
ESEC/FSE: U: Accelerating Redundancy-Based Program Repair
via Code Representation Learning and Adaptive Patch Filtering

Chen Yang∗
College of Intelligence and

Computing, Tianjin University
Tianjin, China

Jiajun Jiang
College of Intelligence and

Computing, Tianjin University
Tianjin, China

Junjie Chen
College of Intelligence and

Computing, Tianjin University
Tianjin, China

ABSTRACT
Automated program repair (APR) has attracted extensive attention
and many APR techniques have been proposed recently, in which
redundancy-based techniques have achieved great success. How-
ever, they still suffer from the efficiency issue. One key problem is
how to advance the generation and validation of correct patches.
Traditional redundancy-based approaches often use simple meth-
ods, such as statistical-based methods, to measure code similarity.
This could result in the inaccuracy of measuring code similarity,
which may produce meaningless patches that hinder the generation
and validation of correct patches. Recently, state-of-the-art studies
demonstrate that neural models can better represent source code.
Therefore, to solve this issue, we propose a novel method AccPR,
which leverages neural network for code representation learning to
measure code similarity accurately and employs adaptive patch fil-
tering to accelerate redundancy-based APR. We have implemented
a prototype of AccPR and integrated it with a state-of-the-art APR
tool, SimFix. We conducted a preliminary study on the benchmark,
Defects4J, where the average improvement of repairing efficiency
is 47.85%, indicating AccPR is promising.

CCS CONCEPTS
• Software and its engineering→ Software maintenance tools.

KEYWORDS
representation learning, patch filtering, automated program repair

1 INTRODUCTION
Automated program repair (APR) has attracted extensive attention
in recent years [6, 26]. Redundancy-based APR techniques [1, 24]
(such as GenProg [21], CapGen [32], SCRepair [10], CRSearcher [29],
ssFix [34], SimFix [13] and Refactory [9]) are one of the most im-
portant categories in this field and have achieved promising results
on the number of real-world faults fixed. [12, 13, 34]. The basic idea
of most redundancy-based methods is that by reusing existing code
there is a hope that the correct patch will be generated. Specifically,
they first search for a set of code snippets similar to a suspicious
faulty code from a code base as references, and then generate a
bunch of candidate patches to be validated one by one against a
test suite according to the "generation-validation" model. Although
redundancy-based APR can successfully fix a number of faults as
demonstrated in existing studies [13, 23, 26, 34], they still suffer
from the efficiency issue [22], meaning that they require a lot of
time to repair a bug, as patch validation is a time-consuming process
and they often waste much time validating incorrect patches before

∗Jiajun Jiang and Junjie Chen are the advisors.

the correct one. For example, a state-of-the-art redundancy-based
APR technique (SimFix [13]) sets a time budget of up to 5 hours
for each fault [13]. APR efficiency, which represents the ability to
accelerate debugging process and reduce the time-to-fix delays, has
important influence on promoting these techniques into practice
and significantly affects debugging performance. Therefore, it is
important to accelerate redundancy-based APR techniques.

Through deeply investigating redundancy-basedAPR techniques,
there are twomajor problems affecting their efficiency [20, 22]. First,
the searched similar code snippets are not accurate for generating
correct patches. Specifically, current redundancy-based APR tech-
niques mainly depend on simple frequency or syntactic features
(e.g., AST) to measure code similarity, which cannot capture seman-
tic information and thus the measured similarity is not accurate.
This leads to generating many incorrect patches and also wasting
much time to validate them [28, 30, 35]. We call it inaccurate simi-
larity problem. Second, the order of validating generated patches
used currently leads to wasting much time to validate many similar
but incorrect patches before the correct one. Due to the inaccurate
problem mentioned above, existing APR techniques may gener-
ate many incorrect patches before the correct one. However, some
patches produce quite similar or even the same modifications on
the code snippet, so a lot of time is squandered validating these
similar but incorrect patches. We call it (patch) order problem.

