (b) UTKFace-Age

(c) UTKFace-Race (d) CIFAR-10S

Figure 1: Value distribution regarding accuracy metrics after
applying di�erent approaches on di�erent datasets.

Similarly, for in-processing methods, we observe that although
we cannot determine which method performs the best, the Adv
method exhibits the poorest fairness performance across all datasets,
especially on the UTKFace-age as shown in Table 3. The core idea
behind Adv is fairness through blindness [86], which means at-
tempting to prevent a model from explicitly encoding information
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Table 3: Result comparison among di�erent studied methods. The values in each cell denote the mean and standard deviation
of the fairness metrics obtained from multiple experiments for the current method and dataset setting. We use di�erent colors
to highlight the values of di�erent metrics, the darker of the color, the larger of the value, and the worse of the performance.

Dataset Metric Pre-processing In-processing Post-processing
US OS UW BM Adv DI BC+BB FLAC MFD FDR FR-B FR-P FAAP

CelebA

SPD 0.186±0.004 0.338±0.007 0.258±0.004 0.208±0.003 0.330±0.007 0.230±0.006 0.272±0.006 0.170±0.004 0.210±0.003 0.139±0.010 0.289±0.004 0.265±0.005 0.185±0.005
DEO 0.048±0.007 0.438±0.029 0.183±0.023 0.247±0.016 0.495±0.027 0.207±0.023 0.401±0.025 0.160±0.023 0.399±0.026 0.127±0.026 0.576±0.011 0.559±0.001 0.524±0.002
EOD 0.047±0.008 0.438±0.029 0.183±0.023 0.247±0.016 0.495±0.027 0.207±0.023 0.401±0.025 0.160±0.023 0.399±0.026 0.127±0.026 0.576±0.011 0.559±0.001 0.524±0.002
AAOD 0.041±0.004 0.315±0.014 0.144±0.011 0.149±0.008 0.337±0.012 0.141±0.012 0.258±0.013 0.090±0.012 0.224±0.013 0.068±0.012 0.358±0.007 0.327±0.006 0.299±0.004
AED 0.018±0.003 0.142±0.007 0.077±0.004 0.042±0.002 0.132±0.007 0.053±0.004 0.086±0.004 0.028±0.002 0.044±0.002 0.026±0.008 0.103±0.001 0.073±0.001 0.114±0.001

UTKFace
Age

SPD 0.109±0.018 0.458±0.016 0.228±0.037 0.098±0.036 0.596±0.011 0.492±0.022 0.145±0.020 0.081±0.035 0.052±0.029 0.131±0.071 0.520±0.004 0.499±0.004 0.475±0.005
DEO 0.256±0.027 0.755±0.017 0.432±0.050 0.315±0.031 0.863±0.015 0.810±0.040 0.267±0.032 0.269±0.035 0.265±0.031 0.269±0.091 0.811±0.009 0.806±0.003 0.734±0.003
EOD 0.127±0.026 0.073±0.019 0.069±0.024 0.213±0.049 0.256±0.016 0.086±0.016 0.056±0.022 0.190±0.039 0.185±0.055 0.075±0.056 0.155±0.004 0.075±0.002 0.153±0.003
AAOD 0.196±0.015 0.414±0.016 0.251±0.020 0.263±0.020 0.560±0.011 0.448±0.022 0.161±0.019 0.228±0.018 0.213±0.022 0.171±0.039 0.486±0.003 0.435±0.004 0.442±0.005
AED 0.196±0.016 0.335±0.008 0.247±0.019 0.266±0.020 0.306±0.010 0.354±0.020 0.177±0.018 0.239±0.017 0.213±0.022 0.185±0.035 0.326±0.003 0.404±0.001 0.277±0.001

