
Testing Graph Database Systems with Graph-State Persistence
Oracle

Shuang Liu
Key Laboratory of Data Engineering
and Knowledge Engineering (MOE),

School of Information, Renmin
University of China

Beijing, China
Shuang.Liu@ruc.edu.cn

Junhao Lan
College of Intelligence and

Computing, Tianjin University
Tianjin, China

lanjunhao@tju.edu.cn

Xiaoning Du
Monash University
Monash, Australia

Xiaoning.Du@monash.edu

Jiyuan Li
College of Intelligence and

Computing, Tianjin University
Tianjin, China

lijiyuan@tju.edu.cn

Wei Lu∗

Key Laboratory of Data Engineering
and Knowledge Engineering (MOE),

School of Information, Renmin
University of China

Beijing, China
lu-wei@ruc.edu.cn

Jiajun Jiang
College of Intelligence and

Computing, Tianjin University
Tianjin, China

jiangjiajun@tju.edu.cn

Xiaoyong Du
Key Laboratory of Data Engineering
and Knowledge Engineering (MOE),

School of Information, Renmin
University of China

Beijing, China
duyong@ruc.edu.cn

Abstract
Graph Database Management Systems (GDBMSs) store data in a
graph format, facilitating rapid querying of nodes and relationships.
This structure is particularly advantageous for applications like
social networks and recommendation systems, which often involve
frequent writing operations—such as adding new nodes, creating
relationships, or modifying existing data—that potentially intro-
duce bugs. However, existing GDBMS testing approaches tend to
overlook these writing functionalities, failing to detect bugs arising
from such operations. In this paper we present GraspDB, the first
metamorphic testing approach specifically designed to identify bugs
related to writing operations in graph database systems. GraspDB
employs the Graph-State Persistence oracle, which is based on
the Labeled Property Graph Isomorphism (LPG-Isomorphism) and
Labeled Property Subgraph Isomorphism (LPSG-Isomorphism) re-
lations. We also develop three classes of mutation rules aimed at
engaging more diverse writing-related code logic. GraspDB has

∗Wei Lu is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISSTA ’24, September 16–20, 2024, Vienna, Austria
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0612-7/24/09
https://doi.org/10.1145/3650212.3680311

successfully detected 77 unique, previously unknown bugs across
four popular open source graph database engines, among which 58
bugs are confirmed by developers, 43 bugs have been fixed and 31
are related to writing operations.

CCS Concepts
• Software and its engineering→ Software testing and debug-
ging.

Keywords
Database Testing, Graph Databases, Metamorphic Testing

ACM Reference Format:
Shuang Liu, Junhao Lan, Xiaoning Du, Jiyuan Li, Wei Lu, Jiajun Jiang,
and Xiaoyong Du. 2024. Testing Graph Database Systems with Graph-State
Persistence Oracle. In Proceedings of the 33rd ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA ’24), September 16–20,
2024, Vienna, Austria. ACM, New York, NY, USA, 12 pages. https://doi.org/
10.1145/3650212.3680311

1 Introduction
In recent years, Graph Database Management Systems (GDBMSs)
- [33] have been widely used in various applications where data is
represented by vertices and edges, such as social networks [15, 38],
knowledge graphs [13], and recommendation systems [12, 28, 40].
GDBMSs offer efficient data storage and querying capabilities, en-
abling these applications to fulfill user requests with high through-
put, thereby becoming a cornerstone of application driven by graph

666

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://orcid.org/0000-0001-8766-7235
https://orcid.org/0009-0008-1299-7502
https://orcid.org/0000-0003-3728-9541
https://orcid.org/0009-0003-1662-0618
https://orcid.org/0000-0001-6769-2695
https://orcid.org/0000-0003-1983-6572
https://orcid.org/0000-0002-5757-9135
https://doi.org/10.1145/3650212.3680311
https://doi.org/10.1145/3650212.3680311
https://doi.org/10.1145/3650212.3680311

ISSTA ’24, September 16–20, 2024, Vienna, Austria Shuang Liu, Junhao Lan, Xiaoning Du, Jiyuan Li, We Lu, Jiajun Jiang, and Xiaoyong Du

data. According to industry reports, the global market size for graph
databases is projected to reach $2.9 billion in 2023 [5], underscoring
the growing demand for such systems. Among the various GDBMS
implementations, Neo4j [10] stands out as the most popular and
widely adopted graph data platform, trusted by over 1,000 organiza-
tions, including industry leaders such as Adobe, eBay and UBS [36]

Similar to other databasesmanagement systems (DBMSs), GDBM
-Ss accept user queries as input and return the corresponding query
results. These user queries convey requests to store, manipulate, or
retrieve data from the databases. To ensure better reliability and
efficiency, DBMSs demand sound and optimized implementations of
transaction management, indexing and storage management, query
optimization, and concurrency control. The combination of these
factors, coupled with the inherent complexity of database systems,
renders their implementation susceptible to bugs. Recognizing this
challenge, the software testing community has devoted increasing
attention to uncovering bugs in DBMS, with a particular focus on
GDBMSs [20–22, 41].

In order to reveal the deeply buried logic bugs in GDBMSs, one
of the biggest challenges lies in devising powerful test oracles. As
a countermeasure, differential testing [20, 41] and metamorphic
testing [21, 22, 25, 42] play an crucial role in existing works on
GDBMS testing. The insight behind differential testing is that differ-
ent GDBMS implementations should return the same results when
dealing with identical user requests. However, different GDBMSs
may adopt different graph query languages, such as Cypher [18]
and Gremlin [34], which limits the application of differential testing
approaches to a specific group of implementations that support the
same query language. GDSmith [20] and Grand [41] are the state-
of-the-art differential testing approaches for GDBMSs, respectively
supporting Cypher and Gremlin. Another factor that influences
the effectiveness of differential testing is the absence of standard
specifications for graph query languages, leading to different im-
plementation choices even for the same query language. Failing to
carefully verify whether two implementations adhere to the same
specification also result in false alarms [21].

In contrast, metamorphic testing approaches offer more precise
oracles for testing GDBMSs, and a body of works surge in this
line, including GDBMeter [22], GraphGenie [21], and GRev [25].
They have particularly focused on the data retrieval functional-
ity of GDBMSs and designed metamorphic relations that capture
whether and how the query results are affected when particular
transformations are made to the matching conditions. For example,
GRev proposes representing the matching patterns with Abstract
Syntax Graph (ASG) and developing an algorithm to extract equiv-
alent matching conditions from the graph, which describes exactly
the original pattern but with a different set of conditions, thereby
rewriting the queries. If the query results differ, a bug is caught.
Additionally, GAMERA [42] proposes metamorphic relations based
on the intrinsic properties of graphs, including symmetric relations
such as connectivity, and inverse relations such as ancestor and
descendant. We can observe that existing works have exclusively
focused on the pattern-matching and data-retrieving functional-
ities of GDBMSs, leaving their capabilities to writing operations,
e.g., write, update, and delete data, rarely examined. Hence, we
make the first endeavor to test how well the GDBMSs handle
queries with writing operations.

1 WITH 1 AS a WHERE NULL CREATE (a);

2 −− Exp e c t e d B ehav i o r : 0 node c r e a t e d

3 −−Ac tua l B e ha v i o r : 1 node c r e a t e d

Figure 1: A query with CREATE generated by our approach
that triggers a non-crashing bug in RedisGraph.

Bugs may or may not cause crashes. A reliable GDBMS imple-
mentation shall never crash for any user query. This also applies to
how it processes queries with writing operations.

Figure 1 shows a query with CREATE operation, which is gen-
erated by our approach and triggers such a non-crashing bug in
RedisGraph. The bug was detected using the query pair in Fig-
ure 1 and its mutated query "WITH 1 AS a WHERE NULL WITH *
CREATE (a)" (via applying mutation Rule14 in Table 2), with our
Graph-State Persistent Oracle. There are three parts in the query.
WITH 1 AS a is a projecting clause, which passes a record with
variable a with value 1 to the next part. WHERE NULL filters the
results from the WITH clause. In this case, the condition NULL eval-
uates to false, and no record is eligible for the following clause.
Thus, the CREATE (a) clause will not be ignited, and no nodes
shall be created. However, when RedisGraph executes this query, it
creates one node. The bug is in some sense “silent” as it does not
show explicit error messages and only checking on the database
status can expose the bug. Note that this bug can not be found by
existing approaches for two reasons. Firstly, existing approaches
do not generate queries with update-related operations and thus
cannot produce queries with CREATE. Secondly, the oracle hired
by existing approaches does not specify properties on the graph
state and thus cannot capture the bug.

To address the challenges, we propose an enhanced graph-state
persistent oracle to detect bugs from writing operations, using the
Labeled Property Graph Isomorphism (LPG-Isomorphism) and La-
beled Property Subgraph Isomorphism (LPSG-Isomorphism) meta-
morphic relations. We propose three classes of mutation rules de-
signed to increase the likelihood of triggering bugs by adding writ-
ing clauses or modifying existing queries with writing operations,
thereby engaging more diverse writing-related code logic. These
mutation rules are also designed guided by the LPG-Isomorphism
and LPSG-Isomorphism relations to ensure the execution correct-
ness of the mutated query and the base query pairs verifiable with
these isomorphism relations. We conduct experiments with 4 pop-
ular GDBMSs and detect 77 bugs, among which 58 bugs are con-
firmed and 43 have been fixed. There are 31 confirmed bugs related
to writing operations, and thus cannot be detected by all existing
approaches that test GDBMS.

In summary, we make the following contributions:

• We propose the first metamorphic testing approach for de-
tecting writing-related bugs in GDBMSs by employing the
Graph-State Persistence oracle based on the Labeled Prop-
erty Graph Isomorphism (LPG-Isomorphism) and Labeled
Property Subgraph Isomorphism (LPSG-Isomorphism) rela-
tions. We propose three classes of mutation rules to engage
more diverse writing-related code logic.

• We conduct experiments on four commercial GDBMSs. Our
approach detected 77 previous unknown bugs. 58 of them

667

Testing Graph Database Systems with Graph-State Persistence Oracle ISSTA ’24, September 16–20, 2024, Vienna, Austria

(a) A labeled property graph example

(b) A Cypher query example

Figure 2: Labeled property graph and Cypher query exam-
ples.

