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ABSTRACT

In recent years, more and more traditional shrink-wrapped soft-
ware is provided as 7x24 online services. Incidents (events that lead
to service disruptions or outages) could affect service availability
and cause great financial loss. Therefore, mitigating the incidents
is important and time critical. In practice, a document describing a
mitigation process, called a troubleshooting guide (TSG), is usually
used to reduce the Time To Mitigate (TTM). To investigate the
usage of TSGs in real-world online services, we conduct the first
empirical study on 18 real-world, large-scale online service systems
in Microsoft. We analyze the distribution and characteristics of
TSGs among all incident records in the past two years. According
to our study, 27.2% incidents have TSG records and 36.2% of them oc-
curred at least twice. Besides, on average developers spend around
36.3% of the entire mitigation time on locating the desired TSGs.
Our study shows that incidents could occur repeatedly and TSGs
could be reused to facilitate incident mitigation. Motivated by our
empirical study, we propose an automated TSG recommendation
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approach, DeepRmd, by leveraging the textual similarity between
incident description and its corresponding TSG using deep learning
techniques. We evaluate the effectiveness of DeepRmd on 18 online
service systems. The results show that DeepRmd can recommend
the correct TSG as the Top 1 returned result for 80.3% incidents,
which significantly outperforms two baseline approaches.
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1 INTRODUCTION

Recently, with the growth of requirements for complex software
functionality, the volume of software increases rapidly. As a conse-
quence, traditional shrink-wrapped software is moving to online
services, which have become increasingly popular especially in
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industry, such as Microsoft Office 365, Google Docs, etc. In order to
ensure the service quality of online systems, various control mea-
surements have been employed to guarantee that services are run-
ning normally [8, 10, 34, 35, 50, 51, 53, 54]. However, incidents [34]
are still common in practice and can potentially cause massive fi-
nancial loss [4, 23]. For example, a study conducted by Ponemon
Institute in the U.S. reported that the average cost of a data center
outage has steadily increased up to 38% from 2011 to 2016 [1], and
the average cost is up to $740,357 in 2016. Additionally, as reported
that due to the service downtime on Amazon’s Annual Prime Day
(its biggest sale event) in 2018, the estimated cost is up to $100
million per hour [2].

Therefore, when an incident of online services occurs, it is vital
to mitigate it as soon as possible. Typically, incidents are reported
automatically by systems. In practice, an incident management sys-
tem continuously detects incidents of services via a set of monitors.
When an incident is detected, a set of On-Call Engineers (OCEs)
will be informed automatically, where the investigation of the inci-
dent starts. As the downtime of services is vital, the investigation
process should be as quick as possible to minimize its impact. In
this process, OCEs need to understand the reasons of the incident
or identify the root cause, and then resolve it to recover normal
services. However, the root causes of incidents are diverse, such as
UPS system failures, human errors and so forth, and thus it usually
costs unacceptable time to resolve it online. Therefore, OCEs need
to mitigate the incident and bring the service back to normal first,
and then resolve the root cause offline later.

In practice, since the responsible developers are frequently chang-
ing and the on-call engineers may not know how to mitigate the
incident immediately. As a result, the mitigation process is also
costly. In fact, similar incidents may occur repetitively due to in-
evitable reasons (e.g., power loss), where the mitigation process
should be similar or even the same (e.g., restarting services). There-
fore, a good practice should record the mitigation process when
the incidents first occur (referred to as a troubleshooting guide or
TSG), and later reuse the TSG when similar incidents occur. Ideally,
when a new incident comes, OCEs can search the corresponding
TSG according to its symptoms to mitigate the incident as soon as
possible. However, since there are too many TSGs and the symp-
toms may vary, it is not easy to find the desired one and potentially
may cause longer mitigation time.

