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Abstract—Test case prioritization (TCP) aims to schedule the
execution order of test cases for earlier fault detection. A recent
study has demonstrated that the information-retrieval-based (IR-
based) TCP approaches achieve the state-of-the-art effectiveness.
The current IR-based TCP approaches leverage lexical similarity
between test cases and code changes to guide TCP while ignoring
rich code semantics, which may limit their effectiveness to some
degree. In this paper, we conduct the first study to explore
whether code semantic information can further boost IR-based
TCP. Here, we studied two types of code representation methods
(i.e., general-purpose and task-associated models) and explored
two modes of utilizing the code representation embeddings (i.e.,
unsupervised and supervised modes) for IR-based TCP. Our
results demonstrate that incorporating code semantics through
the supervised mode of code representation can achieve a 16.96%
improvement in the efficiency of fault detection over the state-
of-the-art IR-based TCP approach (which is based on lexical
similarity).

Index Terms—Test Case Prioritization, Code Representation,
Information Retrieval, Empirical Study

I. INTRODUCTION

Regression testing has been widely used to ensure the
quality of software evolution (i.e., not damaging the existing
functionalities of the software). However, due to the large scale
of regression test cases and the high frequency of software
evolution, regression testing is extremely costly [1], [2], [3].
As demonstrated by the existing study [1], more than 80% of
testing time are consumed by regression testing. To improve
the efficiency of regression testing, test case prioritization
(TCP) has been proposed, which aims to schedule the exe-
cution order of test cases in order to detect faults as early as
possible [2], [3], [4], [5], [6], [7].

In the literature, many TCP approaches have been pro-
posed [5], [4], [8], [9], [10]. Most of them utilize code
coverage information (e.g., statement coverage or branch cov-
erage) to prioritize test cases. However, this kind of TCP
approach suffers from some major limitations during practical
use [5], [11]. First, collecting code coverage information
involves substantial extra time and storage overheads [8]. Sec-
ond, coverage-based TCP approaches collect code coverage
information from a previous version and then prioritize test
cases for the latest version of the software. However, they
do not consider the information of the version under test,
and the information collected from a previous version may
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be out of date with the latest version (especially when the
code changes between versions are significant), leading to
ineffective prioritization [5].

To alleviate the above limitations, information retrieval
based (IR-based) TCP approaches have been proposed in re-
cent years [9], [4], which prioritize test cases based on the sim-
ilarity between test cases and code changes. As demonstrated
by existing work [9], [4], [12], [13], [14], code changes tend
to be more likely to introduce faults in software regression,
and thus the test cases more relevant to code changes can
be more likely to detect faults. The key insight behind IR-
based TCP is that the developers tend to use similar terms
from code changes for constructing test cases [9]. Therefore,
the textual relationship serves as a connection between test
cases and code changes, thereby converting the TCP problem
into a conventional IR problem. IR-based TCP can avoid the
extra time and storage overheads incurred by code coverage
collection and, meanwhile, incorporate the information from
the version under test through analyzing code changes. Specif-
ically, it formulates the TCP problem as an IR problem by
treating code changes as queries and test cases to be prioritized
as a collection of documents. In particular, the recent study has
demonstrated that the state-of-the-art IR-based TCP approach
(i.e., BM25-based TCP approach ) has outperformed the state-
of-the-art coverage-based TCP approaches [4]. Although IR-
based TCP has more practical significance, current IR-based
TCP approaches only measure the similarity between code
changes and test cases at the lexical level based on some
traditional algorithms (e.g., BM25 [15] or TF-IDF [16]), but
ignores rich semantic information embodied in code. Such
ignorance may limit the effectiveness of IR-based TCP, but
it is still unexplored till now.

Due to the state-of-the-art effectiveness and practicability of
IR-based TCP, it is definitely valuable to further improve its
effectiveness. In this work, we conducted the first empirical
study to explore whether incorporating code semantic informa-
tion is helpful to boost IR-based TCP. Specifically, we adopted
code representation learning to extract semantic information
from both code changes and test cases, since this kind of
methods have been demonstrated to be effective in many
software engineering tasks [17], [18], [19], [20]. In our study,
we adopted two widely used code representation methods (i.e.,
Doc2Vec [21] and ASTNN [22]) as representatives to explore
whether this direction is promising for IR-based TCP.



Doc2Vec is a typical general-purpose code representation
method, which builds a model by predicting the next word
(i.e., token in code representation) in the document (i.e., code
snippet) following the idea of CBOW [23]. ASTNN is a typical
task-associated code representation method that builds a model
by incorporating both textual and structural information from
the AST corresponding to a code snippet based on the data
for a downstream task.

In particular, we investigated two usage modes of code
representation to boost IR-based TCP. (1) Unsupervised mode:
After representing test cases and code changes as vectors
via a pre-trained code representation model, we adopt an
unsupervised way (i.e., similarity calculation between vectors)
to solve the TCP task. (2) Supervised mode: After obtaining
vectors through code representation, we then build a model
based on a supervised learning algorithm to solve our TCP task
by treating these vectors as feature vectors and labeling them
according to our task, which can predict the fault-triggering
probability of a test case to be prioritized.