To boost the efficiency of redundancy-based APR techniques, we
propose a novel method, calledAccPR, to overcome the above prob-
lems. Regarding the inaccurate similarity problem, AccPR incorpo-
rates representation learning to extract deep semantic information
from code snippets to improve the accuracy of similarity measure-
ments, inspired by Dantas A et al.[2]. Here, we adopt ASTNN [36],
a state-of-the-art code representation learning method, in AccPR.
Regarding the order problem, although incorporating code repre-
sentation learning could relieve this problem to some degree, by
improving the accuracy of measuring code similarity we observed
that there is a major obstacle for a better patch-validation order.
Specifically, for a candidate code snippet, a lot of patches can be
generated, including similar ones. If a patch has been validated to
be incorrect, patches similar to it are quite likely to be incorrect
as well, which has never been considered by existing techniques.
Therefore, we design an adaptive patch filtering strategy to relieve
the order problem. Specifically, according to the validation feedback,
AccPR adaptively filters out those patches that are highly similar
to confirmed incorrect ones to save time. In addition, regarding
the set of generated patches for a suspicious faulty code snippet,
AccPR ranks patches as the descending order of their similarity
with the faulty code, since simple patches are more likely to be
correct [19, 25].

ACM, Student Research Competition, 2022 Chen Yang, Jiajun Jiang, and Junjie Chen

We have implemented a prototype of AccPR and integrated
it with a state-of-the-art redundancy-based APR technique, Sim-
Fix [13]. Then, we conducted a preliminary study to investigate
its performance on the benchmark, Defects4J [14]. Experimental
results show that AccPR reduces the average repair time of SimFix
from 11.34 to 5.91 minutes, an improvement of about 47.85% on the
repairing efficiency, demonstrating its effectiveness.

To sum up, the major contributions of this work are as follows:
• We proposed a novel method to accelerate redundancy-based
APR via incorporating representation learning to improve
the similarity measurement and an adaptive filtering strategy
to save validation time;

• We have implemented a prototype of AccPR, which has been
integrated with a state-of-the-art redundancy-based APR
tool, SimFix.

• We conducted a preliminary study on a benchmark Defects4J.
The experimental results demonstrate the proposed method
is indeed promising.

The remainder of this paper is structured as follows. Section 2
presents our approach. Section 3 describes the applications and
effectiveness of AccPR. Related work, conclusion about our ap-
proach and future work are presented in Section 4 and Section 5
respectively.

2 APPROACH AND UNIQUENESS
AccPR follows the workflow of redundancy-based APR techniques.
It is designed to solve the inaccurate similarity and patch order prob-
lems by optimizing the similarity measurement and applying an
adaptive patch filtering strategy. Figure 1 presents the overview of
AccRP, which mainly consists of three steps. First, when providing
a candidate faulty code snippet, AccRP leverages code embedding
techniques to aid the search of similar code, and then it employs a
predefined strategy (e.g., SimFix) to generate patches according to
the similar code. Finally, AccRP validates the correctness of candi-
date patches using the equipped test cases and filters those patches
that are less likely to be correct by measuring patch similarity.

Codebase

Faulty Code

ASTNN

Embedding
Generated Patches

Candidates ranked
by similarity

ASTNN

Embedding

Patches ranked
by similarity

Validation

Adaptive Filter

Correct
Patch

Incorrect
Patch

Figure 1: Overview of AccPR

Specifically, to solve the inaccurate similarity problem, AccPR
leverages code representation learning to extract deep semantic
information from code snippets to improve the accuracy of simi-
larity measurements. That is, it employs the state-of-the-art code
embedding technique, ASTNN [36], which has been evaluated to
be effective. Regarding the patch order problem, there is a major
obstacle for a better patch-validation order. Specifically, if a patch
has been validated to be incorrect, patches similar to it are quite
likely to be incorrect as well, which has never been considered by
existing techniques. Therefore, AccPR designs an adaptive patch

filtering strategy to relieve the order problem, which is the first
time as far as we are aware.