UTKFace
Race

SPD 0.031±0.007 0.079±0.005 0.045±0.007 0.023±0.009 0.240±0.012 0.029±0.008 0.052±0.006 0.045±0.012 0.036±0.014 0.066±0.007 0.200±0.006 0.168±0.006 0.153±0.005
DEO 0.021±0.007 0.068±0.009 0.029±0.009 0.024±0.010 0.234±0.015 0.016±0.007 0.040±0.007 0.041±0.019 0.049±0.011 0.069±0.012 0.179±0.003 0.150±0.002 0.166±0.003
EOD 0.011±0.009 0.055±0.015 0.023±0.012 0.018±0.010 0.228±0.021 0.008±0.006 0.016±0.005 0.011±0.007 0.037±0.016 0.016±0.007 0.179±0.003 0.130±0.002 0.090±0.003
AAOD 0.014±0.005 0.057±0.005 0.023±0.007 0.016±0.009 0.222±0.012 0.010±0.005 0.028±0.006 0.026±0.010 0.038±0.011 0.042±0.007 0.177±0.004 0.139±0.003 0.128±0.006
AED 0.010±0.006 0.012±0.006 0.006±0.006 0.015±0.009 0.009±0.008 0.007±0.004 0.012±0.003 0.019±0.011 0.014±0.007 0.028±0.007 0.007±0.001 0.016±0.001 0.048±0.002

CIFAR-10S

SPD 0.003±0.001 0.026±0.001 0.033±0.002 0.002±0.001 0.069±0.004 0.002±0.001 0.032±0.001 0.029±0.001 0.045±0.017 0.016±0.002 0.069±0.001 0.069±0.001 0.015±0.005
DEO 0.015±0.001 0.108±0.002 0.131±0.009 0.012±0.001 0.282±0.019 0.010±0.001 0.128±0.006 0.120±0.004 0.174±0.064 0.074±0.008 0.249±0.002 0.250±0.004 0.082±0.003
EOD 0.015±0.001 0.108±0.002 0.131±0.009 0.012±0.001 0.282±0.019 0.010±0.001 0.128±0.006 0.120±0.004 0.174±0.064 0.074±0.008 0.249±0.002 0.250±0.004 0.082±0.003
AAOD 0.008±0.001 0.063±0.001 0.076±0.005 0.007±0.001 0.163±0.011 0.006±0.001 0.074±0.004 0.069±0.003 0.102±0.038 0.042±0.005 0.149±0.003 0.150±0.003 0.048±0.003
AED 0.002±0.001 0.005±0.001 0.007±0.001 0.001±0.001 0.015±0.001 0.001±0.001 0.006±0.001 0.006±0.001 0.011±0.005 0.004±0.001 0.019±0.001 0.019±0.001 0.005±0.001

about sensitive attributes through adversarial training. However,
as we have observed, this practice of ignoring sensitive attribute
encoding has several issues. Firstly, due to the phenomenon of re-
dundant encoding [22, 32], even if there is no particular sensitive
attribute in the classi�er’s feature representation, combinations of
other attributes can be used as a proxy. For instance, considering a
real-world task where a bank assesses a loan application without
considering the applicant’s gender. If the applicant’s occupation is
nurse, we can still infer with a high probability that the applicant is
likely female based on the nurse attribute. Secondly, this practice
of discarding sensitive attribute encoding may harm accuracy, and
the results in Figure 1 support this hypothesis, with Adv’s lowest
accuracy across all datasets among in-processing methods. The rea-
son may be that internal connections between di�erent attributes
likely have a signi�cant impact on accuracy.
Finding 4: Sensitive attributes play an important role in model
predictions. Simply improving fairness by removing the encod-
ing of sensitive attributes may not be an e�ective approach.

Finally, for post-processing methods, we observe that all the
studied methods have shown unstable performance. The reason
may be that these methods share a common optimization objec-
tive, which is the min-max adversarial training framework. In this
framework, the discriminator attempts to improve its predictions
of sensitive attributes, while the fairness trigger (in FR-B and FR-P)
or the generator (in FAAP) modi�es input images to reduce the
information about protected attributes in the latent representation
of a deployed black-box model, thus attempting to degrade pre-
dictions. These methods primarily aim to mitigate model bias by
hiding the information of sensitive attributes during the feature
extraction process, so that the model does not associate predictions
with sensitive attributes. However, this approach has its drawbacks.
Hiding information about sensitive attributes may also hide fea-
tures closely related to those attributes, ultimately a�ecting both
accuracy and fairness performance. Supposing an AI judger makes

predictions based on human faces, if we attempt to hide racial en-
coding information in facial images, we may unintentionally a�ect
information related to skin color, which is closely linked to race.
The loss of this information can potentially impact the performance
of other prediction tasks.
Finding 5: For post-processing methods, hiding sensitive infor-
mation encoding may not be an ideal choice, and more e�ective
approaches are still in urgent need.