Our experimental results on two Java benchmarks (i.e., one
is from the existing study [4], another is collected by us from
GitHub) show that: (1) The semantic information encoded
by the pre-trained code representation models (especially
Doc2Vec) can make the similarity between fault-triggering test
cases and code changes higher than that between non-fault-
triggering test cases and code changes. This is the foundation
on which code representation may boost IR-based TCP. (2)
Utilizing the pre-trained code representation models for the
IR-based TCP task in the unsupervised mode (i.e., similarity
calculation between vectors) performs slightly worse than the
state-of-the-art IR-based TCP approach (i.e., the BM25-based
approach [4]), where Doc2Vec performs better than ASTNN.
(3) Code representation has the potential to improve the
effectiveness of IR-based TCP in the supervised usage mode.
However, the improvement depends on the code representation
method adopted. In particular, ASTNN in the supervised usage
mode achieves a 18.64% improvement over the state-of-the-
art BM25-based TCP approach in terms of average APFD.
That is, during our exploration in the extensive study, we first
obtained a negative conclusion on utilizing code representation
for boosting IR-based TCP (i.e., in the unsupervised mode),
but finally found a possible way that can largely improve the
effectiveness of IR-based TCP (i.e., in the supervised mode)
and is worthy for future exploration.

This paper makes the following major contributions:
• We are the first to propose the incorporation of code

semantic information to boost IR-based TCP.
• We conducted an extensive study to explore the effec-

tiveness of two usage modes of code representation for
IR-based TCP. In particular, certain type of code rep-
resentation used in the supervised mode can effectively
boost IR-based TCP.

• We delivered a series of findings and released our
code [24] for promoting future research and practice.

The remaining of this paper is organized as follows. Sec-
tion II introduces basic background about TCP and code

representation. Section III presents the design of our extensive
study. Section IV reports our experimental results and findings.
Section V discusses the generality of our study and the threats
to validity in our study. Section VI presents the related work.
Section VII concludes our work.

II. BACKGROUND

A. IR-based Test Case Prioritization

Test case prioritization (TCP) aims at finding the optimal
execution order of test cases, which satisfies a given property
or target, such as detecting as many faults as possible within a
given execution time budget [25]. Formally, when providing a
set of test cases T , we use PT to denote all possible execution
orders of test cases in T , and we use f to denote the function
that maps an instance pt ∈ PT to the desired property or
target, such as the aforementioned number of detected faults.
In this way, the target of TCP can be formalized as finding a
pt ∈ PT that ∀pt′ ∈ PT , f(pt) ⪰ f(pt′), where ⪰ denotes the
superiority relation. In particular, in this paper, we define the
target function f as the average percentage of fault detection
(to be defined in Section IV-B1), and ⪰ will be ≥ for the
numeric comparison.

As described before, coverage-based and information re-
trieval (IR)-based TCP approaches are two widely studied
categories of TCP. The former have been widely studied in
the last decades [26], while the latter were less explored.
The most recent study [4] reported that IR-based TCP ap-
proaches can achieve competitive effectiveness compared with
coverage-based TCP approaches, but require less execution
and storage overheads. However, most of the existing IR-based
approaches are still simple as they rarely consider the deep
semantic information of source code. For example, the latest
IR-based TCP approach (i.e., BM25-based TCP approach [4]),
which achieves the best effectiveness over all IR-based TCP
approaches, only considers the lexical features of source code
like natural language (i.e., the term frequency and the length
of data objects). Many existing studies [27], [28], [29] have
revealed that the semantic information of the source code
was valuable and proved to be effective in boosting many
downstream applications, such as code search [27] and fault
prediction [30].

In this paper, our aim is to perform the first study to fill
the gap and explore the possibility of incorporating semantic
information from source code to boost the effectiveness of
IR-based TCP.

B. Code Representation

Source code representation is a fundamental task in many
application scenarios related to program analysis in the soft-
ware engineering community, such as code search [27], code
clone detection [31], [32], and program repair [33]. The target
of such a task is to learn a vector representation of source
code, which hopefully can embed syntactic and/or semantic
characteristics delivered by human developers in source code.
However, it is usually not easy to achieve that. Unlike natural



language, whose semantics usually can be conveyed by key-
words, the semantics of source code are usually complex and
embedded by rigorous computation logic. In recent decades,
researchers have developed different methods to improve the
performance of code representation for different tasks.

In the early stage, source code was usually embedded based
on syntactic features. For example, Jiang et al. [31] proposed
Deckard, which uses the number of different types of AST
nodes to represent the source code for code clone detection.
Based on this, Jiang et al. [33] further incorporated text
similarities (i.e., variable and method names) to measure the
semantic distance of the source code for automatic program
repair. However, these approaches can hardly take advantage
of the deep semantics of source code. Recently, researchers
proposed using deep learning models to aid in the embedding
of source code. For example, TECCD [32] uses random
walk over the AST of the source code to better encode
the syntactic features, while ASTNN [22] uses a tree-based
bidirectional GRU [34] encoder to extract both the syntactic
and semantic features of the code. These approaches have been
demonstrated to be much more effective [35] in extracting
features from the source code and thus can produce better
code representations. In this paper, we will explore whether
IR-based TCP will also benefit from the advanced progress
in source code representation by incorporating typical code
representation methods into the TCP task.

III. STUDY DESIGN

In this section, we present the design of our empirical study.
Intuitively, if code representation can be helpful to the task of
IR-based TCP, it should be able to make the semantic similar-
ity between code changes and fault-triggering test cases higher
than that between code changes and non-fault-triggering test
cases. This is the foundation of our exploration. Therefore,
our study addresses the first research question (RQ1): Is the
semantic similarity (measured by code representation) between
code changes and fault-triggering test cases higher than that
between code changes and non-fault-triggering test cases?
In particular, after representing both code changes and test
cases as vectors, respectively, we designed four strategies of
calculating semantic similarity based on these vectors (to be
presented in Section III-D).

After validating the foundation, we investigated whether
code representation can improve the effectiveness of IR-
based TCP. In practice, there are two typical usage modes
of code representation, and we investigated the influence of
them on the effectiveness of IR-based TCP in our study. (1)
Unsupervised mode: after representing code changes and test
cases as vectors through code representation, we adopted an
unsupervised method (i.e., calculating the semantic similarity
between vectors) to solve the TCP task. (2) Supervised mode:
we built a model based on some supervised learning algorithm
to solve the TCP task by treating these vectors through code
representation as feature vectors and labeling them according
to the task, which can predict the fault-triggering probability
of a test case to be prioritized.