To better understand the usage of TSGs and their characteristics
in industrial practice, we conducted the first large-scale empirical
study on industrial systems from Microsoft. According to the analy-
sis, a significant portion (i.e., 27.2%) of incidents have corresponding
TSGs, and some of them repetitively occurred. For example, around
36.2% TSGs occurred at least twice in the past two years. Besides,
developers took non-negligible time, i.e., on average 36.3% of the
entire mitigation time, to find the desired TSG for an incident. Ad-
ditionally, by further analyzing the characteristics of incidents and
corresponding TSGs, we find that the textual similarity between
the description of the incident and its TSG holds to some extent.

This observation of TSG repetitiveness from our empirical study
reveals that designing an effective TSG recommendation approach
has great potential to speed up the investigation process of incidents
and reduce financial loss in industry. As a consequence, according
to the insights learned from the analyzing results, we propose a TSG

recommendation approach, named DeepRmd, by leveraging deep
learning techniques. Since there is no previous study on this topic,
we employ a traditional TF-IDF approach [38], which is widely
used for computing textual similarity in the literature [5, 39], and
shift a deep-learning-based technique, DeepCS [21], from a sim-
ilar application domain (i.e., code search) to our scenario as two
baseline approaches. We evaluate and compare the effectiveness
of our approach with the baseline techniques on the real-world
online service systems. The results demonstrate that our approach
is able to achieve the recommendation accuracy of 80.3%, signif-
icantly outperforming the baseline techniques with up to 104.8%
and 47.6% increases, respectively. Besides, we further investigate
the contribution of each component of our approach via a set of
comparison experiments. The results demonstrate the effectiveness
of each individual component. Additionally, since the length of
TSG text varies, we also investigate its impact on the final result by
changing the length of TSG text used for learning and prediction.

In summary, the major contributions of this paper are as follows:
• The first large-scale empirical study on the usage and char-
acteristics of TSGs for online service systems in industrial
practice.

• A novel TSG recommendation approach (named DeepRmd)
by leveraging the textual similarity between incident de-
scription and its corresponding TSG using deep learning
techniques, which is effective and significantly outperforms
the baseline techniques.

The remainder of the paper is organized as follows. Section 2 in-
troduces the empirical study and demonstrates the analysis results.
Section 3 introduces our new approach of TSG recommendation
in detail and Section 4 presents the evaluation results. Section 5
introduces the lessons learned from our empirical analysis and
evaluation. Section 6 and Section 7 present the threats to validity
and related work, respectively. Finally, we conclude the paper in
Section 8.

2 EMPIRICAL STUDY

To investigate the importance of recommending TSGs to developers,
we perform an empirical study on the characteristics of TSGs and
their usage in online service systems. Though it is intuitive that
TSG recommendation should be helpful, the empirical study on
real-world online systems can provide statistical supports to the
intuition and further motivate our TSG recommendation approach.

2.1 Data Collection

To perform our empirical study, we statistically analyze 18 large-
scale industrial online service systems from Microsoft, some of
which are widely used products around the world, such as Mi-
crosoft Azure, Visual Studio, etc. We collect all incident records in
the past two years of those systems. For each incident, the major
content includes a title (or description), the corresponding TSG
(empty if it does not have), related service and environment, as well
as the timestamps of incident creation, assigning the corresponding
TSG and finishing mitigation. The title is a short summary (i.e.,
one or two sentences) of an incident that may include impacted
services and related resources. The TSG is usually an online docu-
ment which records the detailed description of a mitigation process.
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A typical TSG document contains dozens to thousands of lines of
texts. The related service field records the service system on which
the incident was introduced. The environment field denotes the
phase of services where the incident was reported (e.g., the test-
ing environment indicates that the incident occurred during the
development of the system, while the production environment in-
dicates that the system was already online). Finally, the timestamp
of incident creation indicates the time when it was reported. The
timestamp of assigning TSG denotes the time when the associated
TSG was assigned to the incident while the timestamp of finishing
mitigation is the time when the developers tagged the incident as
successfully mitigated. In our analysis, we discard those records
that under testing environment to alleviate the impact of irrelevant
data. As a result, we collect about 20GB data (due to the confiden-
tial policy of Microsoft, we hide the details of the incidents, e.g.,
incident categories) and 1500 TSGs.