5.2 RQ2: In�uence of evaluation metrics
In this RQ, we investigate the performance of existing methods
over di�erent metrics, aiming to inspire researchers to choose ap-
propriate metrics for evaluating DL models in future studies.
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Figure 2: Pearson correlation across di�erent metrics.

Regarding fairness metrics, we �nd that if a method performs
well on one metric, it tends to perform well on other metrics as well,
and vice versa. From Table 3, we can also observe that the value
distributions of each metric are highly similar within each dataset.
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Although di�erent fairness metrics evaluate the performance of DL
models from di�erent aspects, when designing fairness improving
methods, common strategies or techniques are often employed,
including using fairness metrics as optimization objectives and
balancing sampling, to ensure good performance across di�erent
metrics. To more clearly understand the relations between di�er-
ent fairness metrics, we have calculated the Pearson Correlation
coe�cient [89] across di�erent metrics over all datasets. The result
shown in Figure 2 further con�rms our hypothesis that all fairness
metrics are positively correlated with each other.
Finding 6: Existing fairness improvement approaches tend
to be insensitive to the fairness metrics. That is, if a method
performs well regarding one metric, it also tends to perform
well regarding the other metrics.

Moreover, we conducted a further in-depth investigation into
the correlations between di�erent fairness metrics and aimed to
provide valuable guidance for future studies. From Figure 2 we can
observe that AAOD has the highest overall correlation as its correla-
tion coe�cients with the other four metrics never fall below 0.5. We
analyze the reasons based on the de�nitions of each fairness metric
(see Section 4.2.1). The goal of SPD is to ensure a DL model’s predic-
tions are independent of membership in a sensitive group. It is an
easy metric but it only considers a single binary protected attribute,
which is sometimes insu�cient. For DEO, EOD and AAOD, the goal
of these metrics is to ensure a DL model performs equally well for
di�erent groups. These metrics are stricter than SPD because they
require consideration of both the sensitive attribute and the true
labels, involving the measurement of the di�erence between the
true positive rate and false positive rate for the unprivileged and
privileged groups. AAOD, as an arithmetic average of the di�er-
ence in false positive rates and the di�erence in true positive rates,
e�ectively balances the e�ects of both di�erence metrics. This is
supported by the experimental results, where AAOD generally ex-
hibits higher di�erentiation compared to DEO and EOD. Therefore,
AAOD appears to be a robust fairness evaluation metric compared
to DEO and EOD, especially in scenarios where DEO and EOD
show substantial discrepancies. AED measures the di�erence in
misclassi�cation rates of the model on di�erent sensitive attribute
groups. The major drawback of this metric is that its values are
generally small, particularly on the CIFAR-10S dataset, resulting in
lower di�erentiability compared to SPD and AAOD. Therefore, it is
not considered an excellent fairness evaluation metric.
Finding 7: AAOD emerges as the most promising and repre-
sentative metric for evaluating model fairness.

When considering the two performance metrics, i.e., accuracy
and balanced accuracy, they are very close to each other according
to the results shown in Figure 1. In particular, on UTKFace and
CIFAR-10S, accuracy and balanced accuracy results are almost equal.
This indicates that the distribution of sensitive attributes on these
datasets is balanced, in which case the two metrics are equivalent.
However, on the CelebA dataset, we �nd that there is a signi�cant
di�erence between these two accuracy metrics, especially evident
in the case of the FAAP method. It suggests that the FAAP method
is highly sensitive to imbalanced class distributions in CelebA. We
have mentioned earlier that FAAP, as a post-processing method,

heavily relies on modifying input data to improve fairness. How-
ever, the imbalanced data distribution may make the model more
biased towards the majority class, thereby a�ecting its normal pre-
dictions. After class balancing, we observe a signi�cant decrease
in accuracy. From Figure 1, we also �nd that while FAAP exhibits
substantial di�erences, there are still many methods that show con-
sistent accuracy on the CelebA dataset, such as BM, BC+BB, and
FR-P. Nevertheless, it is better to consider the two metrics together
for a systematic and comprehensive analysis of the results.
Finding 8: For an imbalanced dataset, accuracy and balanced
accuracy tend to produce diverse results, and thus both of them
should be used to comprehensively measure the performance
of fairness improvement methods.

5.3 RQ3: In�uence of datasets
Deep learning models tend to yield varying results on di�erent
datasets. An excellent fairness improvement method should per-
form competitively on di�erent datasets. However, existing studies
only use limited datasets. Therefore, this RQ aims to comprehen-
sively analyze the performance of di�erent fairness improving
methods on various datasets.