In the following, we first introduce the similarity measurement
using code representation in AccPR (Section 2.1), based on which
we present our adaptive patch filtering process in Section 2.2.

2.1 Similarity Measurement
2.1.1 Code Representation. We incorporate ASTNN [36], a code
representation model that can effectively extract semantic informa-
tion of code snippets in AccPR. ASTNN is a novel AST-based neural
network, which encodes the statement trees in an AST to vectors
by capturing the lexical and syntactical knowledge. Based on the
sequence of statement vectors, it then employs a bidirectional RNN
to leverage the naturalness of statements and produce the vector
representation of a code snippet. It is suitable to our scenario as
the learned vectors can be used to measure code similarity. And
since it is a general-purpose model based on ASTs, AccPR will not
be limited to any specific programming languages or tools.

2.1.2 Similarity Measurement. We apply learned embeddings to
capture the similarity between code snippets. Given two code snip-
pets𝑚 and 𝑛, we first leverage ASTNN to embed them into vectors,
and then employ 1-Norm to compute their similarity, which is de-
fined as:

𝑆𝑖𝑚𝑖 (𝑚,𝑛) = | |𝑎𝑠𝑡𝑛𝑛(𝑚) − 𝑎𝑠𝑡𝑛𝑛(𝑛) | |
In this formula 𝑎𝑠𝑡𝑛𝑛(∗) refers to the embedding result of the given
code snippet and 𝑆𝑖𝑚𝑖 (∗, ∗) refers to the similarity score of the two
given code snippets.

2.1.3 Candidate Code Snippets Ranking. Given a suspicious faulty
code snippet 𝑛, AccPR identifies a set of similar code snippetsM
as candidates for patch generation. That is, for each𝑚 ∈ M, we
compute its similarity with 𝑛 by 𝑆𝑖𝑚𝑖 (𝑛,𝑚). Then, AccPR ranks all
candidate code snippets as the descending order of these similarity
results, since the code snippets having higher similarities with the
faulty code are more likely to generate the correct patch [13, 18, 25].
Then we extract modifications from the candidate code snippets
and the suspicious faulty code to generate candidate patches.

2.2 Adaptive Patch Filtering
Given a set of similar code snippets, multiple patches P shall be gen-
erated for a faulty snippet 𝑛. The APR tool will then validate these
candidate patches one by one, which is a rather time-consuming
process and may waste much time validating many similar but in-
correct patches before the correct one. To save this time overhead,
AccPR performs a multi-level patch prioritization and filtering strat-
egy according to the following rules to make the correct patch be
validated as early as possible.

R1 (Similarity): Patches that have higher similarities with the
faulty code (i.e., 𝑆𝑖𝑚𝑖 (𝑝, 𝑛) for each 𝑝 ∈ P) are ranked higher
since the patches with fewer, simpler modifications are more
likely to be correct patches.

R2 (Adaptive Filtering): Patches that are similar to a known
incorrect patch under a given threshold will be filtered since
they are highly likely to be incorrect as well.

R1 is inspired by syntactic distance proposed by Mechtaev et al. [19,
25]: the patches with fewer, simpler modifications are ranked higher.

ESEC/FSE: U: Accelerating Redundancy-Based Program Repair via Code Representation Learning and Adaptive Patch Filtering ACM, Student Research Competition, 2022

Figure 2: Distribution of time cost per each project

While R2 targets to filter out potential incorrect patches as early
as possible with similar inconsequential modifications. AccPR val-
idates patches according to the ordered list of candidate patches,
which is adaptively updated by applying the above two strategies
online.

3 RESULTS AND CONTRIBUTIONS
To investigate the performance of AccPR, we implemented a proto-
type of AccPR and integrated it with a state-of-the-art redundancy-
based APR tool, i.e., SimFix, and conducted our experiments.