Incident description:
[AX] - Watch Dog RuleName DatabaseSpaceUsedRule 10Per-
centRemaining for Tenant 9a083aab-e8d6-459d-8407-xxxxx ...

Corresponding TSG:
Watchdog Rule Failure: Database Space Used
Symptoms:
Run the following query to get the current usage and free space
details about the database.
If the used percentage (USEDMB/TOTALMB*100) is greater than
xx – it’s bad, do the following
...
SELECT [t].[name] AS [Table], [i].[name] AS
[Index], [p].[partition_number] AS [Partition],
[p].[data_compression_desc] AS [Compression] FROM [sys]
...

Figure 1: An example of incident description and its corre-

sponding TSG (removing sensitive information).

Figure 1 shows the excerpt of an incident description, which was
reported at 23:43 (incident creation). Its corresponding TSG shown
in the figure was attached to the incident at 23:49 (assigning TSG).
Finally, the incidentwasmitigated at 04:33 on the next day (finishing
mitigation). From the descriptions, we can see that the incident is
associated with the usage of a certain database and encountered by
a tenant with a certain id. The corresponding TSG first describes the
symptoms and then the mitigation process in detail, such as query
a database to check the status of systems. Typically, the symptom
description of the TSG is similar to that of a corresponding incident,
which is also the intuition of our recommendation approach.

2.2 Empirical Analysis

In this section, we report our empirical results in detail. Especially,
we mainly focus on the following research questions.
Q1: What is the ratio of TSG usage in online service systems?
Q2: What is the impact of TSG on incident mitigation time?
Q3: What are the characteristics of TSG usage in practice?

2.2.1 Frequency of TSGs. We study the frequency of using TSGs in
online service systems. The results are presented in Figure 2. In the
figure, x-axis denotes the names of systems while y-axis denotes
the percentage of incidents that have TSG records in the history
(past two years). Due to the confidentiality policy of Microsoft, we
hide the details of those services and use “Si” to represent the ith
service. On average, 27.2% incidents have recorded the correspond-
ing TSGs, indicating that TSGs are useful in practice to some extent.
Please note that this ratio is an approximation since we cannot
guarantee that all developers have recorded the TSG information
in the mitigation process even if they have actually used TSGs and
thus this ratio should be the lower bound. On the other hand, since
currently there is no effective TSG recommendation technique in
the mitigation process, the frequency of TSG usage is affected. We
will further discuss this issue in Section 6.

Furthermore, from the figure we can find that the ratio of in-
cidents varies greatly among different services. For example, for
service S2, a large portion (i.e., 85.2% ) of incidents have TSG records,
while only a small portion (i.e., 1.3%) for service S17. As a result,
we further investigate the reasons for the divergence. First, those
services with smaller portions of TSGs are usually background ser-
vices (such as S6, S13, etc.), which have small or even no impact on
user experience. Therefore, these incidents are not very time urgent
and thus can be mitigated by experienced developers later without
TSGs. Second, a large portion of incidents may occur repetitively
but last for a very short time (called transient incidents). Such kind
of incidents usually do not require human efforts to mitigate as
they have small impact on users and will disappear soon, such as
incidents in S10, and S17.

Observation 1. On average, developers use TSGs for
around 27.2% incidents (lower bound) of online service sys-
tems. The results indicate that some teams frequently use
TSGs while some do not. It is desirable to facilitate the use
of TSGs by automatically recommending TSGs.
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Figure 2: The percentage of incidents that have TSGs for

each service.