Therefore, our study addresses the second research question
(RQ2): Can code representation improve the effectiveness of
IR-based TCP in the unsupervised mode? Accordingly, our
study addresses the third research question (RQ3): Can code
representation improve the effectiveness of IR-based TCP in
the supervised mode?

A. Studied Code Representation Methods
In general, there are two types of code representation

methods: general-purpose and task-associated code represen-
tations. The former builds a model by learning from the
general corpus without specific labels, while the latter builds
a model based on the data specific to a downstream task. In
the study, we selected a typical code representation method
for each type (Doc2Vec [21] from the general purpose code
representation and ASTNN [22] from the task-associated code
representation), respectively.

As the first study investigating whether code representation
can boost IR-based TCP, we used the two typical methods
as the representative. Actually, there are some more advanced
code representation methods [27], [28], but our study aims
to explore the feasibility of boosting IR-based TCP by code
representation rather than evaluating all the code representa-
tion methods in the task. Moreover, many advanced methods
strictly limit the maximum length of their input code [36], [37],
and the two selected methods are more general in this aspect.
Therefore, we adopted the two methods as the representative
for the first exploration, and in the future, we can investigate
more advanced code representation methods to further improve
the performance. In the following, we introduce the two
methods in detail.

1) Doc2Vec: Doc2Vec [21] is a typical general-purpose
code representation method to produce fixed-length se-
mantic representation for variable-length text. Inspired by
Word2Vec [23], Doc2Vec designs a distributed memory model
of paragraph vectors (PV-DM) to learn semantic representation
of a document. It trains a language model by predicting the
next word in the document following the idea of CBOW [23].
Specifically, each word in the document is first represented
as a fixed-length vector, and the vocabulary V becomes a
weight matrix W . Then, for a given T -length document
[w1, w2, . . . , wT ], the goal of Doc2Vec is to maximize the log
probability during the training process:

1

T

T−k∑
t=k

log(p(wt|v;wt−k, . . . , wt+k)) (1)

Here, p(wt|wt−k, . . . , wt+k) is the probability that the word
wt appears in the context of wt−k, . . . , wt+k. In addition to
the word sequence, Doc2Vec adds a vector v(t) before each
context as the embedding for the document, and it finally
serves as the document representation. Further, the probability
of the next word is calculated via a multi-class classifier as
shown in Formula 2:

p(wt|v(t);wt−k, . . . , wt+k) =
eyt∑
i∈V eyi

yi = Uh(v(i);wi−k, . . . , wi+k) + b

(2)



In this formula, U and b are the weight matrix and bias vector,
respectively. h is the hidden state of the document and the
context, which is constructed by the concatenation of word
embeddings and document representation.

By treating code as text, Doc2Vec can be used for code
representation. In our study, we used the pre-trained language
model through Doc2Vec on the publicly available code dataset
(constructed by Allamanis et al. [38]) to represent both code
changes and test cases. This dataset contains over 352 million
lines of code from 14,807 Java projects on GitHub. When
applying Doc2Vec to code representation in our study, we
pre-processed code by splitting combined tokens (e.g., get-
InputStream) to separate tokens based on two popular naming
schemes (i.e., Camel Case [39] and Snake Case [39]). Then,
a token after preprocessing in the source code is regarded as
a word and a method is regarded as a document, and thus
the pre-trained Doc2Vec model can represent a method as a
vector.

2) ASTNN: ASTNN [22] is a typical task-associated code
representation method, it extracts textual information (i.e.
tokens in source code) and structural information from an AST
corresponding to a method for code representation. Specifi-
cally, ASTNN transforms an AST to a sequence of statement-
level subtrees. For each subtree, ASTNN designs a tree-based
Non-Linear Aggregation network, where the representation of
each non-leaf node is calculated by its child nodes through
a Non-Linear Layer. The hidden state of the non-leaf node n
(with C child nodes) can be calculated as shown in Formula 3.

hn = σ(WT
n vn +

∑
i∈C

hi + bn) (3)

In this formula, Wn refers to the Linear Weight matrix, vn
refers to the token embedding obtained by Word2Vec [23],
and bn refers to the bias vector. Subsequently, ASTNN adopts
a MaxPooling Layer to obtain the representation of the subtree.
Finally, ASTNN adopts a Bidirectional Gated Recurrent Unit
Network (GRU) [34] to encode the subtree sequence as the
final AST representation.

For the sake of cost-effectiveness, we also adopted the pre-
trained ASTNN model in our study. Among all the released
pre-trained ASTNN models, the one based on the code clone
detection task [22] is the closest to our task. This is because
both tasks aim to capture the semantic relationship between
code snippets (even though they target different types of
code snippets and aim to capture different kinds of semantic
relationship). Specifically, it was built on BigCloneBench [40],
which is one of the most widely used benchmarks for code
clone detection in Java code. It contains more than 6 million
pairs of known clone and non-clone method extracted from
the big data interproject repository IJaDataset [41] (25,000
subject systems, totaling 365M LOC).

As introduced before, in RQ2, we investigated the effec-
tiveness of the unsupervised mode of code representation for
boosting IR-based TCP by calculating the similarity between
vectors represented by the two studied pre-trained models.
Details on how to utilize the unsupervised mode of code

TABLE I
BASIC INFORMATION OF BENCHMARKS

#Proj #Job Code Change Test Case

#class #method #class #method

D2980 123 2,980 54.85K 684.59K 3.83M 523.89K
D237 8 237 1.38K 63.62K 472.82K 57.88K

representation to prioritize test cases will be presented in
Section III-D. After that, in RQ3, we designed a supervised
learning framework based on the two pre-trained models
and investigated the effectiveness of the supervised mode of
code representation for TCP. The corresponding supervised
learning framework to prioritize test cases will be presented
in Section IV-C.