Table 1: Clauses of Cypher Language [9]

Reading clauses := MATCH|OPTIONAL MATCH
Writing clauses := CREATE|MERGE|FOREACH|SET|REMOVE|(DETACH) DELETE
Projecting clauses:= WITH|UNWIND|RETURN
Subquery clauses := CALL

have been confirmed by the developers, and 43 have been
fixed. Among them, there are 11 logic bugs, 32 errors, 13
crashes and 2 inconsistencies with Cypher documentation.
Additionally, 31 bugs cannot be triggered without database
writing operations.

• We have implemented our method as a practical tool called
GraspDB and the source code is available at https://doi.org/
10.5281/zenodo.12670528.

2 Preliminary

2.1 Labeled Property Graph and Cypher
In this section, we provide preliminaries on the labeled property
graph model and the Cypher language [18].

Labeled property graph model (LPG) is a data model for repre-
senting and storing data in GDBMS. Neo4j, MemGraph, RedisGraph
and AgensGraph are examples of GDBMSs that use the labeled
property graph model. A labeled property graph has a set of nodes
and relationships (directed edges that connect nodes). Each node
and edge (relationship1) can have a set of properties, which are
key-value pairs and are usually specified using JavaScript Object
Notation (JSON). Each node has a set of unique labels, which are
tokens that describe the type of the node. Each edge has one label,
indicating the edge type. Figure 2(a) shows an example labeled
property graph. The LPG contains three nodes, two labeled with
person and one labeled with movie, and two edges, labeled with
direct and watch, respectively. The person nodes have two prop-
erties, i.e., name and gender. The movie node has two properties,
i.e., title and duration. The direct and watch edges are associated
with properties publish and year, respectively.

Cypher [18] is an declarative programming language originally
developed for the Neo4j graph database [10]. Cypher is easy to read

1We use edge and relationship interleaving in the following.

and write due to its declarative nature, and it is known for its ex-
pressive and efficient way to handle patterns within graphs, making
it well-suited for complex queries. Pattern matching is conducted to
retrieve subgraphs from a property graph in Cypher. In each Cypher
query, clauses are chained together and executed sequentially. Each
Cypher clause takes the property graph and the intermediate re-
sults of the previous clause as input, and output the intermediate
results to the next clause. Table 1 lists the four types of clauses
defined in Cypher, including reading clauses, writing clauses, pro-
jecting clauses and subquery clauses. Figure 2(b) shows an exam-
ple Cypher query that aims to find the female viewers of movies
directed by Frank Darabont. In this query, (a:person), (:movie)
and (b{gender:’female’}) are node patterns, -[:direct]-> and
<-[:watch]- are relationship patterns, a.name = ’Frank Darabont’

is an expression. The name of the field can be renamed by using AS.
Unlike the Structured Query Language (SQL) [1], there is no

standard specification for graph query languages and thus there
are various query languages for GDBMS [27, 35]. Cypher [27],
originally contributed by Neo4j [10], is widely recognized with the
wide adoption of Neo4j, and it is used by over 10 other popular
databases including RedisGraph [11] and Memgraph [8]. Cypher
is regarded as the most widely adopted, fully-specified, and open
query language for property graph database engines [17, 18]. Some
graph databases that natively support other graph query languages
(e.g., Gremlin [34]) are also compatible with Cypher queries via
translation tools (e.g., Cypher for Gremlin [3]).

2.2 Graph Isomorphism
We provide preliminaries of definitions on the isomorphism of
graphs, which serves as the basis for our graph-state persistence
metamorphic relations, in this section.

Definition 2.1 (Graph Isomorphism [37]). Given two graphs G=(V,
E) and G’=(V’, E’), where V and V’ are node sets and E and E’ are
edge sets. G and G’ are called isomorphic if there exist an edge-
preserving bijection mapping 𝑓 : 𝑉 → 𝑉 ′, such that ∀𝑢, 𝑣 ∈ 𝑉 ,
(𝑢, 𝑣) ∈ 𝐸 iff (𝑓 (𝑢), 𝑓 (𝑣)) ∈ 𝐸′. We denote G ≃ G’ if G and G’ are
isomorphic graphs.

Definition 2.2 (Labeled Graph [23]). A labeled graph is defined
as G=(V, E, 𝐿, 𝑙𝑉 , 𝑙𝐸), where V is the node set, E is the edge set,
𝐿 is the set of node labels and edge labels. 𝑙𝑉 : 𝑉 → P(𝐿)is the
mapping from node to a set of labels (P(𝐿) is the power set of 𝐿),
and 𝑙𝐸 : 𝐸 → 𝐿 is the mapping from edge to labels.

Definition 2.3 (Labeled Graph Isomorphism [19]). Given two la-
beled graphs G=(V, E, 𝐿, 𝑙𝑉 , 𝑙𝐸) and G’=(V’, E’, 𝐿′, 𝑙 ′

𝑉
, 𝑙 ′
𝐸
), G and G’

are isomorphic if (1) there exists a bijective function 𝑓 : 𝑉 → 𝑉 ′,
such that ∀𝑢, 𝑣 ∈ 𝑉 , (𝑢, 𝑣) ∈ 𝐸 iff (𝑓 (𝑢), 𝑓 (𝑣)) ∈ 𝐸′; (2) ∀𝑢 ∈ 𝑉 ,
𝑙𝑉 (𝑢) = 𝑙 ′

𝑉
(𝑓 (𝑢)); (3) ∀𝑢, 𝑣 ∈ 𝑉 , 𝑙𝐸 (𝑢, 𝑣) = 𝑙 ′

𝐸
(𝑓 (𝑢), 𝑓 (𝑣)). We de-

note G ≃𝐿𝐺 G’ if G and G’ are isomorphic labeled graphs.

Definition 2.4 (Subgraph [37]). Given two graphs G=(V, E), G’=(V’,
E’), where V and V’ are node sets and E and E’ are edge sets, G is a
subgraph of G’ if𝑉 ⊆ 𝑉 ′ and 𝐸 = 𝐸′ ∩ (𝑉 ×𝑉). We denote𝐺 ⊆ 𝐺 ′

if G is a subgraph of G’.

Definition 2.5 (Subgraph Isomorphism [37]). Graph G=(V, E) is
subgraph isomorphic to graph G’=(V’, E’) if ∃𝑆 such that 𝑆 ⊆ 𝐺 ′

and 𝑆 ≃ 𝐺 . We denote G ∼ G’ if G is subgraph isomorphic to G’.

668

https://doi.org/10.5281/zenodo.12670528
https://doi.org/10.5281/zenodo.12670528

ISSTA ’24, September 16–20, 2024, Vienna, Austria Shuang Liu, Junhao Lan, Xiaoning Du, Jiyuan Li, We Lu, Jiajun Jiang, and Xiaoyong Du

(a) (b) (c)

Figure 3: Labeled Property Graph Examples

Definition 2.6 (labeled Subgraph [32]). Given two labeled graphs
G=(V, E, 𝐿, 𝑙𝑉 , 𝑙𝐸) and G’=(V’, E’, 𝐿, 𝑙 ′

𝑉
, 𝑙 ′
𝐸
), G is a subgraph of G’

if (1) there is an injective mapping f: 𝑉 → 𝑉 ′ such that ∀𝑢, 𝑣 ∈ 𝑉 ,
(𝑢, 𝑣) ∈ 𝐸 ⇒ (𝑓 (𝑢), 𝑓 (𝑣)) ∈ 𝐸′; (2) ∀𝑢 ∈ 𝑉 , 𝑙𝑉 (𝑢) = 𝑙 ′

𝑉
(𝑓 (𝑢)); and

(3) ∀𝑢, 𝑣 ∈ 𝑉 , 𝑙𝐸 (𝑢, 𝑣) = 𝑙 ′
𝐸
(𝑓 (𝑢), 𝑓 (𝑣)). We denote 𝐺 ′ ⊆𝐿𝐺 𝐺 if G’

is a subgraph of G.

Definition 2.7 (Labeled Subgraph Isomorphism [6]). LabeledGraph
G=(V, E, 𝐿, 𝑙𝑉 , 𝑙𝐸) is subgraph isomorphic to labeled graph G’=(V’,
E’, 𝐿, 𝑙 ′

𝑉
, 𝑙 ′
𝐸
) if ∃𝑆 such that 𝑆 ⊆𝐿𝐺 𝐺 and 𝑆 ≃𝐿𝐺 𝐺 ′. We denote G

∼𝐿𝐺 G’ if G is labeled subgraph isomorphic to G’.

3 Isomorphism Relations of Labeled Property
Graph

Inspired by the graph isomorphism relations, we define isomor-
phism relations on labeled property graphs, which serve as the
theory support of our oracle.

Definition 3.1 (Labeled Property Graph). A labeled property graph
is defined as G=(V, E, 𝐿, 𝑃 , 𝑙𝑉 , 𝑙𝐸 , 𝑓𝑉 , 𝑓𝐸), where V, E are the set of
nodes and edges;𝐿 is the set of labels for nodes and edges; 𝑃 is the set
of properties associated with nodes and edges. 𝑙𝑉 : 𝑉 → P(𝐿) is the
mapping from node to a set of labels (P(𝐿) is the power set of 𝐿), and
𝑙𝐸 : 𝐸 → 𝐿 is the mapping from edge to labels. 𝑓𝑉 : 𝑉 → P(𝑃) is the
mapping from node to a set of node properties and 𝑓𝐸 : 𝐸 → P(𝑃)
is the mapping from edge to a set of edge properties.

Figure 3(a) is an example labeled property graph with 5 nodes
and 5 edges. Each node is associated with a set of labels, e.g., {L1}
for node 1 and a set of properties, e.g., {K1:2} for node 1. Each edge
is associated with 1 unique label (or type), e.g., r3 for edge (2, 3)

and a set of properties, in this case an empty set for edge (2, 3).