2.2.2 Impact on Mitigation Time. To understand whether TSGs
impact the efficiency of incident mitigation, we compare the miti-
gation time (i.e., Time to Mitigate or TTM) for incidents that have
and do not have TSG records. Particularly, according to Figure 2,
the proportions of incidents that have TSGs are too small for some
services, which may not be representative and tend to be biased
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without statistical significance. To alleviate this effects, we only fo-
cus on those services from which at least 10% of the incidents have
associated TSG records. Finally, it leaves us 11 services for analysis
and the results are reported in Figure 3, where the x-axis represents
the service while the y-axis denotes the multiple of average TTM
for incidents without TSG record against that for incidents having
associated TSGs. On average, compared with those using TSGs,
developers spent 6 times as much time to mitigate an incident as
there is no TSG used. Additionally, from the figure we can find
that TSGs can help shorten TTM for 10 out of 11 services. That
indicates it is useful in practice to speed up the mitigation process
of incidents. For example, the time saved to mitigate an incident
can be as high as around 20x, which is significant to reduce TTM
and thus financial loss incurred by the incident. However, there is
an exception, where the mitigation time for S2 became longer when
using TSGs. We further analyze these cases and find that among
all the incidents which do not have TSGs, around 87% of them (via
manually inspecting 100 randomly sampled cases) have very small
impact on users and will automatically come to normal service
within a short time. As a result, the monitoring system will report
the normal state in time, which looks like “Incident is mitigated
because the watchdogs associated with this incident have reported
healthy at least 5 times”. Therefore, such kinds of incidents do not
cause too much time for mitigation. On the other hand, incidents
with TSGs need to be tackled by developers, where usually more
time will be spent.

Observation 2. TSGs can achieve around 5x speedup to
incident mitigation, indicating their effectiveness to reduce
TTM in practice.
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Figure 3: The multiple of average mitigation time of inci-

dents without TSGs compared with that of incidents with

associated TSG records.

2.2.3 Characteristics of TSG Usage. According to the results shown
in previous sections, developers tend to use TSGs for a non-negligible
portion of incidents, which can help reduce the mitigation time
of incidents. Since TSGs are useful and helpful to developers, we
naturally raise a question – is it necessary and practical to recom-
mend TSGs for developers? To answer this question, we perform a
further analysis from the following two perspectives.

• How long does it take to locate the desired TSG?
• Are TSGs used repetitively?

These two aspects are important as they correspond to the ne-
cessity and practicality of TSG recommendation. For example, if it
was easy (i.e., spending a little time) to locate the desired TSG for
developers, the gain of TSG recommendation would be minimal
since the saved time could be ignored. On the other hand, if develop-
ers spent much time on locating the corresponding TSGs, it would
be very helpful to speed up the incident mitigation process. Like-
wise, the recommendation depends on the repetitive occurrence
of TSGs for practical use. Therefore, we first conduct a statistical
analysis of the time to locate the corresponding TSGs. However,
since it is impossible to obtain the accurate time of TSG localization
and incident mitigation due to human factors (e.g., non-continuous
working on the incident). As a result, we use the time when they
were recorded to the incident management system as an approxima-
tion. We will discuss this further in Section 6. In detail, we use t1, t2
and t3 to respectively represent the recorded timestamps of incident
creation, assigning the corresponding TSG and finishing mitigation
process (ref. Section 2.1). Then, the TSG localization and mitigation
time can be computed by t2 − t1 and t3 − t1, respectively. Figure 4
presents the analysis results. In the figure, the y-axis indicates the
average percentage of time to locate the desired TSG among the
entire mitigation time, i.e., t2−t1t3−t1 .
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Figure 4: The ratio of time for finding the desired TSG to the

complete mitigation time.

On average, 36.3% of the mitigation time is spent on locating
the TSGs, which is a significant portion of time in this process.
Furthermore, from the figure, up to 80% or even a larger portion of
time is used for TSG localization in five services, i.e., S6, S12, S13,
S15 and S17, demonstrating the localization process is the major
time-consuming part to mitigate the incidents. In other words, if the
corresponding TSG is found, the mitigation process should be much
easier and cost a little time. As a result, correctly recommending
TSGs for developers is useful and necessary. However, some special
cases should be noticed in the figure, where little time (i.e., close to
0) is used to locate the desirable TSGs, i.e., for services S2, S4, S8, S16
and S18. The reason is that those services have mature mitigation
maintenance systems, where engineers clearly classify different
kinds of incidents, and allocate different monitors to capture each
kind of incidents and report the corresponding TSGs together with
the incidents. However, it depends on a well-designed systemwhich
can correctly identify the reasons for reported incidents with par-
ticular monitors. As for the other services, incidents caused by
different reasons may be reported by the same monitors, making
it impossible to correctly recommend TSGs. However, on the one
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hand, it is not easy to design such a system because developers need
to not only know most of possible incidents but also seed enough
monitors to capture them online. On the other hand, many services
in Microsoft that have been deployed were not designed with such
a mature monitoring system (see Figure 4) in the beginning and it
is hard to re-implement them within a short time. As a result, most
of the time developers need to find the desired TSGs manually.