B. Benchmarks

In the study, we evaluated our studied IR-based TCP ap-
proaches on two benchmarks (denoted as D2980 and D237 in
this paper for ease of presentation).

D2980: This benchmark is the one used by Peng et al. [4]
to evaluate the effectiveness of the existing IR-based TCP
approaches. It consists of 2,980 test jobs (from 2,042 Travis
builds) of 123 popular Java projects from GitHub, all of which
are built with Maven [42]. Each test job in this benchmark
contains test failures, but the Travis build of the corresponding
prior commit is “passed”, which can ensure that the test
failures are caused by the code changes between the two
commits. More details about this benchmark can be found
on its homepage [43].

D237: This benchmark is collected by us in this study. Since
we need to build a model with a supervised learning algorithm
on the data specific to our task in RQ3, we used the D2980
benchmark as the training data and then constructed the D237
benchmark to measure the TCP effectiveness. Specifically,
following the process of constructing the D2980 benchmark,
we manually collected 237 test jobs of 8 popular Java projects
from GitHub (i.e., Apache Commons CLI [44], Apache Com-
mons Compress [45], Apache Commons Codec [46], Apache
Commons CSV [47], Apache Commons Math [48], Jackson-
Core [49], JacksonXML [50], JFreeChart [51]). Note that there
is no overlapped project between the two benchmarks, in order
to avoid data leakage.

Table I shows the basic information of the two benchmarks,
including the number of included Java projects, the total
number of test jobs, the total number of classes and methods
involved in code changes, and the total number of test classes
and test methods.

C. Data Preparation

For each test job in both benchmarks, it contains both code
changes and test cases (also indicating fault-triggering test
cases). As demonstrated by the existing study [4], treating
classes that include code changes as queries can achieve better
effectiveness for IR-based TCP than using only the code



diff –-git a/cc.java b/cc.java
index 8f86bb9..d74049c 100644
--- a/cc.java
+++ b/cc.java

……

Git Difference

Test Suite

BandSetTest.java

ByteCodeTest.java

CodecEncodingTest.java

BlockSortTest.java

……

[
    ### This is a changed class.
    {
        "methods": [
            "void func1() {...}",
            "void func2() {...}",
            "void func3() {...}"
        ],
        "file_name": "cc.java"
    },

    ……
    ### This is a test class.
    {
        "methods": [
            "void testFunc1() {...}",
            "void testFunc2() {...}",
            "void testFunc3() {...}"
        ],
        "file_name": "BandSetTest.java",
        "fail": 1
    }

    ……
]

Model Input Json

Fig. 1. Overview of data preparation

changes. Therefore, in our study, we also adopted this setting.
Furthermore, following the existing study [4], we prioritize
test cases at the test class level, and the D2980 benchmark
provides only the information whether a test class fails or
passes corresponding to code changes. Please note that we also
discussed the generality of the study on method-level TCP in
Section V-A. That is, each test class is regarded as a document.
In particular, to encode semantic information more precisely,
we applied each pre-trained code representation model to each
method (i.e., each method in each changed class or each test
method in each test class to be prioritized) and then designed
four strategies of similarity calculation based on these method-
level vectors for TCP (to be presented in Section III-D).
Therefore, we organized the information from each test job
as shown in Figure 1, that is, the changed classes (each of
which consists of a set of methods) and the test classes (each
of which consists of a set of test methods).

D. Similarity Calculation Strategies for TCP

As described above, when boosting IR-based TCP through
code representation, we applied a pre-trained code represen-
tation model (built with Doc2Vec or ASTNN) to represent
each test method or each method in changed classes as a
vector. More formally, a test class (TC) consists of a set of
test methods (TM1, TM2, . . ., TMnt). A test method (TMi)
is encoded by a pre-trained code representation model as
vector tvi = {txi1, txi2, . . . , txim}. Also, the changed classes
contain a set of methods (SM1, SM2, . . ., SMns), each of
which (SMj) is encoded by the pre-trained code representation
model as the vector svj = {sxj1, sxj2, . . . , sxjm}. Based
on those method-level vectors, we design four strategies of
similarity calculation in our IR-based TCP enhanced by code
representation. All four strategies share the following work-
flow:

1 Measuring the cosine similarity between tvi (1 ≤ i ≤ nt)
in each test class and svj (1 ≤ j ≤ ns) in changed
classes;

2 Determining the similarity between a test method and
code changes by using the Mean or Max similarity
between the test method and all the methods in changed

void func1() {
···

}

void func2() {
···

}

void func3() {
···

}

void test1() {
···

}

void test2() {
···

}

0.6 0.9 0.4 0.70.30.2

max(0.6,0.9,0.4)=0.9 max(0.2,0.3,0.7)=0.7

class testsuite{
···

}

0.9 0.7

mean(0.9,0.7)=0.8

Code Changes

Test Methods

Stage 1: 
Similarity 
Calculation 

Stage 2: 
Test-method-level 
Similarity 
Determination

Stage 3: 
Test-class-level 
Similarity 
Determination

Test Classes

Fig. 2. Illustrating example of the Max-Mean strategy

classes (we call the similarity test-method-level similarity
for ease of presentation);

3 Determining the similarity between a test class and code
changes by using the Mean or Max test-method-level
similarity of all test methods in the test class (we call the
similarity test-class-level similarity for ease of presenta-
tion);

According to the ways of determining the test-method-
level similarity and the test-class-level similarity, we have
four specific strategies to calculate the similarity between test
classes and code changes in total. For ease of presentation, we
denote them as Mean-Mean, Mean-Max, Max-Mean, and
Max-Max, respectively, where the one before “-” refers to
the way of determining test-method-level similarity and the
one after “-” refers to the way of determining test-class-level
similarity. As shown in Figure 2, we also use an example
for a better illustration by taking the Max-Mean strategy as
representative.