Definition 3.2 (Labeled Property Graph Isomorphism). Given two
labeled property graph G=(V, E, 𝐿, 𝑃 , 𝑙𝑉 , 𝑙𝐸 , 𝑓𝑉 , 𝑓𝐸) and G’=(V’, E’,
𝐿′, 𝑃 ′, 𝑙 ′

𝑉
, 𝑙 ′
𝐸
, 𝑓 ′
𝑉
, 𝑓 ′

𝐸
), G and G’ are isomorphic if (1) there exists a

bijective mapping 𝑓 : 𝑉 → 𝑉 ′, such that ∀𝑢, 𝑣 ∈ 𝑉 , (𝑢, 𝑣) ∈ 𝐸 iff
(𝑓 (𝑢), 𝑓 (𝑣)) ∈ 𝐸′; (2) ∀𝑢 ∈ 𝑉 , 𝑙𝑉 (𝑢) = 𝑙 ′

𝑉
(𝑓 (𝑢)), 𝑓𝑉 (𝑢) = 𝑓 ′

𝑉
(𝑓 (𝑢));

(3) ∀𝑢, 𝑣 ∈ 𝑉 , 𝑙𝐸 (𝑢, 𝑣) = 𝑙 ′
𝐸
(𝑓 (𝑢), 𝑓 (𝑣)), 𝑓𝐸 (𝑢, 𝑣) = 𝑓 ′

𝐸
(𝑓 (𝑢), 𝑓 (𝑣)).

We denote G ≃𝐿𝑃𝐺 G’ if G and G’ are isomorphic labeled graphs.

Definition 3.3 (Labeled Property Subgraph Isomorphism). Given
two labeled property graphs G=(V, E, 𝐿, 𝑃 , 𝑙𝑉 , 𝑙𝐸 , 𝑓𝑉 , 𝑓𝐸) and G’=(V’,
E’, 𝐿′, 𝑃 ′, 𝑙 ′

𝑉
, 𝑙 ′

𝐸
, 𝑓 ′

𝑉
, 𝑓 ′

𝐸
), G is subgraph isomorphic to G’ if (1)

there is an injective mapping f: 𝑉 → 𝑉 ′ such that ∀𝑢, 𝑣 ∈ 𝑉 ,
(𝑢, 𝑣) ∈ 𝐸 ⇒ (𝑓 (𝑢), 𝑓 (𝑣)) ∈ 𝐸′; (2) ∀𝑢 ∈ 𝑉 , 𝑙𝑉 (𝑢) = 𝑙 ′

𝑉
(𝑓 (𝑢))

Figure 4: Overview of GraspDB

and 𝑓𝑉 (𝑢) = 𝑓 ′
𝑉
(𝑓 (𝑢)); (3) ∀𝑢, 𝑣 ∈ 𝑉 , 𝑙𝐸 (𝑢, 𝑣) = 𝑙 ′

𝐸
(𝑓 (𝑢), 𝑓 (𝑣)),

𝑓𝐸 (𝑢, 𝑣) = 𝑓 ′
𝐸
(𝑓 (𝑢), 𝑓 (𝑣)). We denote G ∼𝐿𝑃𝐺 G’ if G is labeled

property subgraph isomorphic to G’.

A labeled property graph isomorphism is a bijective relation be-
tween two labeled property graphs, requesting two labeled property
graphs to be structurally isomorphic, and the corresponding nodes
and edges have identical labels and properties. Labeled property
subgraph isomorphism defines an injective relation between two
labeled property graphs, requesting two labeled property graphs
to be structurally subgraph isomorphic, and the corresponding
nodes and edges have identical labels and properties. The LPG in
Figure 3(b) is isomorphic to that in Figure 3(a), and the LPG in Fig-
ure 3(c) is a subgraph isomorphic to that in Figure 3(a) according to
our definitions. The two isomorphism relations on labeled property
graphs serve as the theoretical basis for our oracle.

4 Approach
There are two main technical challenges for detecting bugs intro-
duced by writing operations in graph databases. The first challenge
is to precisely detect the bugs with low false positives. Since the
bugs triggered by writing operations may modify the underlying
graph database and the bug symptoms may not be reflected by
query results, as illustrated in Figure 1 (none of existing graph
database testing approaches is able to detect that kind of bugs). The
second challenge is to generate test cases which can effectively
trigger bugs arising from writing operations.

To address the first challenge, we propose the graph-state per-
sistent oracle, which is based on two metamorphic relations, i.e., la-
beled property graph isomorphism (LPG-isomorphism) and labeled
property subgraph isomorphism (LPSG-isomorphism). To address
the second challenge, we have developed three categories of mu-
tation rules, i.e., add writing clauses, modify writing clauses and
modify return clauses, which are guided by the LPG-Isomorphism
and LPSG-Isomorphism metamorphic relations. These mutation
rules incorporate a variety of writing-related syntax features into
the test cases, aiming to engage more writing-related code logic
and consequently uncover more bugs. Additionally, we proactively
generate test cases that incorporate writing clauses and sub-clauses.
The writing clauses modify the graph and are likely to expose
bugs, while the sub-clauses enhance the complexity of the test
cases, increasing the likelihood of triggering bugs. We apply the
mutation rules on base queries to obtain pairs of base and mutated

669

Testing Graph Database Systems with Graph-State Persistence Oracle ISSTA ’24, September 16–20, 2024, Vienna, Austria

Table 2: Mutation Rules, with Colored Deletion and Addition

ID Type
Oracle

Transformation Example Query
Graph Result

01 AWC ≃𝐿𝑃𝐺 = Create nodes/edges and then delete CREATE (a) CREATE p=()-[:T]→() DELETE p RETURN a
02 AWC ≃𝐿𝑃𝐺 = Add a property and then delete CREATE (a) SET a.k=1 REMOVE a.k RETURN a
03 AWC ≃𝐿𝑃𝐺 = Remove a non-existent property CREATE (a) REMOVE a.k RETURN a
04 AWC ≃𝐿𝑃𝐺 = Delete a non-existent node/edge CREATE (a) DELETE NULL RETURN a
05 AWC ∼𝐿𝑃𝐺 = Create nodes/edges CREATE (a) CREATE ()-[:T]→() RETURN a
06 AWC ∼𝐿𝑃𝐺 = Delete existent nodes/edges CREATE (a) DELETE a RETURN a
07 AWC ≃𝐿𝑃𝐺 = Create path incrementally CREATE (a)-[:T]→(b)-[:T]→(c)(a)-[:T]→(b) CREATE (b)-[:T]→(c) RETURN a
08 AWC ≃𝐿𝑃𝐺 = Delete path incrementally CREATE p=()-[:T]→() DELETE pFOREACH(f in nodes(p)|DETACH DELETE f)
09 MWC ≃𝐿𝑃𝐺 = Add path variable CREATE p=(a)-[:T]->() RETURN a
10 MWC ≃𝐿𝑃𝐺 = Add node/edge variable CREATE (a)-[:T]->(b) RETURN a
11 MWC ≃𝐿𝑃𝐺 = Reverse the direction of the path CREATE (a)-[:T]→(b)(b)←[:T]-(a) RETURN a
12 MWC ≃𝐿𝑃𝐺 = Wrap writing clause with FOREACH/CALL FOREACH(f in [1]|CREATE p=(a)-[:T]→()) RETURN 1
13 MWC ≃𝐿𝑃𝐺 = Add redundant UNWIND clause before writing clause UNWIND [1] as l CREATE p=(a)-[:T]→() RETURN a
14 MWC ≃𝐿𝑃𝐺 = Add redundant WITH clause before writing clause WITH * CREATE p=(a)-[:T]→() RETURN a
15 MWC ≃𝐿𝑃𝐺 = Add redundant OPTIONAL MATCH clause before writing clause OPTIONAL MATCH ()-[:TYPE]-() CREATE p=(a)-[:T]→() RETURN a
16 MWC ∼𝐿𝑃𝐺 NA Increase the size of graph CREATE (a)-[:T]→(c)-[:T]→(b) RETURN a
17 MWC ∼𝐿𝑃𝐺 NA Decrease the size of graph CREATE (a)-[:T]→(c) RETURN a
18 MRC ≃𝐿𝑃𝐺 ⊆ Add records to return result CREATE (a) RETURN 1 as n UNION RETURN 2 as n
19 MRC ≃𝐿𝑃𝐺 ⊇ Return limited records CREATE (a)-[:T]→(c) RETURN a LIMIT 0
20 MRC ≃𝐿𝑃𝐺 ⊇ Return distinct records CREATE (a)-[:T]→(c) RETURN DISTINCT a
21 MRC ≃𝐿𝑃𝐺 = Change the order of return result CREATE (a)-[:T]→(c) RETURN a ORDER BY a DESC
22 MRC ≃𝐿𝑃𝐺 = Add a column to return result CREATE (a)-[:T]→(c) RETURN a, c
23 MRC ≃𝐿𝑃𝐺 = Wrap return result in a list CREATE (c) RETURN [c][0]
24 MRC ≃𝐿𝑃𝐺 = Wrap return result with reduce() CREATE (c) RETURN reduce(a = c, b in [], a)

The mutated graph is LPSG-isomorphic to the base graph in the case of rule 6 and rule 17.
NA signifies that the relationship between the return results before and after mutation is unknown, and we do not compare the return results for this mutation rule.

queries, the execution correctness of which can be verified with
the metamorphic relations.

The overview of GraspDB is shown in Figure 4, which consists
five steps. The first two steps are graph database and query genera-
tion. GraspDB utilizes the graph database generation functionality
of GDSmith [20] and improves it to generate base queries with all
four types of clauses, in which enable generating writing clauses
and subquery clauses could engage writing-related, complex code
processing logic. Then, GraspDB mutates a base query based on
three classes of mutation rules, i.e., add writing clause, modify
writing clause, modify return clause, and obtains the follow-up mu-
tated queries, such that the execution correctness of the base query
and mutated query pairs can be verified with the metamorphic
relations. In the fourth step, the pair of base query and mutated
query is executed separately on two identically configured GDBMS
instances, during which errors and crashes are directly detected.
Finally, GraspDB detects logic bugs by comparing the graph data-
base instances modified by the executed query pairs, as well as the
return results (to reduce false negatives). Note that once there is
an inconsistency in the two graph database instances, GraspDB
will clear the two databases by deleting all nodes and go back to
the first step, so as to prepare consistent execution environments
for the next query pairs.