Observation 3. Developers usually spend a significant
portion of time (i.e., 36.3% on average) on locating the de-
sired TSGs in the incident mitigation process.

To investigate the repetitiveness of TSGs, we collect all incident
TSGs and compute the number of times each TSG appeared. Es-
pecially, we rule out those TSGs that can be handled well by the
mature mitigation maintenance systems since they can be recom-
mended by the systems automatically and do not need external
recommendations, e.g.,S2 and S4. The result shows that 36.2% of
TSGs repetitively appeared at least twice in the historical records
and some of them were even shared by hundreds of incidents. That
is to say, for only one TSG, hundreds of incidents can be potentially
sped up by an effective recommendation technique. However, for
the other 63.8% TSGs, they were rarely shared as only used by one
incident in the past two-year records. To investigate the reasons
for those TSGs, we analyze their features and find that some of
them are related to one-time-only disruptions, such as source code
defects or configuration errors, which can be avoided once repaired
or mitigated. Additionally, we further randomly sample ten of those
TSGs which appeared only once and manually check whether there
exist other related incidents. This is because developers may miss
to record corresponding TSGs as it is not a must in Microsoft. The
results demonstrate that some TSGs (2 out of ten) in fact should
be repetitive as there exist similar or even the same (in terms of
descriptions) incidents corresponding to the TSGs, but they were
assigned no TSG in our dataset. In other words, at least 36.2% TSGs
(lower bound) have the potential to be automatically recommended
to speed up the incident mitigation process. Please note, for the
other 63.8% TSGs, it is still possible that they are repetitively appear-
ing in the future and can be recommended eventually. Furthermore,
the TSG recommendation technique potentially can facilitate the
usages of TSGs in practice by saving TTM.

Observation 4. A significant portion of TSGs (i.e., 36.2%)
were repetitively used to mitigate incidents, indicating the
potential of reducing the incident mitigation time via auto-
mated TSG recommendation.

3 TSG RECOMMENDATION TECHNIQUE

According to the empirical study in Section 2, it is necessary to rec-
ommend TSGs for developers to speed up the incident mitigation
process. In this section, we aim at this target and propose a TSG
recommendation approach by leveraging deep learning techniques,
named DeepRmd. Since the number of TSGs is not fixed, i.e., new
TSGs can be added to the system continuously, traditional clas-
sification techniques do not conform to this application scenario.

TSG
descri
ptions

Embedding with
TextCNN model

Incident
description

Embedding with
LSTM +Attention

𝜃

𝑠𝑖𝑚 𝐴, 𝐵 = cos 𝜃

=
𝐴 , 𝐵
𝐴 | 𝐵 |

Incident
description

Incident
description
Incident
description
Incident
description

Training Phase Predicting PhaseRanking

New incident

Embedding with
LSTM +Attention

TSG embedding
vector database

Figure 5: The architecture of DeepRmd

Therefore, via making use of the textual similarity between the
incident description and its corresponding TSGs (e.g., the example
shown in Figure 1), we consider it as an information retrieval prob-
lem, where the query is the incident report and the answer is the
corresponding TSG.