In particular, in the unsupervised mode of code representa-
tion, we prioritized test classes in the descending order of their
test-class-level similarity. Due to the four similarity calculation
strategies, we implemented four specific IR-based TCP ap-
proaches enhanced by code representation in the unsupervised
mode, which will be evaluated in RQ2. Please note that if
some test classes also involve code changes, we put these test
classes to the beginning of our prioritization result as their
original order in the test suite following the existing work [4]
(regardless of the supervised or unsupervised mode).

E. Implementation

We implemented our IR-based TCP approaches enhanced
by code representation in Python 3.6 and Numpy 1.14.2. For
the two pre-trained code representation models, we directly
adopted the public implementations of Doc2Vec from gensim
3.5.0 [52] and ASTNN from the author-provided Github
repository [53]. All our experiments were conducted on a
server with an Ubuntu 20.04 system with Intel(R) Xeon(R)
Silver 4214 @ 2.20GHz CPU, 256GB memory, and NVIDIA
GeForce RTX 2080 Ti GPU.

We also released our code and experimental data on our
homepage for promoting future research and practical use.
More details about our implementations can be found in our
code package:https://github.com/youhanmo/sstcp/.

https://github.com/youhanmo/sstcp/


IV. RESULTS AND ANALYSIS

In this section, we answer each research question by intro-
ducing the corresponding experimental process and analyzing
the corresponding results.

A. RQ1: Semantic similarity between test classes and code
changes

1) Process: To answer RQ1, for each pre-trained model
(based on Doc2Vec or ASTNN) on each test job in the D2980
benchmark, we calculated the test-class-level similarity for
each test class by using each of the four strategies, respectively.
Therefore, we divided the test-class-level similarity results into
two groups according to whether the test class failed or passed
on the test job for comparison. We show the results of the
comparison with box plots in Figure 3.

2) Results: From Figure 3, for Doc2Vec, the box represent-
ing failed test classes is always higher than that representing
passed test classes. However, for ASTNN, the box representing
failed test classes is relatively close to that representing passed
test classes. That is, the similarity between test classes and
code changes based on Doc2Vec is more distinguishable for
fault-triggering test classes (failed test classes) and non-fault-
triggering test classes (passed test classes) than that based on
ASTNN. We suspect the reason may be that the pre-trained
ASTNN model used in our study is built based on the task of
code clone detection. Although it is close to our task to some
extent, it does not intend to distinguish failed and passed test
cases. However, the pre-trained Doc2Vec model is a general-
purpose model and thus may perform stably well on most of
the tasks.

Furthermore, regardless of ASTNN or Doc2Vec, the Max-
Max strategy performs the best among the four strategies. On
the one hand, it can achieve the highest similarity between test
classes and code changes, regardless of failed test classes or
passed test classes. On the other hand, it can better distinguish
the similarity for failed test classes and passed test classes.
One possible reason is that a fault tends to be caused by a
small portion of code changes and affects a small set of test
methods (even a single test method). Identifying the small set
of failed test methods and their associated code changes and
then using their similarity to measure the similarity at the test
class level can be more effective. To some degree, the MAX
operation can help retain the effect of these failed test methods
and their associated code changes, while the Mean operation
can weaken the effect.

To sum up, the foundation on which code representation
may boost IR-based TCP is validated, especially for the pre-
trained Doc2Vec model and the Max-Max strategy.

Answer to RQ1: Code changes tend to be more
semantically relevant to fault-triggering test cases than
non-fault-triggering test cases through code represen-
tation, where the pre-trained Doc2Vec model with the
Max-Max strategy achieves the most significant result.

B. RQ2: Effectiveness of IR-based TCP based on the Unsu-
pervised Usage Mode of Code Representation

1) Metric: Following the existing work on test case priori-
tization [9], [4], [8], [5], [2], [54], [55], [56], [57], we adopted
APFD (i.e. Average Percentage of Failure Detection) [26]
to measure the effectiveness of each studied IR-based TCP
approach. If the APFD value is larger, it indicates that the
effectiveness of the TCP approach is better. The APFD value
ranges from 0 to 1, which is calculated as shown in Formula 4.
In this formula, TFi refers to the first test case in the
prioritized result that detects the ith fault, n refers to the
number of test cases to be prioritized, and m refers to the
number of faults detected by the entire test suite.

APFD = 1− Σm
i=1TFi

n×m
+

1

2n
(4)

2) Process: RQ1 has validated the foundation of applying
code representation to the task of IR-based TCP. In RQ2,
we investigated the effectiveness of IR-based TCP approaches
enhanced by code representation in the unsupervised mode by
comparing with the state-of-the-art IR-based TCP approach
(i.e., BM25-based approach) on the D2980 benchmark. In
particular, we studied two pre-trained code representation
models with four prioritization strategies in the unsupervised
mode, and thus we implemented eight code-representation-
enhanced IR-based TCP approaches in this experiment. For
each studied IR-based TCP approach on each test job (i.e.,
each pair of code changes and test cases to be prioritized),
we obtained the prioritization result and measured its APFD
value.