3.1 Experiment Setup
We evaluated AccPR on Defects4J [14](v1.2),which is a commonly-
used benchmark for automatic program repair research. In the
experiment, we will compare the results of AccRP with the state-
of-the-art redundancy-based program repair tool, SimFix [13]. The
experiment was conducted on a laptop with Ubuntu 7.5.0 and Oracle
JDK 1.8.

3.2 Research Questions and Results
In this preliminary study, we only focus on faults that have been
fixed by previous APR tools, and show the results of faults repaired
by either SimFix or AccPR. We employ two metrics to evaluate
AccPR’s effectiveness:

1) Time Cost: time for online patch generation, patch embed-
ding and validation (i.e., fault localization and donor code
searching are excluded);

2) NPC: the Number of Patch Candidates validated before the
correct patch[22].

By studying the time cost, we can visualise the effectiveness of
AccPR in improving the repair efficiency of the APR tool. The NPC
metric can reflect the accuracy of patch generation and thus re-
flect the effectiveness of the more accurate similarity measurement.
These two metrics can be corroborated, as intuitively the larger the
NPC, the more time is consumed to validate the patches and vice
versa. Based on the two evaluation metrics, we aim to investigate
the following research questions:

3.2.1 RQ1: How does AccRP perform on the time cost metric? Table 1
presents the detailed results in our experiment, where we list the

Figure 3: Distribution of NPC per each project

time cost for each individual bug. Also, we have visualized the
distribution of time cost according to different projects in Figure 2.
According to the results, AccPR significantly improves the repair
efficiency of SimFix, i.e., requiring less time to repair a bug. AccPR
achieves faster repairs on 22 of the 27 bugs, counting for about
80%. On the bug of Closure-62, the improvement in time cost was
even as high as 84%. More concretely, the average repair time is
reduced from 11.34 to 5.91 minutes, achieving 47.85% repair time
reduction on average. In summary, these results show that AccPR
can effectively reduce the time required for redundancy-based APR
tools and significantly improve their repairing efficiency.

3.2.2 RQ2: How does AccRP perform on the NPC metric? Figure 3
and Table 1 show the detailed results on the NPC metric. Similar
to the results on the time cost metric, AccPR achieves a significant
improvement on the NPC metric as well. Specifically, the number
of patches validated before the correct one is reduced by 46.48% on
average on 23 of the 27 bugs, counting for about 85%, which means
that AccPR wastes far less time generating and validating incorrect

Table 1: Detailed experimental results

Bug Time NPC Bug Time NPC

Ch1 10.76 (18.32) 149 (213) Cl57 4.22 (4.69) 18 (15)
Ch3 Fail (39.21) - Cl62 10.55 (66.11) 121 (534)
Ch7 9.08 (20.61) 153 (591) Cl73 1.49 (1.65) 1 (2)
Ch20 0.93 (0.87) 17 (5) Cl115 2.41 (2.78) 2 (3)
M5 2.46 (2.79) 1 (1) L16 7.62 (Fail) -
M50 2.28 (2.50) 1 (1) L27 15.56 (26.27) 569 (985)
M53 6.89 (4.51) 14 (2) L33 1.23 (2.72) 22 (62)
M57 2.02 (5.81) 4 (97) L39 28.94 (42.00) 659 (977)
M59 2.71 (3.28) 9 (34) L41 2.53 (8.07) 39 (154)
M63 2.66 (3.35) 16 (41) L50 12.04 (25.89) 250 (348)
M70 0.36 (0.58) 1 (1) L58 0.35 (0.32) 1 (1)
M71 6.11 (10.80) 50 (142) L60 3.63 (7.82) 55 (112)
M75 0.45 (0.89) 1 (8) T7 8.83 (Fail)
M79 11.64 (9.58) 336 (127)
Avg. Time: 5.91 (11.34) NPC: 99 (186)

Abbreviation- Ch: Chart, M: Math, Cl: Closure, L: Lang, T: Time.
X(Y)- X is the result of AccPR, while Y is the result of SimFix.