4.1 Query Generation
To detect bugs introduced by writing operations in GDBMSs, we
need to generate initial graphs and semantically correct queries
which contain update clauses. We improve GDSmith [20], a syntax-
based GDBMS test case generation tool, for property graph and
query generation by incorporating writing clauses and the cor-
responding patterns and expressions. Following the workflow of

GDSmith, we conduct skeleton generation, pattern generation and
expression generation, adhering strictly to grammar rules of Cypher.
For skeleton generation, we refer to the syntax and semantics of
Cypher and add skeletons related to writing clauses and subquery
clauses. For pattern generation, we record the paths that are added
to the initial graph due to writing clauses such as CREATE and MERGE,
and proactively generate patterns based on those paths so as to
improve the probability of retrieving the newly added nodes and
edges. For expression generation, we extend GDSmith to add three
types of expressions, i.e., function expressions (including function
nesting), subquery expressions (e.g., EXISTS subquery and COUNT
subquery) and some constant value expressions such as paths, lists,
dictionaries. We also add some Cypher features, such as UNION
keyword, CASEWHEN keyword, Pattern comprehension, List com-
prehension andMap projection, that GDsmith doesn’t support, with
the purpose of increasing diversity of the generated queries. We
follow Cypher syntax and semantics, and the generation process of
GDSmith to generate syntax and semantic correct base queries.

4.2 Mutation Rules
In this section, we provide the details of mutation rules correspond-
ing to our metamorphic relations. In particular, we propose three
classes of mutation rules, i.e., add writing clauses (AWC), modify
writing clauses (MWC), and modify return clauses (MRC), based on
the strategies that used. The mutation rules are guided by the meta-
morphic relations we defined in section 3, with Labeled Property
Graph Isomorphism (LPGI) marked ≃𝐿𝑃𝐺 and Labeled Property
Subgraph Isomorphism (LPSI) marked ∼𝐿𝑃𝐺 in Table 2.

Add Writing Clause (AWC) Rules. This class of rules add writ-
ing clauses to an existing query, with the purpose of generating
queries that trigger writing related functionalities and thus uncover

670

ISSTA ’24, September 16–20, 2024, Vienna, Austria Shuang Liu, Junhao Lan, Xiaoning Du, Jiyuan Li, We Lu, Jiajun Jiang, and Xiaoyong Du

writing-related bugs. The AWC rules are derived from both the
LPG-isomorphism and LPSG-isomorphism relations, where they
transform a based query into a mutated query that create an iso-
morphic labeled property graph or an isomorphic labeled property
subgraph. For instance, rule 01 in Table 2 is an AWC mutation rule,
which transforms the base query into a mutated query that create
an isomorphic LPG with that created by the base query, by creating
a path p and delete it immediately. Rule 05 transforms the base
query into a mutate query that create a LPG G’, which satisfies
𝐺 ⊆𝐿𝑃𝑆𝐺 𝐺 ′, where G is the LPG created by the base query.

Modify Writing Clause (MWC) Rules. This class of rules modi-
fies existing writing clauses, either directly by modifying the path/-
pattern in a writing clause, or indirectly by adding clauses which
potential affect the execution plan of an existing writing clause. The
MWC rules are derived from both the LPG-isomorphism and LPSG-
isomorphism relations. Rule 11 in Table 2 is a MWC rule which
modifies the create clause in the base query to obtain a mutated
query by reversing the direction of the created path. The mutated
query creates an isomorphic LPG with that created by the base
query. Rule 17 is a MWC rule which modifies the create clause
in the base query by deleting an existing edge. The LPG created
by the mutated query is LPSG-isomorphic to the LPG created by
the base query. Rule 12 modifies the base query by wrapping the
create clause with a foreach clause, such that the mutated query
has a different query execution plan and thus potentially trigger
different GDBMS code paths being tested, while the LPG created is
isomorphic to the LPG create by the base query.
Modify Return Clause (MRC) Rules. This class of rules does
not directly modify writing clauses, yet they modify the return
clause in a statement containing writing clauses, with the purpose
of introducing more diverse syntax features into the query and
thus potentially triggering more bugs. The MRC rules transform a
base query into a mutated query that creates identical LPGs with
the base query, i.e., satisfies the LPG-isomorphism relation, yet the
return different results. For instance rule 20 in Table 2 adds distinct
restrictions on return results, which obtaining a mutated query
that does not change the graph, yet return less or equal number of
records than the base query.

For each seed query, we parse it to identify potential mutation
points and apply a mutation rule that fits the point based on its
probability. If no rule is identified, a random one is chosen. We
support multi-step-mutation when mutation rules are transitive,
meaning consecutive applications of two mutation rules that both
adhere to Labeled Property Graph Isomorphism will also comply.

4.3 Oracle
Since we focus on detecting bugs triggered by queries contain-
ing writing operations, which change the graph database status,
the oracle should precisely capture those changes. Moreover, the
queries may return records, which should also be correct according
to the query semantics. Therefore, our oracle contains two parts, i.e.,
checking the correctness of the graph database status and checking
the correctness of the query results.

Graph-state persistence. To check whether a query correctly
modifies the graph database, we rely on the metamorphic rela-
tions, i.e., LPG-isomorphism and LPSG-isomorphism, proposed

Algorithm 1: Deciding Isomorphism Relations of two La-
beled Property Graphs (LPG)

Input : two LPGs𝐺1,𝐺2; an intermediate state 𝑠 ; the initial state
𝑠0 has𝑀 (𝑠0) = ∅

Output : the mappings between the two graphs or mapping failed
1 Function F(𝑠,𝑛,𝑚) :
2 if Nodes 𝑛 and𝑚 have identical labels, properties, outgoing edges

and incoming edges then
3 return True

4 end

5 return False

6 Function ComputePairs(𝑠,𝐺1,𝐺2) :
7 𝑃 (𝑠)={}

8 Let𝑇𝑜𝑢𝑡

1 (𝑠) and𝑇𝑜𝑢𝑡

2 (𝑠) be the sets of nodes that are the
destination of edges starting from𝐺1 (𝑠) and𝐺2 (𝑠)

9 Let𝑇 𝑖𝑛

1 (𝑠) and𝑇 𝑖𝑛

2 (𝑠) be the sets of nodes that are the origin
of edges ending in𝐺1 (𝑠) and𝐺2 (𝑠)

10 foreach 𝑛 in𝑇𝑜𝑢𝑡

1 (𝑠) ,𝑚 in𝑇𝑜𝑢𝑡

2 (𝑠) do
11 Add (𝑛,𝑚) to 𝑃 (𝑠)

12 end

13 foreach 𝑛 in𝑇 𝑖𝑛

1 (𝑠) ,𝑚 in𝑇 𝑖𝑛

2 (𝑠) do
14 Add (𝑛,𝑚) to 𝑃 (𝑠)

15 end

16 return 𝑃 (𝑠)

17 Function MATCH(𝑠) :
18 if 𝑀 (𝑠) covers all the nodes of𝐺2 then
19 return𝑀 (𝑠)

20 end

21 else
22 𝑃 (𝑠)=ComputePairs(𝑠,𝐺1,𝐺2)

23 foreach (𝑛,𝑚) in 𝑃 (𝑠) do
24 if F(𝑠,𝑛,𝑚) then
25 Compute the state 𝑠′ obtained by adding (𝑛,𝑚) to

𝑀 (𝑠)

26 CALL MATCH(𝑠′)

27 end

28 end

29 Restore data structures

30 end

in Section 3. In particular, we propose three classes of mutation
rules (in section 4.2) guided by the isomorphism relations and
then generate a pair of base query and mutated query, such that
the graph databases modified by the pair of queries preserve the
corresponding isomorphism relation. Therefore, the problem of
checking whether a query correctly modifies the graph database is
transformed into the problem of checking whether the two graph
databases (which are labeled property graphs) updated by the pair of
base and mutated queries preserve the LPG-isomorphism or LPSG-
isomorphism relations, we refer this checking as the graph-state
persistence checking.

Deciding whether two graphs are isomorphic is a known NP
problem in the graph theory and there are various algorithms [14,
37] trying to solve the problem, where VF2 is the most widely
adopted due to its stable performance on different types of graphs

671

Testing Graph Database Systems with Graph-State Persistence Oracle ISSTA ’24, September 16–20, 2024, Vienna, Austria

- [16]. Therefore, we adopt VF2 and customize it according to our
specific application scenario.

Algorithm 1 shows our customized algorithm for deciding the
LPG-isomorphism of two labeled property graphs. The input con-
tains two LPGs𝐺1,𝐺2 to be checked, an intermediate state 𝑠 which
is used to record the current mapping status, the initial state 𝑠0 such
that𝑀 (𝑠0) is an empty set. Note that𝑀 (𝑠) maintains all the node
pairs which have been mapped successfully under current state 𝑠 .
The output of our algorithm is either the mapping result or map-
ping failed. MATCH(𝑠) (lines 17-30) is the main logic of the VF2
algorithm, which returns the graph mappings if all nodes in both
graphs are successfully mapped (lines 18-20). Otherwise, it first
computes 𝑃 (𝑠) by invoking function ComputePairs (line 22), which
contains all node pair candidates to be added to the𝑀 (𝑠). Then each
pair in 𝑃 (𝑠) is checked for feasibility of adding to 𝑀 (𝑠), which is
accomplished by function F(𝑠,𝑛,𝑚) (line 24). Whenever a new pair
is added to𝑀 (𝑠), a new status 𝑠′ is created, which callsMATCH(𝑠′)
recursively for subsequent mappings (lines 24-27). Line 29 is the
backtracking process when no pairs in 𝑃 (𝑠) can be added to𝑀 (𝑠).
Function ComputePairs (lines 6-16) basically add all node pairs that
are one-step reachable to nodes in successfully mapped pairs in
𝑀 (𝑠) into 𝑃 (𝑠).

Our algorithm follows the main logic of VF2, with the following
customization, which simplifies the complexity of applying the
algorithm in our scenario. In the original VF2 algorithm, which ap-
plies to general graph matching scenarios, the function that decides
whether the node pairs in 𝑃 (𝑠) can be added to 𝑀 (𝑠) by mainly
checking on the in-degree and the out-degree of the correspond-
ing nodes. In our scenario, we work with labeled property graphs,
where nodes and edges are associated with labels and properties,
which should be the same according to our definition on LPG-
isomorphism. Therefore, we add a semantic checking step to check
the labels and properties of the corresponding nodes of the pair.