3.1 Architecture

Inspired by existing joint embedding techniques [16, 17, 21, 28, 46],
we propose a novel deep neural network for TSG recommendation,
called DeepRmd. The architecture of our approach is shown in
Figure 5, which consists of two phases, i.e., training phase and pre-
dicting phase. For each phase, we first compute the embeddings of
TSG descriptions and incident descriptions, respectively, and make
their embeddings (feature vectors) in the same length. Finally, we
leverage the cosine function to compute the similarity between the
embedded vectors for joint learning (training phase) and ranking
(predicting phase).

Specifically, we first utilize a widely used pre-trained model [14]
to perform word segmentation for both incident and TSG descrip-
tions. Then, we employ a bidirectional LSTM model [19, 20, 42] to
compute the embeddings of incident descriptions and a TextCNN
model [30, 49] to compute the embeddings of TSG descriptions.
Please note that the embeddings of TSG descriptions can be reused
for future prediction. That is, when a new incident comes, we com-
pute its embedding first and then calculate the similarity with each
of the TSG embeddings via the cosine function. Particularly, to
speed up the computation, we adopt the random projection tech-
nique [13] implemented by Bernhardsson et al. [3] for dimension
reduction. Eventually, all candidate TSGs are ranked based on the
similarities. Next, we will introduce these two kinds of embeddings
in detail.

3.2 Embedding of Incident

To compute the embeddings of incidents, we employ a Recurrent
Neural Network (RNN), which is a popular architecture of Neural
Network and is widely used in the field of Natural Language Pro-
cessing (NLP) [37]. The main difference of RNN with other neural
networks is that RNN is good at handling sequential or contextual
data by viewing them as different time-evolving states.

However, standard RNN performs just fine when dealing with
short-term dependencies, that is, when the sentence is short. How-
ever, it has a primary disadvantage that the relevant information
is separated if the sentence consists of a large number of words.
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In this case, the performance of the network may downgrade due
to vanishing gradient [7]. To solve this problem, a variant of RNN
called Long Short Term Memory (LSTM) is proposed to preserve
the long-term dependency information [22]. Therefore, in our ap-
proach, we leverage a bidirectional LSTM [19, 20, 42] model for the
embeddings of incident descriptions.

Despite the LSTM model can alleviate the dependency problem
of standard RNN model, it still views all words equally and hardly
identifies important keywords in a sentence [6]. As a result, in our
approach, we further leverage the attention mechanism to improve
the effectiveness of LSTM model. More specifically, for each word
in the textual description of an incident, we compute the word
vector with the LSTM model, and in the meantime we employ the
attention cell to highlight the important words via a weighted sum
function. Figure 6 presents the structure of our model. The partial
description of the incident is “I cannot access service xxx”. After
performing embedding, some values in the output vector will be
highlighted by the attention cell (e.g., the fourth value in the output
vector).

LSTM LSTM LSTM LSTMLSTM

0.12 0.05 0.30 0.010.86

Attention
weights

Embedding size

Output vector

“I” “cannot” “access” “service” “xxx”

Figure 6: LSTM model for incident embedding.

3.3 Embedding of TSG Description

In this section, we introduce the embedding of TSG descriptions.
As introduced before, the TSG description is usually a long-text
document. Therefore, a typical RNN model could hardly capture
the entire features of documents (also experimentally confirmed
in the final evaluation that will be introduced in Section 4.3). As a
result, in order to embed TSG descriptions to vectors, we employ a
TextCNN model in our approach, which has been evaluated to be
effective to handle long texts [30, 49]. The detailed architecture of
TextCNN is shown in Figure 7.

TextCNN is a variation of traditional CNN (Convolutional Neural
Network) that is widely used in image processing field [31, 43]. The
major difference is that TextCNN transforms the two-dimensional
convolution for extracting image features into one-dimensional
convolution for extracting text features. Through the embedding
layer, we can make each word a k-dimensional vector, i.e., xi ∈ Rk
represents the ith word in a sentence. Particularly, we use the vector
sequence x(i :i+n) to represent the concatenation of n words:

x(i :i+n) = xi ⊕ x(i+1) ⊕ · · · ⊕ x(i+n) (1)

where the operator ⊕ denotes the concatenation of vectors. Besides,
we define wf ∈ Rhk as a f ilter convolution operator that can be
applied to a sequence of word vectors with a window size of h and
produce a new vector. The convolution window moves from the