ACM, Student Research Competition, 2022 Chen Yang, Jiajun Jiang, and Junjie Chen

patches before finding the correct one. This result also shows that
AccPR can pick out more compliant candidate code snippets to
generate higher quality patches. This, combined with the adaptive
filtering strategy for candidate patch list, allows the correct patch
to be discovered as early as possible.

3.2.3 RQ3: How does AccRP perform on the number of bugs that
can be successfully repaired? Figure 4 shows the results on the num-
ber of bugs that can be successfully repaired. Particularly, AccPR
successfully repaired two more bugs that SimFix failed to repair as
SimFix ranks the correct patch too far behind. On the contrary, ben-
efiting from the more accurate similarity measurement for better
patch generation and the adaptive patch filtering strategy, AccPR
can rank the correct patch higher and therefore make successful
fixes. Unfortunately, AccPR failed to repair Chart-3 because the
desired patch was mistakenly filtered out due to an incorrect similar
patch that was validated earlier, which could be solved by a better
patch generation or filtering strategy and is worth studying more.

Figure 4: Overlaps of fixed bugs

3.2.4 RQ4: Will the extra time overhead associated with the patch
embedding process reduce the efficiency of AccPR?. Extra time over-
heads will be introduced in our patch embedding process since
representing code snippets is a time-consuming operation. That’s
the reason why AccPR did not yield better results on bugs that could
have been fixed quickly by SimFix (i.e.,Ch20, M53, M79 and L58
shown in Table 1), as the room for improvement was already lim-
ited and the extra time overhead would be non-negligible on these
bugs. However, AccPR can still achieve better results on bugs that
would otherwise take a long time to fix, because there is still much
room for improvement on the inaccurate similarity and patch order
problem and the extra time overhead could be ignored compared
to the improvement brought by the patch embedding process. In
summary, the initial promising result on most cases demonstrates
the effectiveness of AccPR.

The experimental results show that AccPR is promising to accel-
erate existing redundancy-based APR techniques by overcoming
the inaccurate similarity and patch order problems.

4 RELATEDWORK
4.1 Automated Program Repair
Automated program repair(APR) is becoming an increasingly pop-
ular area of research in recent years. Many promising approaches
have been proposed and redundancy-based APR techniques are
one important category in this field. The redundancy assumption
has been leveraged extensively by these program repair approaches
which mainly depends on similar code snippets(called donor code)

to generate patches. For example, ssFix [34] reuses similar code in
a fine-grained granularity via a differencing algorithm. Another re-
lated work is GenProg [21, 31], which applies genetic programming
to mutate existing source code for patch generation. SearchRe-
pair [16] considers existing code reusing as well. And all such
redundancy-based APR methods based on similar code reusing can
be combined with our approach.

4.2 Similar Code Identification
SimFix depends similar code searching in a project, consulting
the work on code clone detection [15, 17]. In particular, the struc-
ture similarity used in SimFix inspired by DECKARD [11], a fast
clone detection approach. Many existing techniques dedicate to
the identification of the differences between two code snippets
and the generation of the transformations from one to the other.
ChangeDistiller [5] is a widely-used approach for source code trans-
formation at AST level. GumTree [3] improves ChangeDistiller by
removing the assumption that leaf nodes contains a significant
amount of text. Recently deep learning based approaches have
drawn much attention to learn the representation of source code.
TBCNN [27] uses custom convolutional neural network on ASTs to
learn vector representations of code snippets. A transformer-based
embedding model is used in code search to map source code and
natural language descriptions and learn the distributed representa-
tion of source code [4]. And GraphCodeBERT [8] improves it by
leveraging the data flow information and combining transformer
with a graph neural network. It is convenient to measure code
similarity by using the vector representations obtained from these
learning based methods. For example, DeepSim [37] encodes code
control flow and data flow into a semantic matrix for measuring
code functional similarity.