3) Results: Figure 4 shows the comparison results be-
tween our eight code-representation-enhanced IR-based TCP
approaches (based on pre-trained code representation models
in the unsupervised mode) and the state-of-the-art BM25-
based TCP approach. As expected, the combinations of a
pre-trained code representation model and a similarity calcu-
lation strategy that can better distinguish failed test classes
and passed test classes by measuring the semantic similarity
with code changes (shown in Figure 3), indeed achieve the
larger APFD values, indicating that the corresponding TCP
approaches achieve better effectiveness. Specifically, the TCP
approach based on the pre-trained Doc2Vec model with the
Max-Max strategy performs the best among all the eight
approaches enhanced by code representation. Its mean APFD
value across all test jobs is 0.72.

However, the best code-representation-enhanced IR-based
TCP approach still performs slightly worse than the state-of-
the-art BM25-based TCP approach. The average APFD value
of the latter across all the test jobs is 0.75. The conclusion
actually goes against our intuition, that is, code semantic
information can be more helpful to capture the correlation
between code snippets than textual information. The possible
reason lies in that our used code representation models are
pre-trained for the general purpose (Doc2Vec) or the other
task (ASTNN for the task of code clone detection), and
thus cannot well capture the semantic relationship between



Fig. 3. Class-Level similarity distribution of code representation methods on D2980.

Fig. 4. APFD value distribution of the studied approaches (unsupervised
mode) on D2980 for class-level TCP

code changes and test cases required by the task of IR-
based TCP. Inspired by the practice of supervised mode of
code representation, its effectiveness on a specific task can
be improved by using the code-representation vectors to build
the supervised model of solving the specific task based on the
corresponding labeled data. This further motivates our third
research question presented in the next section.

Answer to RQ2: The unsupervised usage mode of
the pre-trained code representation models cannot ef-
fectively boost IR-based TCP to outperform the state-
of-the-art BM25-based TCP approach.

C. RQ3: Effectiveness of IR-based TCP based on the Super-
vised Usage Mode of Code Representation

1) Supervised Learning Framework: After code represen-
tation, it is also common to utilize these vectors to solve the
target task in a supervised mode, i.e., building a model with
a supervised machine learning or deep learning algorithm on
the training data specific to the target task. For each training
instance, the feature vector is the code representation vector

while the label is assigned according to the specific task. In
this experiment, we aim to investigate whether the supervised
usage mode of code representation can help improve the
effectiveness of IR-based TCP. In our TCP task, each test
class can be regarded as an instance. For each test class,
we extracted the pair of test and changed method with the
largest semantic similarity based on the Max-Max strategy
(due to its effectiveness demonstrated in Section IV-B), and
then concatenated the vectors of this pair of methods through
code representation as the feature vector. Then, we labeled an
instance as 1 (if the test class is fault-triggering) or 0 (if the
test class is non-fault-triggering).

Based on the training data, we applied some machine
learning or deep learning algorithm to build a supervised
model, which can predict the fault-triggering probability of
a test class to be prioritized. As the descending order of the
predicted probabilities for the test classes to be prioritized, the
prioritization result can be obtained. For ease of presentation,
we call such IR-based TCP enhanced by code representation
in the supervised mode SSTcp. We also use Figure 5 to further
illustrate the workflow of SSTcp.

To adequately investigate the effectiveness of SSTcp, in
this experiment, we also studied the two code representation
methods (i.e., Doc2Vec and ASTNN). Furthermore, we studied
three widely used supervised learning algorithms to build the
prediction model, including Random Forest (RF) [58], Logistic
Regression (LR) [59], and Neural Network (NN) [60]. In total,
we implemented 6 specific SSTcp approaches. In particular,
we adopted the implementations of RF and LR provided by
scikit-learn [61] and NN provided by PyTorch to implement
the SSTcp approaches. We determined their parameter settings
based on a small dataset and released the parameter settings
on our project homepage.

2) Process: In the experiment, we used the D2980 bench-
mark as training data and evaluated the effectiveness of
SSTcp on the D237 benchmark. This is because the D2980
benchmark contains more data, which is helpful in building
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TABLE II
COMPARISON IN TERMS OF APFD ON D237 FOR CLASS-LEVEL TCP

Metric Doc2Vec ASTNN BM25
SIM LR RF NN SIM LR RF NN

Avg. 0.57 0.64 0.54 0.64 0.59 0.38 0.33 0.67 0.56
Mid 0.58 0.68 0.56 0.68 0.59 0.36 0.27 0.71 0.59

Fig. 6. APFD value distribution of the studied approaches (supervised mode)
on D237 for class-level TCP

the prediction model with supervised machine learning or deep
learning. In particular, there is no overlap between the two
benchmarks, and thus this setting can avoid data leakage.
Since the number of failed test cases tends to be much
smaller than the number of passed test cases, our training
data suffer from the imbalance issue. To alleviate this issue,
we randomly selected negative samples (i.e., the instances for
passed test cases) from the training data and made the ratio
of negative samples to positive samples be 3:1 for model
training, following the idea of Hard Negative Mining [62],
[63]. To reduce the influence of randomness, we repeated
the experiment ten times and calculated the average results.
Here, we also adopted the state-of-the-art BM25-based TCP
approach as the baseline and used APFD as the metric to
measure the effectiveness of each studied TCP approach.

3) Results: Table II and Figure 6 present the comparison
results between our six SSTcp approaches and the state-of-the-
art BM25-based TCP approach. We also reported the results
of the most effective IR-based TCP approach based on code
representation in the unsupervised mode (i.e., the approach
based on Doc2Vec or ASTNN with the Max-Max strategy)
for sufficient comparison (denoted as SIM in Table II and

Figure 6). In Table II, we report the average and median
APFD values for all test jobs in the D237 benchmark for each
TCP approach. In Figure 6, we used box plots to show the
distribution of the APFD values on all test jobs for each TCP
approach.