Note that the original VF2 algorithm has a worst case complexity
of O(𝑛!𝑛) [14]. Our scenario is the simplified scenario of the origi-
nal graph isomorphism checking problem, since the LPGs that we
need to check on are created incrementally by our queries, and thus
the status 𝑠 in the algorithm can be associated with each generated
query. We implemented the above customized VF2 algorithm that
assigns a unique ID property to each node and edge, this approach
streamlines our search process by eliminating the need for back-
tracking unsuccessful mappings, reducing the complexity to O(𝑛2),
which is the best case complexity of VF2 [14]. Our experiments in-
dicate that LPG comparison accounts for only 2.64% of GraspDB’s
total execution time.

For LPSG-Isomorphism checking, as we can obtain the nodes/edg
-es or properties being modified on G’ by the mutated query, we
can easily create a sub-graph or super-graph𝐺 base on G, which is
the LPG queried by the base query, by applying the modifications
to G. Then we invoke the LPG-Isomorphism checking algorithm
for the graph pair of (G’, 𝐺), which should be LPG-Isomorphic.

Query result correctness. Since the queries with writing clauses
may also have return results, we need also check the correctness
of the query results as part of our oracle to reduce potential false
negatives, i.e., the cases where graph-state is correctly preserved
yet the return results are incorrect. This step simply check whether

Table 3: Information on The Tested GDBMS.

GDBMS Rank Github Stars Init Release LoC

Neo4j 1 12.4k 2007 1,304K
RedisGraph - 2.0k 2018 1,298K
MemGraph 8 2.1k 2017 268K
AgensGraph 30 1.3k 2016 1,510K

the returned result sets satisfy the relations (=, ⊂, ⊃) introduced by
the corresponding mutation rule. Note that different from existing
approaches on testing GDBMS [21, 25], where only identical result
sets are regarded as correct, our mutation rules may generate query
pairs which result in different result sets (e.g., rules 18-20 in Table 2),
making our oracle able to detect bugs that are not detectable by
oracles of existing approaches.

5 Evaluations
We implement our prototypeGraspDBwith over 11K non-comment
lines of Java code. GraspDB uses Neo4j Java Driver 4.1.1 to con-
nect and interact with Neo4j and Memgraph, JRedisGraph 2.5.1 to
connect and interact with RedisGraph and AgensGraph Java Driver
1.4.2 to connect and interact with AgensGraph. All evaluations are
conducted on a computer with Intel i5-8400 CPU, 16 GB of memory
and Windows 11 OS. We aim to address the following research
questions in our evaluation.

• RQ1: Can GraspDB detect unknown real-world bugs?
• RQ2: How does each component contribute to the overall
effectiveness of GraspDB?

• RQ3: How does GraspDB perform in bug detection effec-
tiveness compared to baselines?

5.1 Evaluation Setup
Testing Subjects.We select four popular real-world graph database
engines that support Cypher as our testing subjects. Table 3 shows
the meta information of the tested graph databases. Neo4j [10]
is the most widely adopted graph data platform in the market
according to the DB-Engines Ranking [4]. RedisGraph [11] is a
high-performance graph database module that extends Redis. It
employs the property graph model and uses the Cypher query lan-
guage for data manipulation and retrieval. RedisGraph is known
for its high performance and real-time data processing capabili-
ties. Memgraph [8] is an in-memory graph database designed for
real-time data analytics. It supports openCypher and is compatible
with Neo4j. AgensGraph [2] is based on the powerful PostgreSQL
RDBMS, and is optimized for handling complex connected graph
data and provides plenty of powerful database features essential
to the enterprise database environment. We test the Neo4j Com-
munity Edition from v5.6.0 to v5.12.0, RedisGraph from v2.10.9 to
v2.12.10, MemGraph Community Edition from v2.7.0 to v2.11.0 and
AgensGraph Community Edition 2.13.1. All these versions are latest
during our testing period from 2023.4 to 2023.10.
Baselines. We compare GraspDB with GDSmith [20] and Graph-
Genie [21]. GDSmith is the latest differential testing approach on
graph databases that is capable of generating syntax and semantic
correct Cypher queries. GraphGenie is an metamorphic testing

672

ISSTA ’24, September 16–20, 2024, Vienna, Austria Shuang Liu, Junhao Lan, Xiaoning Du, Jiyuan Li, We Lu, Jiajun Jiang, and Xiaoyong Du

Table 4: Bugs Detected by GraspDB.

GDBMS Detected Confirmed Fixed Duplicate Writing-related GSO-related

Neo4j 35 33 30 2 18 2
RedisGraph 15 12 6 1 6 4
MemGraph 17 13 7 0 7 4
AgensGraph 10 0 0 0 0 0

Total 77 58 43 3 31 10

Table 5: Types of The Confirmed Bugs

GDBMS Logic Error Crash Inconsistency

Neo4j 2 29 0 2
RedisGraph 4 2 6 0
MemGraph 5 1 7 0

Total 11 32 13 2

Table 6: Distinct Bugs Detected by Variants of GraspDB

Method Neo4j RedisGraph MemGraph

GraspDB 8 7 10
GraspDB-GSO 7 6 7
GraspDB-AWC 7 6 9
GraspDB-MWC 6 4 6
GraspDB-MRC 6 5 8

approach, which conducts graph pattern transformations guided
by injective and surjective relations to generate comparable query
pairs. GraphGenie has shown state-of-the-art performance in de-
tecting bugs in GDBMS [21] and outperforms other metamorphic
testing approaches such as GDBMeter [22]. Therefore, we choose
GDSmith and GraphGenie as baselines for comparison.

5.2 RQ1: Ability on Detecting Unknown Bugs
Table 4 show the bugs that GraspDB detected on the four testing
subjects. GraspDB detected 77 bugs during the testing period of
around 6 months. Among those bugs, 58 are confirmed and 43 have
been fixed. Among the confirmed bugs, 31 is detected by writing
clauses in the generated queries, 10 are detected by our graph-state
persistent oracle and and 13 via our mutation rules.

Table 5 shows the types of the confirmed bugs. We can observed
that the majority of bugs cause errors or system crashes, indicating
that the writing-related functionalities are under-tested, and that
those bugs may cause serious results, such as system crash. It is thus
critical to detect bugs in writing-related functionalities. There are 11
logical bugs, 10 of which are detected by the graph-state-persistent
oracle and the other one is detected by return results comparison.
There are 2 bugs in the inconsistency category, meaning that the
bugs are caused by GDBMS implementation being inconsistent
with Cypher document.

5.3 RQ2: Contribution of Different Components
In order to validate the contribution of different components of
GraspDB to bug detection, we remove each component of GraspDB,

i.e., the graph state oracle, the AWC mutation rules, the MWC
mutation rules and the MRC mutation rules, to obtain 4 variants
of GraspDB, which are noted GraspDB−𝐺𝑆𝑂 , GraspDB−𝐴𝑊𝐶 ,
GraspDB−𝑀𝑊𝐶 , GraspDB−𝑀𝑅𝐶 , correspondingly. And we run
GraspDB and its variants on identical environments (Neo4j v5.8.0,
RedisGraph v2.12.10 andMemGraph v2.10.0) separately for 12 hours
each, more than 360 bug reports are produced for each variant. We
randomly selected 10% of the bug reports to analyze due to the
heavy manual efforts required for the large amounts of bug reports.

Table 6 reports the experiment results of distinct bugs detected
by each variant. We can observe that GraspDB detects the most
number of distinct bugs during the experiment period. The vari-
ant of removing the graph-state oracle (GraspDB−𝐺𝑆𝑂), and vari-
ants of removing each class of mutation rules (GraspDB−𝐴𝑊𝐶 ,
GraspDB−𝑀𝑊𝐶 , GraspDB−𝑀𝑅𝐶) all miss to detect some of the
bugs. For instance, GraspDB−𝐺𝑆𝑂 is not able to detect logic bugs
caused by writing operations. GraspDB−𝑀𝑅𝐶 cannot detect bugs
that causes return results to be different. We can conclude from
the experiment results that all components of GraspDB contribute
individually to the effectiveness of detecting bugs and thus it is the
most effective to combine all of them for bug detection.

5.4 RQ3: Comparison with Baselines
Although it is difficult to have a fair and direct comparison between
testing techniques, we conducted a best-effort empirical testing
comparison between GraspDB and baselines to illustrate their
differences. In particular, we run each compared tools in the same
environment for the same duration of time, and compare on the
distinct bugs detected as well as the false alarm rate. Following the
experiment settings of GDSmith [20], we ran GraspDB, GDSmith
and GraphGenie on the databases supported by them for 12 hours.
All databases were the newest version at the time of the experiment,
with Neo4j v5.12.0, RedisGraph v2.12.10, MemGraph v2.11.0 and
AgensGraph v2.13.1. GDSmith is capable of generating test cases
and graph databases. GraspDB improves GDSmith with writing-
related clauses and sub-clauses for test case and database generation.
GraphGenie does not support database generation, therefore, we
follow the setting of GraphGenie and uses the Movie Graph [26],
consisting 171 nodes and 253 relationships as the database for the
experiment of GraphGenie.

5.4.1 Detected Unique Bugs. Table 7 shows the comparison results
with baselines, where we report the total number of bug reports
analyzed, the number of unique bugs in those bug reports and
the number of false alarms. During the 12-hour testing, 13632,
3052, and 2502 bugs were reported by GDSmith, GraphGenie (auto-
deduplicated), and GraspDB, respectively. Due to the lack of reliable
bug deduplicators and the demand for identifying false alarms, we
made efforts to manually examine the results of all methods in
our evaluation to increase the reliability of the findings. Note that
GraphGenie’s deduplicator works by recognizing bugs triggered
by queries mutated from the same base query and with identical
return result counts as duplicate, suffering from false positive when
different bugs lead to the same return result counts. The situation
becomes more problematic in our case as not all captured bugs have
return results. Given large number of reported bugs, it is infeasible

673

Testing Graph Database Systems with Graph-State Persistence Oracle ISSTA ’24, September 16–20, 2024, Vienna, Austria

Table 7: Results on Comparison with Baselines

Approach
Neo4j RedisGraph MemGraph AgensGraph

Total Unique False Alarm Total Unique False Alarm Total Unique False Alarm Total Unique False Alarm

GDsmith 250 0 250 250 2 87 250 0 250 - - -
GraphGenie 2 0 2 250 3 85 - - - 39 0 39
GraspDB 24 3 5 75 6 5 104 6 13 250 10 9

to manually analyze each report. Hence, we randomly sampled 250
reports from each target GDBMS for manual analysis.