4.3 Deep Learning in Software Engineering
Many deep learning applications in software engineering have been
emerging in recent years. DeepAPI [7] uses a sequence-to-sequence
neural network to learn representations of natural language queries
and predict relevant API sequences. And Recently, White et al. [33]
introduced deep learning into automated program repair and pro-
posed a neural network based APR technique DeepRepair.

5 CONCLUSION AND FUTUREWORK
To accelerate redundancy-based APR techniques, we proposed a
novel method (named AccPR) by leveraging code representation
learning for better similarity measurement and designing a novel
adaptive patch filtering strategy. To evaluate its effectiveness, we
implemented a prototype of it and integrated it with SimFix. The
initial experimental results on Defects4J demonstrate the effective-
ness of AccPR. In the future, we will further improve AccPR by
exploring more advanced code representation learning methods
and evaluate it on a wider range of benchmarks and APR tools.

ACKNOWLEDGMENTS
Special thanks to Junjie Chen and Jiajun Jiang for their supervision
and help.

ESEC/FSE: U: Accelerating Redundancy-Based Program Repair via Code Representation Learning and Adaptive Patch Filtering ACM, Student Research Competition, 2022

REFERENCES
[1] Zimin Chen and Martin Monperrus. 2018. The remarkable role of similarity in

redundancy-based program repair. arXiv preprint arXiv:1811.05703 (2018).
[2] Altino Dantas, Eduardo F. de Souza, Jerffeson Souza, and Celso G. Camilo-Junior.

2019. Code Naturalness to Assist Search Space Exploration in Search-Based
Program Repair Methods. In Search-Based Software Engineering, Shiva Nejati and
Gregory Gay (Eds.). Springer International Publishing, Cham, 164–170.

[3] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Martin
Montperrus. 2014. Fine-grained and Accurate Source Code Differencing. ACM
(2014), 313–324.

[4] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al. 2020. Codebert: A pre-trained
model for programming and natural languages. In EMNLP.

[5] B. Fluri, MWü,M. Pinzger, andH. C. Gall. 2007. change distilling: tree differencing
for fine- grained source code change extraction. IEEE Trans. Softw. Eng. (nov
2007), 725–743.

[6] Luca Gazzola, Daniela Micucci, and Leonardo Mariani. 2019. Automatic Software
Repair: A Survey. IEEE Transactions on Software Engineering 45, 1 (2019), 34–67.
https://doi.org/10.1109/TSE.2017.2755013

[7] Xiaodong Gu, Hongyu Zhang, Dongmei Zhang, and Sunghun Kim. 2016. Deep
API learning. In Proceedings of the 2016 24th ACM SIGSOFT international sympo-
sium on foundations of software engineering. 631–642.

[8] Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long
Zhou, Nan Duan, Alexey Svyatkovskiy, Shengyu Fu, et al. 2021. Graphcodebert:
Pre-training code representations with data flow. In ICLR.

[9] Yang Hu, Umair Z. Ahmed, Sergey Mechtaev, Ben Leong, and Abhik Roychoud-
hury. 2019. Re-Factoring Based Program Repair Applied to Programming Assign-
ments. In 2019 34th IEEE/ACM International Conference on Automated Software
Engineering (ASE). 388–398. https://doi.org/10.1109/ASE.2019.00044

[10] Tao Ji, Liqian Chen, Xiaoguang Mao, and Xin Yi. 2016. Automated Program
Repair by Using Similar Code Containing Fix Ingredients. In 2016 IEEE 40th
Annual Computer Software and Applications Conference (COMPSAC), Vol. 1. 197–
202. https://doi.org/10.1109/COMPSAC.2016.69

[11] Jiang, LX, Misherghi, G, Su, ZD, Glondu, and S. 2007. DECKARD: Scalable and
accurate tree-based detection of code clones. PROC INT CONF SOFTW ENG
(2007).