For each method, we �nd that both accuracy and fairness vary
signi�cantly across di�erent datasets according to the results shown
in Table 3 and Figures 1. Regarding fairness, the results from Table 3
indicate that the overall fairness scores on CelebA and UTKFace-
age are darker than the other two datasets. This suggests that for
each method, fairness performance on CelebA and UTKFace-age
is inferior to that on the other datasets. On the other hand, when
considering accuracy, we have also observed that methods on the
CelebA dataset have signi�cantly higher accuracy compared to the
other datasets, while CIFAR-10S exhibits the lowest overall accuracy.
Particularly, we notice that the FR-B and FR-P methods, which have
decent accuracy on other datasets, perform catastrophically poorly
with accuracy below 0.70 on CIFAR-10S. Our analysis suggests that
this should be due to the overreliance of FR methods on input data.
CIFAR-10S, being an arti�cial dataset, has sensitive attributes that
are arti�cially constructed (color or grayscale), and FR methods
may not make appropriate modi�cations to such sensitive attributes
during image alteration, thus disrupting the model’s normal accu-
racy. Similarly, we �nd that what may be a superior method on
one dataset doesn’t necessarily hold when applied to a di�erent
dataset. For instance, by examining the table, we observe that on
UTKFace-age, BC+BB exhibits signi�cantly better fairness than DI,
but conversely, on the other three datasets, DI shows substantial
advantages. This indicates that existing methods are sensitive to
the dataset they are applied to, and there is no best-performing
method on all datasets.
Finding 9: Existing methods are sensitive to di�erent datasets
in the evaluation, which are supported by two observations:
1) For a certain method, it tends to achieve di�erent fairness
and accuracy over di�erent datasets; 2) For two di�erent meth-
ods, one may outperform the other on certain dataset A, but
underperform the other on another dataset B. Therefore, the
conclusions from one certain dataset are hard to generalize to
others.
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There is another point worth our attention. In the UTKFace
dataset, age and race, two sensitive attributes, yield markedly di�er-
ent results. When age is treated as the sensitive attribute, the overall
accuracy and fairness of various methods are lower compared to
when race is the sensitive attribute. This di�erence is particularly
pronounced in terms of fairness. By observing the table, we can
see that, even within the UTKFace dataset, the colors for age are
noticeably darker than those for race, indicating the di�erences in
fairness across various methods due to di�erent sensitive attributes.
Therefore, the choice of sensitive attributes is crucial in fairness
tasks since di�erent methods are suited for di�erent ones.

5.4 RQ4: E�ciency of studied methods
The �rst three RQs explore the impact of di�erent factors. In prac-
tical applications, the time e�ciency of each method is also an
important consideration for method selection. Therefore, our �-
nal RQ primarily investigates the time cost of di�erent methods.
Since the optimal experimental hyperparameters vary for di�erent
methods (such as batch size and epochs), we decide to measure
the e�ciency of each method by averaging the time cost for each
epoch. It’s important to note that all our experimental results are
the averages obtained after conducting multiple experiments.

Table 4 presents the time cost per epoch of each fairness improv-
ing method. In the table, we highlight the highest e�ciency in gray
color regarding the complete training time, while underline the
shortest time regarding a single epoch. Please note that analyzing
both types (complete vs single) of time cost have their values. The
complete training time re�ects the overall complexity of methods
under their optimal parameter settings, while the time per epoch
indicates the intrinsic computation complexity of the optimizing
process of the method’s e�ectiveness in practical use.

From the table, we can observe that FDR is much more e�cient
than other approaches considering a single training epoch. The
reason is that FDR improves model fairness only through last-layer
�ne-tuning by incorporating fairness constraints and data reweight-
ing [53]. These operations only require updating the parameters of
the last layer, resulting in very short runtime and high e�ciency. In
comparison, other in-processing methods incur signi�cantly higher
time overheads. This is primarily because these methods either
introduce new loss functions and optimization objectives, design
novel model modules, or employ techniques like distillation, all of
which involve learning a large number of parameters during the
training process, making it time-consuming. In contrast, consid-
ering the complete training time, there is no individual method
outperforms all the others. For example, OS is the most e�cient
on UTKFace while FAAP is the most e�cient on CIFAR-10S. As
previously analyzed, BM emerges as the most e�ective method,
but it is not the most e�cient one over every studied datasets.
Similarly, FDR, which exhibits overwhelming e�ciency and good
fairness improvement among the in-processing methods, comes
at the cost of signi�cant accuracy sacri�ces. Therefore, end users
should to choose the most suitable method based on the speci�c
task’s varying emphasis on e�ectiveness and e�ciency.
Finding 10: An excellent fairness improving method should
strike a balance between e�ectiveness and e�ciency, ensuring

Table 4: Average time cost per epoch of each method for
improving model fairness (in seconds).