From Table II and Figure 6, we can see that ASTNN with
NN performs much better than the state-of-the-art BM25-
based TCP approach and the IR-based TCP approach based
on code representation in the supervised mode when using the
Max-Max strategy. To investigate the statistical significance
of the difference, we further adopted the Wilcoxon rank sum
test [64], [65], [66] at the significance level of 0.05. The result
confirms that ASTNN significantly outperforms BM25 with
p-value=0.001 (< 0.05). In particular, the effect size is 2.74
based on the Hedges’ g metric [67]. On the contrary, although
the average APFD of Doc2Vec with NN is slightly better,
the difference between it and the BM25 is not statistically
significant (p-value=0.19).

The results demonstrate that code representation can boost
IR-based TCP in the supervised usage mode to some degree.
However, the improvement can vary and depend on the se-
lected code representation since only ASTNN with NN can
significantly outperform the baseline method.

In addition, we found that NN performs more stably and
better than RF and LR in terms of the APFD results, regardless
of Doc2Vec or ASTNN. For example, NN improves RF and
LR by 18.52% and 0.14% when using Doc2Vec respectively
and by 103.03% and 76.32% when using ASTNN respectively,
in terms of average APFD. The results demonstrate that NN
is more suitable for our task in the supervised mode of code
representation than the other two. The possible reason for the
superiority of NN lies in that the mechanism behind NN is
different from LR and RF. NN learns the relationship between
labels and code representation vectors via an additional net-
work and thus can fit the difference between fault-triggering
test cases and non-fault-triggering ones. On the contrary, LR
and RF try to find a “boundary” between the two types of
test cases, and thus their performance is highly relevant to
the quality of code representation. Actually, SSTcp can also
integrate other machine learning or deep learning algorithms to
build the prediction model, in addition to the three algorithms
studied. In the future, we will further improve the effectiveness
of SSTcp by incorporating more advanced machine learning or
deep learning algorithms.



Answer to RQ3: Code representation has the potential
to improve the effectiveness of IR-based TCP in the
supervised usage mode. However, the improvement
depends on the adopted code representation method.
In particular, ASTNN can effectively improve the
effectiveness of IR-based TCP.

V. DISCUSSION

A. SSTcp on method-level TCP

Our study has demonstrated that code representation can
boost IR-based TCP at the test-class level in the supervised
mode. In the literature, method-level TCP is also common.
Hence, we further discussed whether SSTcp could be gen-
eralized to boost IR-based TCP at the test-method level. To
apply SSTcp to method-level TCP, it treats each test method
as an instance. Specifically, it identifies the changed method
that has the largest semantic similarity to the test method and
then concatenates the vectors of this pair of methods as the
feature vector. It labels an instance as 1 (if the test method
is fault-triggering) or 0 (if it is non-fault-triggering). After
dealing with the imbalance issue in the training data as before,
it builds a model to predict the probability of triggering a
fault for a test method to be prioritized. Finally, the method-
level prioritization result can be produced according to the
descending order of the predicted probabilities of the test
methods to be prioritized.

This experiment shares the same process as that for RQ3
(presented in Section IV-C). Table III and Figure 7 present the
results of our SSTcp approaches (considering both Doc2Vec
and ASTNN with the same NN, RF and LR algorithms as
RQ3), the state-of-the-art BM25-based TCP approach, and the
most effective approach based on code representation in the
unsupervised mode (denoted as SIM in the table and figure),
in terms of APFD. We can obtain the same conclusion as in
RQ3. That is, SSTcp with NN can also outperform the state-of-
the-art BM25-based TCP approach and the most effective ap-
proach based on code representation in the unsupervised mode,
for method-level TCP. For example, the former improves the
latter two by 50.00% and 134.38% when using Doc2Vec
respectively and by 34.00% and 13.56% when using ASTNN
respectively, in terms of average APFD. We also performed the
Wilcoxon rank sum test [64] to evaluate whether SSTcp with
NN significantly outperforms the BM25-based TCP approach
here. Different from the results from RQ3, the p-values are
also much smaller than 0.05, demonstrating the significant
performance of SSTcp with NN in method-level TCP. The
results further confirm the power of code representation in
supervised mode to improve the effectiveness of IR-based
TCP. In the future, we can incorporate more advanced code
representation methods and learning algorithms for supervised
model training, in order to further boost IR-based TCP.

B. Lexical Information vs Semantic Information

According to our empirical study, utilizing pre-trained code
presentation models in the unsupervised usage mode cannot

TABLE III
COMPARISON IN TERMS OF APFD ON D237 FOR METHOD-LEVEL TCP

Metric Doc2Vec ASTNN BM25
SIM LR RF NN SIM LR RF NN

Avg. 0.32 0.72 0.52 0.75 0.59 0.40 0.38 0.67 0.50
Mid 0.26 0.82 0.49 0.83 0.58 0.41 0.34 0.71 0.47

Fig. 7. APFD value distribution of the studied approaches (supervised mode)
on D237 for method-level TCP

outperform the state-of-the-art BM25-based approach, which
just utilizes lexical information from code changes and test
cases. However, when we adopted the supervised mode of
the pre-trained code representation models, it can largely
outperform the lexical-information-based TCP approach. The
findings indicate that when trying to solve a specific task,
the semantic information extracted by code representation for
general purpose or other tasks may not perform better than the
lexical information. When incorporating information from the
target task (such as through our supervised learning framework
SSTcp), the encoded semantic information can be more useful
for the target task. In the future, we may also fine-tune the
pre-trained models based on the labeled data specific to our
task to obtain more precise semantic information for our task,
and then further improve the effectiveness of IR-based TCP,
instead of the current way of building a supervised model
based on the vectors from the pre-trained code representation
model.