[12] Jiajun Jiang, Luyao Ren, Yingfei Xiong, and Lingming Zhang. 2019. Inferring
Program Transformations From Singular Examples via Big Code. In 2019 34th
IEEE/ACM International Conference on Automated Software Engineering (ASE).
255–266. https://doi.org/10.1109/ASE.2019.00033

[13] Jiajun Jiang, Yingfei Xiong, Hongyu Zhang, Qing Gao, and Xiangqun Chen.
2018. Shaping program repair space with existing patches and similar code. In
Proceedings of the 27th ACM SIGSOFT international symposium on software testing
and analysis. 298–309.

[14] René Just, Darioush Jalali, and Michael D. Ernst. 2014. Defects4J: A database of
existing faults to enable controlled testing studies for Java programs. In Proceed-
ings of the International Symposium on Software Testing and Analysis (ISSTA). San
Jose, CA, USA, 437–440.

[15] T. Kamiya, S. Kusumoto, and K. Inoue. 2002. CCFinder: A Multilinguistic Token-
Based Code Clone Detection System for Large Scale Source Code. IEEE Trans
Softw Eng. IEEE Transactions on Software Engineering 28, 7 (2002), 654–670.

[16] Yalin Ke, Kathryn T. Stolee, Claire Le Goues, and Yuriy Brun. 2016. Repairing
Programs with Semantic Code Search (T). In IEEE/ACM International Conference
on Automated Software Engineering.

[17] R. Koschke, R. Falke, and P. Frenzel. 2006. Clone Detection Using Abstract Syntax
Suffix Trees. In 2006 13th Working Conference on Reverse Engineering.

[18] A. Koyuncu, K. Liu, Tegawendé F Bissyandé, D. Kim, J. Klein, M. Monperrus,
and Y. L. Traon. 2020. FixMiner: Mining Relevant Fix Patterns for Automated
Program Repair. Empirical Software Engineering 25, 3 (2020), 1980–2024.

[19] Xbd Le, D. H. Chu, D. Lo, C. L. Goues, and W. Visser. 2017. S3: Syntax-and
Semantic-Guided Repair Synthesis via Programming by Examples. In Joint Meet-
ing of the European Software Engineering Conference and the ACM SIGSOFT Sym-
posium on the Foundations of Software Engineering.

[20] Claire Le Goues, Stephanie Forrest, andWestleyWeimer. 2013. Current challenges
in automatic software repair. Software quality journal 21, 3 (2013), 421–443.

[21] Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley Weimer. 2012.
GenProg: A Generic Method for Automatic Software Repair. IEEE Transactions
on Software Engineering 38, 1 (2012), 54–72. https://doi.org/10.1109/TSE.2011.104

[22] Kui Liu, Shangwen Wang, Anil Koyuncu, Kisub Kim, Tegawendé F. Bissyandé,
Dongsun Kim, Peng Wu, Jacques Klein, Xiaoguang Mao, and Yves Le Traon. 2020.
On the Efficiency of Test Suite Based Program Repair: A Systematic Assessment
of 16 Automated Repair Systems for Java Programs (ICSE ’20). New York, NY,
USA, 615–627. https://doi.org/10.1145/3377811.3380338

[23] M. Martinez and M. Monperrus. 2016. ASTOR: A Program Repair Library for
Java. In International Symposium on Software Testing and Analysis.

[24] Matias Martinez, Westley Weimer, and Martin Monperrus. 2014. Do the Fix
Ingredients Already Exist? An Empirical Inquiry into the Redundancy Assump-
tions of Program Repair Approaches (ICSE Companion 2014). New York, NY, USA,
492–495. https://doi.org/10.1145/2591062.2591114

[25] S. Mechtaev, J. Yi, and A. Roychoudhury. 2015. DirectFix: Looking for Simple
ProgramRepairs. In 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering (ICSE).

[26] Martin Monperrus. 2018. Automatic Software Repair: A Bibliography. ACM
Comput. Surv. 51, 1, Article 17 (Jan. 2018), 24 pages. https://doi.org/10.1145/
3105906

[27] L. Mou, G. Li, L. Zhang, T. Wang, and Z. Jin. 2014. Convolutional Neural Networks
over Tree Structures for Programming Language Processing. (2014).