Category Method CelebA UTKFace Age UTKFace Race CIFAR-10S
t/epoch epochs t/epoch epochs t/epoch epochs t/epoch epochs

Pre-proc.

US 81.4 170 11.5 400 15.6 120 14.8 2000
OS 590.3 4 16.6 7 13.7 10 65.0 100
UW 252.9 10 8.5 20 8.9 20 71.5 200
BM 528.2 10 14.3 20 15.5 20 72.2 200

In-proc.

Adv 242.5 10 13.3 20 14.1 20 72.6 200
DI 242.3 10 13.3 20 13.5 20 68.1 200

BC+BB 564.3 10 23.3 20 23.5 20 67.9 200
FLAC 277.2 10 14.5 20 13.4 20 40.5 200
MFD 523.8 50 70.6 100 48.7 100 106.4 50
FDR 2.2 1000 0.6 1500 0.8 1500 1.7 1000

Post-proc.
FR-B 379.8 20 41.8 20 42.7 20 76.7 20
FR-P 586.3 20 46.8 20 43.4 20 74.0 20
FAAP 288.1 50 17.1 50 17.5 50 14.5 50

that it not only improves fairness but also maintains acceptable
levels of accuracy without consuming excessive computational
resources.

6 IMPLICATIONS
Based on our result analysis, we have summarized several implica-
tions that can facilitate future research in this research area.

Combining the strength of di�erent methods. According to
our empirical results (i.e. Finding 1), there is no best-performing
methods in all application scenarios and di�erent methods are con-
ceptually complementary. For example, pre-processing methods
focus more on transforming or augmenting training data, while
in-processing methods primarily optimize the design of objective
functions and model structures. Our experimental results also con-
�rm that. Therefore, it should be promising to combine the strength
of individual methods since they improve the models from di�erent
perspectives, e.g., training data and training process. In particular,
directly combining the results of di�erent methods can be e�ective.
However, investigating the deep combination of di�erent methods
by considering their core novelty still needs more exploration.

Developing more e�ective post-processing methods. With
the rapid development and inspiring performance of large language
models (LLMs), they have been adopted in various applications.
However, re-training LLMs can be a hard or even impossible task
for end users due to the high requirement on computing resources
and the reliance on training data. Besides, for deployed models,
post-processing methods are intuitively the best choice for im-
proving model fairness. Nevertheless, according to Finding 5, the
results shown in Table 3 demonstrate that existing post-processing
methods are not satisfactory and still have much room for further
improvement compared with the other two categories. Therefore,
more studies should focus on the post-processing methods.

Understanding the source of unfairness. Based on the intro-
duction of existing approaches, almost all of them aim to improve
the model fairness in somehow a blind way without understand-
ing the core reasons of the unfairness in DL models. Speci�cally,
pre-processing methods assume that the training data contain bias
while in-processing methods deem the bias is involved during the
training process. However, even adopting the same training data
and the same training process (see Section 5.3), the model perfor-
mance regarding di�erent attributes can also be di�erent. Therefore,
understanding the source of unfairness in the DL models may help
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to better overcome this issue. In particular, model interpretation
techniques [17, 74] can be incorporated to facilitate this task.

Incorporating the correlations among di�erent attributes
deeply. Indeed, sensitive attributes play a crucial role in model
predictions regarding result fairness. However, according to Finding
4, simply removing the sensitive attributes does not necessarily
improve model fairness, and incorporating the correlations between
the sensitive attributes and the others is also important. In fact, the
existing study [49] has already considered such information for
improving model fairness. Nevertheless, it was designed for the
structured (i.e., tabular) data, which should be much simpler than
the images since the image features are not clearly de�ned. In other
words, how to e�ectively identify the implicit correlations between
di�erent image features and incorporate them into the process of
fairness improvement still requires more in-depth exploration.