Since GDSmith is a differential testing approach and it compares
the results of the three tested GDBMSs to report bugs, therefore,
the bugs reported in Neo4j, RedisGraph and MemGraph are the
same. The results show that there are 2 unique bugs detected from
those 250 bug reports. The two bugs are both in RedisGraph, which
does not follow the Cypher documentation in their implementation.
Those bugs are known limitations [7] and the developers won’t
fix them for a while for the sake of robustness. As GDSmith is a
differential testing approach, which report bugs by comparing all
the databases under test, therefore, the reported numbers of the
three supported databases (Neo4j, RedisGraph and MemGraph) are
the same. GDSmith does not support AgensGraph and thus we do
not report the results on it.

GraphGenie produces 2 and 39 bug reports on Neo4j and Agens-
Graph, respectively, and after our manual analysis, all of the re-
ported bugs on those two databases are false alarms. GraphGenie
produces 3052 bug reports on RedisGraph. We randomly sampled
250 bug reports for manual analysis and 3 unique bugs are identi-
fied. GraphGenie does not support MemGraph and thus we do not
report the results on MemGraph.

GraspDB produced 24, 75 and 104 bug reports and 3, 6 and 6 are
distinct bugs on Neo4j, RedisGraph and MemGraph, respectively.
GraspDB produced 2502 bug reports on AgensGraph, we randomly
selected 250 for manual analysis and identified 10 unique bugs.

To summarize, GraspDB found 15 unique bugs in 12 hours, 8
of which are related to writing operations, while GDSmith and
GraphGenie can only find 2 and 3 bugs, respectively, which are all
not writing operation-related bugs. On average, 18 bug report is
analysed to identify 1 unique bug detected by GraspDB, while this
number is 97 and 125 for GraphGenie and GDSmith, respectively.
GraspDB can detect bugs more accurately with low duplication
rate, and thus requires far less manual efforts for bug report analysis.
Overall, GraspDB generates fewer bug reports. One reason is the
overhead incurred by the increasingly large graph and the large
number of time-consuming writing operations. Less test cases can
be examined during the same time periods, hence less bug reports.
However, changing graph sizes and writing operations are essential
for discovery of writing related bugs. Another reason is due to the
low duplicate bug report rate of GraspDB compared to baselines.

5.4.2 False Alarms. GDsmith is a differential testing approach for
Cypher-based GDBMSs and found 28 previously unknown bugs.
However, we find that it has a high false alarm rate during our pre-
liminary experiments on it. The reason is mainly due to the different
implementation choices on the same Cypher feature by different

1 WITH 1 AS a WHERE false WITH 1 AS n RETURN max(1),n;

2 −− R e s u l t on Neo4 j : empty

3 −− R e s u l t on MemGraph : nu l l , n u l l

(a) Example false alarm by GDSmith due to different semantic
implementations on GDBMSs

1 OPTIONAL MATCH (c)-[:PP]-() WHERE false RETURN count(c)

2 −−Re tu rn R e s u l t : 0

3 OPTIONAL MATCH (c)-[:PP]-() WHERE false RETURN count (*)

4 −−Re tu rn R e s u l t : 1

(b) Example false alarm by GraphGenie due to nonequivalent
semantics of Count(c) and Count(*)

1 CREATE () ,();

2 MATCH () UNWIND [1,1] as a WITH DISTINCT * RETURN a;

3 −−Re tu rn R e s u l t : 1

4 CREATE () ,();

5 MATCH path =() UNWIND [1,1] as a WITH DISTINCT * RETURN a;

6 −−Re tu rn R e s u l t : 1 , 1

(c) False alarm of GraspDB due to adding a variable

Figure 5: False alarm examples

GDBMSs. This is a common limitation for differential testing ap-
proaches and similar findings is also reported by GraphGenie [21].
This limitation leads to heavy manual efforts in analyzing the large
amount bug reports to rule out false positives. As shown in Table 7,
87 false alarms have been identified from the 250 bug reports of
GDsmith, making more than 1/3 of the reported bugs false posi-
tives. All of the false alarms are caused by different implementation
choices by different GDBMSs, Among which 70 are due to unde-
fined behavior in Cypher documentation, and 17 are due to different
numerical representation formats. One such false alarm example
is shown in Figure 5(a), where Neo4j and MemGraph have differ-
ent implementation choices for the return clause which returns
aggregate function as results.

GraphGenie is a metamorphic approach, which do not have
false alarms introduced by different implementation choices. The
false alarms produced by GraphGenie is mainly due to inaccurate
transformation rules. Figure 5(c) shows a false alarm produced by
GraphGenie. The semantics of count(c) and count(*) are differ-
ent, as null is not counted in the former case and is counted in
the latter case. GraphGenie used them for identical semantic trans-
formation, which caused this false alarm. We also identify another
similar incorrectly used clause pairs, i.e., OPTIONAL MATCH and
MATCH, by GraphGenie, which introduces false alarms. We’ve con-
tacted the authors of GraphGenie and received their confirmation
on the reasons of the false alarms.

There are also some false alarms introduced in our approach,
with similar causes as GraphGenie. Figure 5(d) shows an example
false alarm GraspDB produced. In our mutation rule, a variable

674

ISSTA ’24, September 16–20, 2024, Vienna, Austria Shuang Liu, Junhao Lan, Xiaoning Du, Jiyuan Li, We Lu, Jiajun Jiang, and Xiaoyong Du

p is introduced with the purpose of perceiving the semantics of
the query. However, in this case, the semantics of the query is
changed. The root cause is that the new variable p is introduced
before WITH clause, causing more records to be passed backwards
when filtering out the same records by clause WITH DISTINCT *,
leading to wrong return results. This type of false alarms is similar
with that of GraphGenie and can be avoided by carefully implement
the mutaiton rules to filter out those cases. GraspDB has a far lower
false alarm rate compared with GDSmith and GraphGenie, saving
plenty of time in manual checking the bug reports.

5.5 Threats to Validity

Threats to internal validity mainly lie in the implementation
of GraspDB. The random query generation of GraspDB produces
syntactically valid statements, which, however, can result in se-
mantic errors when being executed. For instance, integer adding
can result in integer out of bounds. We automatically filtered those
semantic errors based on error messages, which may potentially
filter bugs in GDBMSs which are not due to semantic errors. And
due to the large number of report generated, we have to sample to
analyze and identify the bugs, which may miss bugs. Another threat
lies in the manual validation process of logic bugs found in GDBMs.
Due to the large number of report generated, we have to sample to
manually deduplicate and identify the bugs, which may miss bugs.
The manual analysis process may also introduce errors. To make
the validation as accurate as possible, three authors analyze all
reported discrepancies, and reach consensus for all discrepancies.
The large number of duplicated bugs poses a significant challenge
for manual analysis. Bug automatic deduplication is an important
and challenging research topic with many ongoing studies [39].
GraphGenie’s deduplicator works by recognizing bugs triggered
by queries mutated from the same base query and with identical
return result counts as duplicate, suffering from false positive when
different bugs lead to the same return result counts. The situation
becomes more problematic in our case as not all captured bugs
have return results. As a compromisation, we manually deduplicate
the bugs by analyzing both the bug symptoms and root causes. We
leave automated bug deduplication as a future work.

Threats to external validity mainly lie in the subjects chosen
in our evaluations, which do not cover all graph databases sup-
porting Cypher. To mitigate the threat, we pick four well-known,
open-source graph database engines with active development com-
munity for fast feedback. The selected GDBMSs are among the
most popular graph databases and have different designs on system
architecture or data storage, making them representative. GraspDB
is applicable to test any graph databases supporting the Cypher
language. Actually, GraspDB can also be applied to graph database
engines supporting other languages such as Gremlin, with the assis-
tant of query translation plugins such as Cypher for Gremlin [3].

6 Selected Bugs
Since the purpose of our approach is primarily to test the writing-
related functionalities of graph databases, we analyze the bugs
related to writing clauses. For the clarity and simplicity of illustra-
tion, we show the minimized test cases as well as minimized graph
data necessary to demonstrate the underlying core problem.

1 Create p=()<-[r:T]-() Create ({k:COUNT{RETURN [r]}});

2 −− Exp e c t e d b e h a v i o r : 1 pa th and 1 node c r e a t e d

3 −−Ac tua l b e h a v i o r : E x e c u t i o n F a i l e d E r r o r

(a) Consecutive node creation with dependencies failed in Neo4j

1 CREATE () ,();

2 MERGE (n0) MERGE (n1) CREATE (c0);

3 −− Exp e c t e d b e h a v i o r : 4 nod e s c r e a t e d

4 −−Ac tua l b e h a v i o r : Memory l i m i t e x c e e d e d and Conn e c t i o n c l o s e d

(b) Nodes are created endlessly in MemGraph

1 CREATE (n0)<-[r0:T]-() DETACH DELETE n0 DETACH DELETE r0;

2 −− Exp e c t e d b e h a v i o r : n0 and r 0 a r e d e l e t e d

3 −−Ac tua l b e h a v i o r : C onn e c t i o n c l o s e d

(c) Crash caused by repeated deleting a relationship in Mem-
Graph

Figure 6: Case study of bugs detected by GraspDB

Consecutive node creation with dependencies failed in Neo4j.
Figure 6(a) shows that an error occurs in a query which creates
nodes that have dependencies2. The root cause is due to an optimiza-
tion in Neo4j, which merges two consecutive CREATE clauses to be
able to create them together. However, this optimization shouldn’t
apply in the case that the two create clauses have dependencies.
Otherwise, an error is triggered due to referencing a variable that
hasn’t been created yet. We have reported the bug to Neo4j devel-
opers and it has been fixed.