[28] Zichao Qi, Fan Long, Sara Achour, and Martin Rinard. 2015. An Analysis of
Patch Plausibility and Correctness for Generate-and-Validate Patch Generation
Systems (ISSTA 2015). 24–36. https://doi.org/10.1145/2771783.2771791

[29] Yingyi Wang, Yuting Chen, Beijun Shen, and Hao Zhong. 2017. CRSearcher:
Searching Code Database for Repairing Bugs. In Proceedings of the 9th Asia-Pacific
Symposium on Internetware (Shanghai, China) (Internetware’17). Association
for Computing Machinery, New York, NY, USA, Article 16, 6 pages. https:
//doi.org/10.1145/3131704.3131720

[30] WestleyWeimer, Zachary P Fry, and Stephanie Forrest. 2013. Leveraging program
equivalence for adaptive program repair: Models and first results. In 2013 28th
IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, 356–366.

[31] Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie Forrest. 2009.
Automatically finding patches using genetic programming. In 2009 IEEE 31st
International Conference on Software Engineering. IEEE, 364–374.

[32] Ming Wen, Junjie Chen, Rongxin Wu, Dan Hao, and Shing-Chi Cheung. 2018.
Context-Aware Patch Generation for Better Automated Program Repair. In 2018
IEEE/ACM 40th International Conference on Software Engineering (ICSE). 1–11.
https://doi.org/10.1145/3180155.3180233

[33] M. White, M. Tufano, M. Martinez, M. Monperrus, and D Poshyvanyk. 2017.
Sorting and Transforming Program Repair Ingredients via Deep Learning Code
Similarities. (2017).

[34] Qi Xin and Steven P. Reiss. 2017. Leveraging syntax-related code for automated
program repair. In 2017 32nd IEEE/ACM International Conference on Automated
Software Engineering (ASE). 660–670. https://doi.org/10.1109/ASE.2017.8115676

[35] Yingfei Xiong, Xinyuan Liu, Muhan Zeng, Lu Zhang, and Gang Huang. 2018.
Identifying Patch Correctness in Test-Based Program Repair (ICSE ’18). 789–799.
https://doi.org/10.1145/3180155.3180182

[36] J. Zhang, X. Wang, H. Zhang, H. Sun, and X. Liu. 2019. A Novel Neural Source
Code Representation Based on Abstract Syntax Tree. In 2019 IEEE/ACM 41st
International Conference on Software Engineering (ICSE).

[37] Gang Zhao and Jeff Huang. 2018. DeepSim: deep learning code functional simi-
larity. In the 2018 26th ACM Joint Meeting.

https://doi.org/10.1109/TSE.2017.2755013
https://doi.org/10.1109/ASE.2019.00044
https://doi.org/10.1109/COMPSAC.2016.69
https://doi.org/10.1109/ASE.2019.00033
https://doi.org/10.1109/TSE.2011.104
https://doi.org/10.1145/3377811.3380338
https://doi.org/10.1145/2591062.2591114
https://doi.org/10.1145/3105906
https://doi.org/10.1145/3105906
https://doi.org/10.1145/2771783.2771791
https://doi.org/10.1145/3131704.3131720
https://doi.org/10.1145/3131704.3131720
https://doi.org/10.1145/3180155.3180233
https://doi.org/10.1109/ASE.2017.8115676
https://doi.org/10.1145/3180155.3180182

	Abstract
	1 Introduction
	2 Approach and uniqueness
	2.1 Similarity Measurement
	2.2 Adaptive Patch Filtering

	3 results and contributions
	3.1 Experiment Setup
	3.2 Research Questions and Results

	4 Related Work
	4.1 Automated Program Repair
	4.2 Similar Code Identification
	4.3 Deep Learning in Software Engineering

	5 Conclusion AND FUTURE WORK
	Acknowledgments
	References