7 THREATS TO VALIDITY
The external threats to validity mainly lie in the data selection in
our study. In order to comprehensively evaluate the performance
of existing methods, we have employed three widely-used datasets
involving di�erent sensitive attributes and classi�cation tasks. In
addition, according to our �ndings that di�erent methods tend to
have di�erent e�ectiveness. Although our results cannot generalize
to other datasets, the �ndings should not be a�ected.

The internal threat to validity mainly lies in the implementations
of the studies methods. To mitigate this threat, we mainly employed
the open-source implementations of the corresponding papers if
available, while for other methods, we have double-checked their
performance with the corresponding authors to ensure they are
correctly implemented and con�gured. Furthermore, to ease the
replication and promote future research, we have made all our
experimental results and implementations open-source.

8 RELATEDWORK
8.1 Fairness Improving Methods
Pre-processing Methods Pre-processing methods [54, 63, 64, 93, 98]
aim to remove underlying discrimination by calibrating training
data to eliminate spurious correlations and training fairer models
on the modi�ed data. Ramaswamy et al. [64] proposed a GAN-
based data augmentation method to balance the training data. Yao
et al. [93] proposed the methods to maintain useful information
while �ltering out bias information. Quadrianto et al. [63] learned a
mapping from an input domain to a fair target domain to mitigate
gender bias. Zhang et al. [98] employed adversarial examples to
balance the training data for visual debiasing.

In-processing Methods In-processing techniques [45, 50, 52, 54,
58, 66, 90] focus on modifying and changing learning algorithms to
remove discrimination during training. Lokhande et al. [52] o�ered
a simpli�ed approach by treating fairness measures as constraints
on themodel’s output, which is incorporated through an augmented
Lagrangian framework. Kehrenberg et al. [45] proposed NIFRmodel
to learn invariant representations to improve algorithmic fairness.
Roh et al. [66] introduced FairBatch, a bilevel optimization-based
batch selection algorithm that adaptively chooses minibatch sizes to
improve model fairness without requiring modi�cations to model
training. Xu et al. [90] proposed a false positive rate penalty loss to

mitigate bias in face recognition by increasing the consistency of
instance false positive rate. Lin et al. [50] proposed FairGRAPE, a
pruning method that minimizes the disproportionate impacts by
calculating per-group weight importance and preserving relative
between-group importance during network edge pruning. Park et
al. [58] proposed Fair Supervised Contrastive Loss for fair visual
representation learning. This line of work aims at getting a fairer
model by explicitly changing the training procedure.

Post-processing Methods Post-processing work [46, 51, 54, 85]
focused on adjusting model predictions based on speci�c fairness
criteria after themodel training, which often use a holdout set which
is not involved during the training procedure. Lohia et al. [51] in-
troduced a technique that detects fairness bugs from outputs and
makes appropriate adjustments. Kim et al. [46] introduced a tech-
nique that creates a new classi�er with equal accuracy across dif-
ferent protected attributes. Wang et al. [85] presented an approach
that learns to perturb input data, rendering the models incapable
of recognizing fairness-related features.

8.2 Empirical Studies of Model Fairness
Empirical studies are essential for evaluating the e�ectiveness and
e�ciency of fairness improvement methods. Additionally, it can
inspire researchers to pursue further innovations in fairness im-
provement. Most previous studies [4, 16, 25, 97] on fairness have
focused on numerical or tabular inputs. However, fairness issues
in image data are more complex. Wang et al. [86] conducted an
analysis of computer vision models, speci�cally targeting adver-
sarial training approaches, while Chen et al. [18] studied fairness
improvement methods that work with tabular inputs. In contrast,
our research delves into 13 approaches working with image inputs
from three major categories. Additionally, we use three distinct
datasets and encompass all commonly-used performance metrics.

9 CONCLUSION
Deep Learning (DL) models have been widely-adopted in many
applications, particularly in ethical-sensitive domains. As a result,
ensuring the fairness of DL models has been a emerging research
problem. Although many fairness improving methods have been
proposed in recent years, there still lacks a systematic empirical
study to comprehensively compare the performance of di�erent
approaches. To �ll this gap, this paper conducted the �rst large-
scale empirical study, where we comprehensively analyzed the
performance of 13 state-of-the-art methods from multiple aspects,
e.g., metrics, datasets, and tasks. Based on the results, we have
summarized a set of �ndings and implications to promote future
studies in this research area.
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