In addition, we also found that for a few test jobs, SSTcp
cannot outperform the lexical-information-based approach, in-
dicating that the two kinds of information may be comple-
mentary for the task of IR-based TCP to some degree. In the
future, we may combine both information in an effective way
to further boost IR-based TCP.

C. Threats to validity

The internal threat to validity lies mainly in the implemen-
tation of our experimental scripts and the TCP approaches.
To reduce this threat, we adopted the implementation of the
compared approach released by the authors, and carefully
checked all of our source code.

The external threat to validity lies mainly in the benchmarks
and code representation models used in our study. In our study,
we used both the benchmark released by the existing work



and the benchmark collected by us for a sufficient evaluation.
However, they may not represent other projects with other
programming languages. To reduce this threat, we plan to
extend our study on more diverse projects in the future. In
addition, to mitigate the threat in model selection, we adopted
Doc2Vec (representing general purpose methods) and ASTNN
(representing task-associated methods) as representatives be-
cause of their good performance and easy to deploy. The
latest studies [68], [69] have demonstrated that large language
models (LLMs) are effective in many applications. However,
the existing study [70], [71] showed that ASTNN can achieve
comparative effectiveness compared to the representative LLM
CodeBERT in code clone detection, which is a very close
task to ours. Furthermore, LLMs tend to achieve suboptimal
performance without fine-tuning on targeted tasks [72], [73]
and it is also hard and time consuming to construct the fine-
tuning data in our application. As a result, we do not include
LLMs in our study. Nevertheless, our conclusion that code
representation can boost the IR-based TCP will not be affected,
and its performance can potentially be further improved by
more advanced and effective representation models. In the
future, we plan to carry out more comprehensive studies to
investigate which models are more effective in our task by in-
corporating more diverse representation models. Furthermore,
since the BM25-based TCP method was not designed for
code representation, we did not include it when studying the
supervised usage mode. In the future, we plan to conduct more
comprehensive studies to investigate the performance of the
supervised methods with traditional features.

The construct threats to validity lie mainly in the metric,
randomness, the studied code representation methods, and the
parameter settings in our study. Following existing studies [4],
[9], [8], [5], [2], [54], [55], [56], [57], we adopted APFD
to measure TCP effectiveness. In the future, we will extend
our study with more testing properties (e.g., execution time
and severity) and then use more comprehensive metrics (e.g.
APFDc [74]) to evaluate the effectiveness of TCP more ade-
quately. To reduce the threat of randomness due to the problem
of imbalance (in Section IV-C), we repeated this experiment
ten times and then used the average results as representa-
tive. Regarding the studied code representation methods, as
explained in Section III-A, we selected one method from each
type as the representative for the first exploration and can study
more code representation methods in the future. To reduce the
threat from parameter settings, we determined the parameter
settings based on a small dataset and released them on our
project homepage.

VI. RELATED WORK

To improve testing effectiveness and efficiency, many TCP
approaches have been proposed in the literature. The major dif-
ference between them is the information resource used to guide
the TCP process. Specifically, test coverage is a widely used
information resource, e.g. statement coverage [26], branch
coverage [75], function coverage [76], method coverage [77]
and so on. Furthermore, Lin et al. [78] proposed to incorporate

the fault detection capability of test cases in historical versions.
Hettiarachchi et al. [56] utilized a fuzzy expert system to
assign risk values on requirements as prioritization guidance.
Wang et al. [55] proposed a quality-aware TCP approach based
on the fault proneness of test cases, while Chen et al. [57]
used log information to boost black-box test case prioritization.
Lou et al. [5] proposed to employ mutation analysis as TCP
guidance. Furthermore, a series of TCP approaches used IR
methods, including TF-IDF [16], BM25 [15], LSI [79], and
LDA [80], which guide the TCP process by measuring textual
similarity between test cases and targeted code snippets.

In addition, many studies have been conducted to compare
the performance of different TCP approaches. For example,
Yoo and Harman [25] conducted a systematic survey on
test case optimization, which explains TCP from different
perspectives. Lu et al. [11] evaluated the effectiveness of TCP
approaches in the scenario of practical software evolution.
Henard et al. [81] compared the performance of black-box and
white-box TCP approaches, while Luo et al. [82] compared the
performance of static and dynamic TCP approaches. Finally,
Lou et al. [83] studied TCP approaches in a finer-grained
granularity, where TCP approaches were classified according
to various features, e.g., algorithms used, criteria, measure-
ments, scenarios, constraints, etc. Differently from them, our
study aims at exploring the possibility of improving the IR-
based TCP approach by incorporating state-of-the-art source
code representation methods, which is orthogonal to existing
studies.

In this study, we conducted the first study to explore the
possibility of using code representation methods to boost IR-
based TCP approaches. In the future, we plan to incorporate
more advanced code representation methods into our task.

VII. CONCLUSION

Due to the state-of-the-art effectiveness of IR-based TCP
and the ignorance of the code semantic information of the
existing IR-based TCP approach, we conducted the first study
to explore whether the effectiveness of IR-based TCP can be
further improved by incorporating code semantic information.
Specifically, we studied a typical general-purpose code repre-
sentation model (i.e., Doc2Vec) and a typical task-associated
model (i.e., ASTNN) to encode semantic information from
both code changes and test cases. Additionally, we investigated
the influence of two modes of code representation usage (i.e.,
unsupervised and supervised modes). Our results show that,
regardless of Doc2Vec or ASTNN, code representation cannot
effectively boost IR-based TCP in the unsupervised mode, but
largely outperform the state-of-the-art IR-based TCP approach
in the supervised mode (the average improvement is 16.96%
in terms of APFD).
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