Crash caused by creating nodes endlessly in MemGraph. Fig-
ure 6(b) shows a query that creates nodes endlessly and eventually
leads to a crash and the database connection close3. The first line
creates 2 nodes in the graph. Then the statements MERGE (n0) and
MERGE (n1) each matches the two nodes created before them, pro-
ducing 4 rows of records, which are passed to the last create clause,
creating 1 node for each matched record and finally result in 4 cre-
ated nodes. However, due to incorrect semantic implementations
by MemGraph, the node creating will not end until exceeding mem-
ory limits, and cause connection being closed. This bug seriously
affects the usability, and potentially security aspects of the graph
database. The developers have confirmed this bug and fixed it for
this scenario. They respond that this issue is still open for other
scenarios, which they are not able to fix for compatability concerns.

Crash caused by repeated deleting a relationship in Mem-
Graph. Figure 6(c) shows a query that leads to a crash due to
deleting a relationship which has been deleted before4. According
to the OpenCypher9 documentation, DETACH DELETE is used to
delete nodes (including relationships connected to it) or relation-
ships. Therefore, both n0 and r0 are deleted in the first DETACH
DELETE clause. When the second DETACH DELETE clause ex-
ecutes, MemGraph tries to detach relationship r0 from its nodes.
Since node n0 is deleted by the previous DETACH DELETE clause,
the second delete will crash the database. This bug has already been
confirmed and fixed.

2https://github.com/memgraph/memgraph/issues/1333
3https://github.com/neo4j/neo4j/issues/13305
4https://github.com/memgraph/memgraph/issues/1329

675

https://github.com/memgraph/memgraph/issues/1333
https://github.com/neo4j/neo4j/issues/13305
https://github.com/memgraph/memgraph/issues/1329

Testing Graph Database Systems with Graph-State Persistence Oracle ISSTA ’24, September 16–20, 2024, Vienna, Austria

7 Related Work
Testing of GDBMS. GDBMSs have gained extensive adoption,
leading to a growing focus on their quality and correctness. Two
types of approaches have been proposed for testing GDBMS, i.e., dif-
ferential testing approaches and metamorphic testing approaches.

Grand [41] realized differential testing for GDBMSs that support
the Gremlin language. For test case generation, Grand uses a model-
based approach to generate valid Gremlin queries. GDsmith [20] is
another differential testing approach to test GDBMSs which sup-
port the Cypher query language, another popular query language
for GDBMS. For test case generation, GDsmith uses skeleton gener-
ation and completion to generate semantically valid Cypher queries.
The major drawback of differential testing is that bugs can not be
detected when different DBMSs suffer from the same ones. Further-
more, differential testing approaches suffer from high false alarm
rates due to different implementation choices of GDBMSs, as has
been discussed in shown in Section 5.4.

GDBMeter [22] is the first metamorphic testing approach which
applied the TLP [30] from relational DBMS to graph DBMS and
found 40 unique, previously unknown bugs. GraphGenie [21] pro-
poses injective and surjective Graph Query Transformation (GQT)
to detect logic bugs. It leverages graph properties to generate
follow-up queries by mutating graph query patterns and detected
25 unknown bugs. GRev [25] adapts Equivalent Query Rewriting
(EQR) to GDBMS queries by Random Walking on Abstract Syn-
tax Graph (ASG), an abstraction they proposed to represent query
paths. Gamera [42] develops three classes of graph-aware metamor-
phic relations, i.e., elementary MRs, compound MRs and dynamic
MRs, which directly applies to labeled property graphs, for testing
GDBMS. Different from GraspDB, non of existing metamorphic
testing approaches focus on detecting bugs caused by writing op-
erations, and the oracles in their approach are not able to detect
labeled property graph changes, thus unable to capture those bugs.

Metamorphic Testing of RDBMS. Ternary Logic Partitioning
(TLP) [30], a metamorphic testing approach first proposed for test-
ing RDBMSs, has also been applied to test GDBMS [22]. This tool
has been used to find 175 bugs in widely deployed RDBMSs. (PQS)
is a general and highly-effective approach to finding bugs in DBMS.
The core idea of PQS [31] is to automatically synthesize queries
which guarantees to fetch a specific, randomly selected row, called
the pivot row. If the DBMS fails to fetch the pivot row, it likely
causes a bug in the RDBMS. Non-optimizing Reference Engine
Construction (NoREC) [29] is another widely-known metamorphic
testing approach to test RDBMS. It compares the execution results
of a given optimized querywith the non-optimized version that they
rewritten based on the original query, to detect optimization bugs
in DBMS. The metamorphic testing approaches on RDBMSs share
similar purposes and scenarios as GDBMSs, and can potentially be
applicable to GDBMSs.

8 Conclusion
In this paper, we present GraspDB, the first metamorphic testing
approach specifically designed to identify bugs related to writing op-
erations in graph database systems. In particular, we define the con-
cepts of Labeled Property Graph Isomorphism (LPG-Isomorphism)
and Labeled Property Subgraph Isomorphism (LPSG-Isomorphism)

relations, serving as the basis of our Graph State-Persistence ora-
cle. To engage more code logic on writing operations, we propose
three classes of mutation rules, i.e., add writing clauses, modify
writing clauses and modify return clauses, which are guided by the
LPG-Isomorphism and LPSG-Isomorphism metamorphic relations.
We apply the mutation rules on base queries to obtain base query,
mutated query pairs, the execution correctness of which can be
verified with the metamorphic relations. We conduct experiments
on four commercial GDBMSs. Our approach detected 77 previous
unknown bugs. 58 of them have been confirmed by the developers,
and 43 have been fixed. Among them, there are 11 logic bugs, 32 er-
rors, 13 crashes and 2 inconsistencies with Cypher documentation.
Additionally, 31 bugs cannot be triggered without database writ-
ing operations. We have implemented our method as a tool called
GraspDB and made it public available to inspire future research.

9 Data Availability Statement
We have released the source code and data of our work [24] to
inspire future research.

Acknowledgments
This work is supported by the National Natural Science Founda-
tion of China under Grant Nos. 62472429, 61972403, 61732014, and
by Ant Group through CCF-Ant Research Fund No. CCF-AFSG
RF20240103. We thank the anonymous reviewers for their construc-
tive suggestions, which help improve the quality of this paper.

References
[1] 2007. Structured Query Language. Springer Berlin Heidelberg, Berlin, Heidelberg,

111–212. https://doi.org/10.1007/978-3-540-48399-1_4
[2] 2024.03. AgensGraph Official Website. https://bitnine.net/agensgraph/.
[3] 2024.03. Cypherforgremlin Plugin. https://github.com/opencypher/cypher-for-

gremlin/tree/master/tinkerpop/cypher-gremlin-server-client.
[4] 2024.03. The DBRanking Website. https://db-engines.com/en/ranking/graph+

dbms/.
[5] 2024.03. Graph Database market share. https://www.marketsandmarkets.com/

Market-Reports/graph-database-market-126230231.html..
[6] 2024.03. Graph isomorphism problem for labeled graphs, computer sci-

ence. https://cs.stackexchange.com/questions/28714/graph-isomorphism-
problem-for-labeled-graphs.

[7] 2024.03. Limitations of RedisGraph. https://github.com/RedisGraph/RedisGraph/
blob/master/docs/docs/known_limitations.md.

[8] 2024.03. MemGraph Official Website. https://memgraph.com/.
[9] 2024.03. Neo4j Official Documents: Clauses in the Cypher Query Language. https:

//neo4j.com/docs/cypher-manual/current/clauses/.
[10] 2024.03. Neo4j Official Website. https://neo4j.com/product/neo4j-graph-

database/.
[11] 2024.03. RedisGraph Official Website. https://docs.redis.com/latest/stack/

deprecated-features/graph/.
[12] AsimAnsari, Skander Essegaier, and Rajeev Kohli. 2000. Internet recommendation

systems. https://doi.org/10.1509/jmkr.37.3.363.18779
[13] Marcelo Arenas, Claudio Gutiérrez, and Juan F Sequeda. 2021. Querying in

the age of graph databases and knowledge graphs. In Proceedings of the 2021
International Conference on Management of Data. 2821–2828. https://doi.org/10.
1145/3448016.3457545

[14] L.P. Cordella, P. Foggia, C. Sansone, and M. Vento. 2004. A (sub)graph isomor-
phism algorithm for matching large graphs. IEEE Transactions on Pattern Analysis
and Machine Intelligence 26, 10 (2004), 1367–1372. https://doi.org/10.1109/TPAMI.
2004.75

[15] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin.
2019. Graph neural networks for social recommendation. In The world wide web
conference. 417–426. https://doi.org/10.1145/3308558.3313488

[16] Pasquale Foggia, Carlo Sansone, Mario Vento, et al. 2001. A performance com-
parison of five algorithms for graph isomorphism. In Proceedings of the 3rd IAPR
TC-15 Workshop on Graph-based Representations in Pattern Recognition. Citeseer,
188–199. https://src.acm.org/binaries/content/assets/src/2009/sara-voss.pdf

676

https://doi.org/10.1007/978-3-540-48399-1_4
https://bitnine.net/agensgraph/
https://github.com/opencypher/cypher-for-gremlin/tree/master/tinkerpop/cypher-gremlin-server-client
https://github.com/opencypher/cypher-for-gremlin/tree/master/tinkerpop/cypher-gremlin-server-client
https://db-engines.com/en/ranking/graph+dbms/
https://db-engines.com/en/ranking/graph+dbms/
https://www.marketsandmarkets.com/Market-Reports/graph-database-market-126230231.html.
https://www.marketsandmarkets.com/Market-Reports/graph-database-market-126230231.html.
https://cs.stackexchange.com/questions/28714/graph-isomorphism-problem-for-labeled-graphs
https://cs.stackexchange.com/questions/28714/graph-isomorphism-problem-for-labeled-graphs
https://github.com/RedisGraph/RedisGraph/blob/master/docs/docs/known_limitations.md
https://github.com/RedisGraph/RedisGraph/blob/master/docs/docs/known_limitations.md
https://memgraph.com/
https://neo4j.com/docs/cypher-manual/current/clauses/
https://neo4j.com/docs/cypher-manual/current/clauses/
https://neo4j.com/product/neo4j-graph-database/
https://neo4j.com/product/neo4j-graph-database/
https://docs.redis.com/latest/stack/deprecated-features/graph/
https://docs.redis.com/latest/stack/deprecated-features/graph/
https://doi.org/10.1509/jmkr.37.3.363.18779
https://doi.org/10.1145/3448016.3457545
https://doi.org/10.1145/3448016.3457545
https://doi.org/10.1109/TPAMI.2004.75
https://doi.org/10.1109/TPAMI.2004.75
https://doi.org/10.1145/3308558.3313488
https://src.acm.org/binaries/content/assets/src/2009/sara-voss.pdf

ISSTA ’24, September 16–20, 2024, Vienna, Austria Shuang Liu, Junhao Lan, Xiaoning Du, Jiyuan Li, We Lu, Jiajun Jiang, and Xiaoyong Du

[17] Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lin-
daaker, Victor Marsault, Stefan Plantikow, Mats Rydberg, Martin Schuster, Petra
Selmer, et al. 2018. Formal semantics of the language cypher. arXiv preprint
arXiv:1802.09984 (2018). https://dblp.org/rec/journals/corr/abs-1802-09984.html

[18] Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lin-
daaker, Victor Marsault, Stefan Plantikow, Mats Rydberg, Petra Selmer, and
Andrés Taylor. 2018. Cypher: An evolving query language for property graphs.
In Proceedings of the 2018 international conference on management of data. 1433–
1445. https://doi.org/10.1145/3183713.3190657

[19] Shu-Ming Hsieh, Chiun-Chieh Hsu, and Li-Fu Hsu. 2006. Efficient method to
perform isomorphism testing of labeled graphs. In Computational Science and Its
Applications-ICCSA 2006: International Conference, Glasgow, UK, May 8-11, 2006,
Proceedings, Part V 6. Springer, 422–431. https://doi.org/10.1007/11751649_46

[20] Ziyue Hua, Wei Lin, Luyao Ren, Zongyang Li, Lu Zhang, Wenpin Jiao, and
Tao Xie. 2023. GDsmith: Detecting bugs in Cypher graph database engines.
In Proceedings of the 32nd ACM SIGSOFT International Symposium on Software
Testing and Analysis. 163–174. https://doi.org/10.1145/3597926.3598046

[21] Yuancheng Jiang, Jiahao Liu, Jinsheng Ba, Roland Hock Chuan Yap, Zhenkai
Liang, and Manuel Rigger. 2023. Detecting Logic Bugs in Graph Database Man-
agement Systems via Injective and Surjective Graph Query Transformation. In
2024 IEEE/ACM 46th International Conference on Software Engineering (ICSE). IEEE
Computer Society, 531–542. https://doi.org/10.1145/3597503.3623307

[22] Matteo Kamm. 2022. Testing Graph Databases using Predicate Partitioning. Mas-
ter’s thesis. ETH Zurich. https://doi.org/10.1145/3597926.3598044

[23] MAO Linfan. 2016. Labeled graph—A mathematical element. Infinite Study.
[24] Shuang Liu, Junhao Lan, Xiaoning Du, Jiyuan Li, Wei Lu, Jiajun Jiang, and Xiaoy-

ong Du. 2024. Testing Graph Database Systems with Graph-State Persistence
Oracle. Zenodo. https://doi.org/10.5281/zenodo.12670528

[25] Qiuyang Mang, Aoyang Fang, Boxi Yu, Hanfei Chen, and Pinjia He. 2024. Testing
Graph Database Systems via Equivalent Query Rewriting. (2024). https://doi.
org/10.1145/3597503.3639200

[26] Neo4j. 2024.03. Recommendation Graph. https://github.com/neo4j-graph-
examples/recommendations/.

[27] Neo4j official. 2023.12. Cypher Query Language. https://neo4j.com/developer/
cypher/.

[28] Paul Resnick and Hal R Varian. 1997. Recommender systems. Commun. ACM 40,
3 (1997), 56–58. https://doi.org/10.1145/245108.245121

[29] Manuel Rigger and Zhendong Su. 2020. Detecting optimization bugs in database
engines via non-optimizing reference engine construction. In Proceedings of
the 28th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. 1140–1152. https://doi.
org/10.1145/3368089.3409710

[30] Manuel Rigger and Zhendong Su. 2020. Finding bugs in database systems via
query partitioning. Proceedings of the ACM on Programming Languages 4, OOPSLA

(2020), 1–30. https://doi.org/10.1145/3428279
[31] Manuel Rigger and Zhendong Su. 2020. Testing database engines via pivoted

query synthesis. In 14th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 20). 667–682. https://doi.org/10.5555/3488766.3488804

[32] Carlos R Rivero and Hasan M Jamil. 2017. Efficient and scalable labeled subgraph
matching using SGMatch. Knowledge and Information Systems 51, 1 (2017), 61–87.
https://doi.org/10.1007/s10115-016-0968-2

[33] Ian Robinson, Jim Webber, and Emil Eifrem. 2015. Graph databases: new opportu-
nities for connected data. " O’Reilly Media, Inc.". https://doi.org/10.5555/2846367

[34] Marko A Rodriguez. 2015. The gremlin graph traversal machine and language
(invited talk). In Proceedings of the 15th Symposium on Database Programming
Languages. 1–10. https://doi.org/10.1145/2815072.2815073

[35] Marko A. Rodriguez. 2015. The Gremlin Graph Traversal Machine and Language
(Invited Talk). In Proceedings of the 15th Symposium on Database Programming
Languages (Pittsburgh, PA, USA) (DBPL 2015). Association for Computing Ma-
chinery, New York, NY, USA, 1–10. https://doi.org/10.1145/2815072.2815073

[36] Christos Tjortjis. 2023. Graph Databases: Applications on Social Media Analytics
and Smart Cities. CRC Press. https://doi.org/10.1201/9781003183532

[37] J. R. Ullmann. 1976. An Algorithm for Subgraph Isomorphism. J. ACM 23, 1 (jan
1976), 31–42. https://doi.org/10.1145/321921.321925

[38] Rongjing Xiang, Jennifer Neville, and Monica Rogati. 2010. Modeling relation-
ship strength in online social networks. In Proceedings of the 19th international
conference on World wide web. 981–990. https://doi.org/10.1145/1772690.1772790

[39] Chen Yang, Junjie Chen, Xingyu Fan, Jiajun Jiang, and Jun Sun. 2023. Silent
Compiler Bug De-duplication via Three-Dimensional Analysis. In Proceedings of
the 32nd ACM SIGSOFT International Symposium on Software Testing and Analysis
(Seattle, WA, USA) (ISSTA 2023). Association for Computing Machinery, New
York, NY, USA, 677–689. https://doi.org/10.1145/3597926.3598087

[40] Jun Zengy, XiangWang, Jiahao Liu, Yinfang Chen, Zhenkai Liang, Tat-Seng Chua,
and Zheng Leong Chua. 2022. Shadewatcher: Recommendation-guided cyber
threat analysis using system audit records. In 2022 IEEE Symposium on Security
and Privacy (SP). IEEE, 489–506. https://doi.org/10.1109/SP46214.2022.9833669

[41] Yingying Zheng, Wensheng Dou, Yicheng Wang, Zheng Qin, Lei Tang, Yu Gao,
Dong Wang, Wei Wang, and Jun Wei. 2022. Finding bugs in Gremlin-based graph
database systems via randomized differential testing. In Proceedings of the 31st
ACM SIGSOFT International Symposium on Software Testing and Analysis. 302–313.
https://doi.org/10.1145/3533767.3534409

[42] Zeyang Zhuang, Penghui Li, Pingchuan Ma, Wei Meng, and Shuai Wang. 2023.
Testing Graph Database Systems via Graph-Aware Metamorphic Relations. Pro-
ceedings of the VLDB Endowment 17, 4 (2023), 836–848. https://doi.org/10.14778/
3636218.3636236

Received 2024-04-12; accepted 2024-07-03

677

https://dblp.org/rec/journals/corr/abs-1802-09984.html
https://doi.org/10.1145/3183713.3190657
https://doi.org/10.1007/11751649_46
https://doi.org/10.1145/3597926.3598046
https://doi.org/10.1145/3597503.3623307
https://doi.org/10.1145/3597926.3598044
https://doi.org/10.5281/zenodo.12670528
https://doi.org/10.1145/3597503.3639200
https://doi.org/10.1145/3597503.3639200
https://github.com/neo4j-graph-examples/recommendations/
https://github.com/neo4j-graph-examples/recommendations/
https://neo4j.com/developer/cypher/
https://neo4j.com/developer/cypher/
https://doi.org/10.1145/245108.245121
https://doi.org/10.1145/3368089.3409710
https://doi.org/10.1145/3368089.3409710
https://doi.org/10.1145/3428279
https://doi.org/10.5555/3488766.3488804
https://doi.org/10.1007/s10115-016-0968-2
https://doi.org/10.5555/2846367
https://doi.org/10.1145/2815072.2815073
https://doi.org/10.1145/2815072.2815073
https://doi.org/10.1201/9781003183532
https://doi.org/10.1145/321921.321925
https://doi.org/10.1145/1772690.1772790
https://doi.org/10.1145/3597926.3598087
https://doi.org/10.1109/SP46214.2022.9833669
https://doi.org/10.1145/3533767.3534409
https://doi.org/10.14778/3636218.3636236
https://doi.org/10.14778/3636218.3636236

	Abstract
	1 Introduction
	2 Preliminary
	2.1 Labeled Property Graph and Cypher
	2.2 Graph Isomorphism

	3 Isomorphism Relations of Labeled Property Graph
	4 Approach
	4.1 Query Generation
	4.2 Mutation Rules
	4.3 Oracle

	5 Evaluations
	5.1 Evaluation Setup
	5.2 RQ1: Ability on Detecting Unknown Bugs
	5.3 RQ2: Contribution of Different Components
	5.4 RQ3: Comparison with Baselines
	5.5 Threats to Validity

	6 Selected Bugs
	7 Related Work
	8 Conclusion
	9 Data Availability Statement
	References