ApiHub
RP
did
not 

recover
after
DNS

outage

Sentence matrix
8 * 10

3 filters with a window             
size of : (3,4,5)convolution

feature map 
for each 

window size

1-d maxpooling

concatenate 
vectors

output

vector

Figure 7: Structure of TextCNN model.

beginning of the sentence to the end. For example, using the f ilter
convolution operator on h consecutive word vectors starting from
the ith word outputs the scalar feature ci :

ci = ReLU (wf · x(i :i+h−1) + bf ) (2)

where x(i :i+h−1) is generated from a window of words with the size
of h and bf ∈ R is a bias. The symbol “·” refers to the dot product
and ReLU (·) is the element-wise rectified linear unit function. The
f ilter operator will be applied to each possible window of words
in the sentence with n words, i.e., x(1:h), x(2:h+1), · · · , x(n−h+1:n), to
produce a feature map c ∈ R(n−h+1).

c = [c1, c2, ..., c(n−h+1)] (3)

As shown in the figure, we employ three windows (i.e., size of 3,
4 and 5) sliding over the TSG description. That is the new vectors
are computed depending on 3, 4 and 5 continuous words respec-
tively. Then, we perform amaxpoolinд operation on each feature
map. It is easy to understand that two-dimensionalmaxpoolinд is
to select the maximal value in each fixed-size region of the two-
dimensional matrix, and one-dimensionalmaxpoolinд is to maxi-
mize the one-dimensional vector in the two-dimensional matrix.
We use one-dimensionalmaxpoolinд to get a vector consisting of
the maximal value of each row. Each different feature map captures
different features, and maxpoolinд can choose the one with the
highest value (i.e., the most important one) in a feature map. In
addition,maxpoolinд can convert variable-length sentences into
fixed-length vectors. Finally, we adopt the commonly-used dropout
technique to further reduce the effects of overfitting, which can
make the model more robust and general because it does not heavily
rely on local features.

3.4 Joint Learning

According to the previous introduction, we embed both incidents
and TSG descriptions into vectors. Then, we employ a joint learning
process for model training [16, 21, 46]. Formally, we use the triple
⟨I ,T+,T−⟩ to denoteT+ is the desired TSG for incident I whileT−
is an incorrect TSG for I . In other words, the training input is a set
of pair-wised data, which will be used to train a biased selection
model, i.e., the computed similarity value between I andT+ should
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be larger than I and T−. In this process, for each incident I , its
correspondingT+ indicates the correct TSG whileT− is a randomly
selected one from all other TSGs. In this joint learning process, we
use the cosine function to measure the similarity. The following is
the formula of cosine function.

cos(vI , vT ) =
vTI · vT

∥ vI ∥∥ vT ∥
(4)

In the function, vI and vT denote the embedding vectors for
incident and TSG descriptions, respectively. Finally, we use the
following ranking loss function as the optimization target, which
is commonly used by previous studies [12, 17, 21].

L(θ ) =
∑

⟨I ,T+,T−⟩∈D

max(0, ϵ − cos(vI , vT+) + cos(vI , vT−))

In the formula, for each incident I we build the corresponding
triplet ⟨I ,T+,T−⟩, which forms the complete training dataset D
and will be used to train the model by minimizing the loss over the
dataset D.

4 EVALUATION

In this section, we evaluate the effectiveness of our approach on
real-world online service systems. Since there is no prior approach
on this topic, we adapt two distinct types of existing approaches
for comparison. The first one is a traditional information retrieval
(IR) approach utilizing TF-IDF algorithm, which is widely used to
measure textual similarities [5, 39]. The second approach is adapted
from a recent research proposed by Gu et al. [21] (called DeepCS),
which was originally designed for code search. In other words, the
“answer” of DeepCS is a code snippet while ours is a TSG descrip-
tion. DeepCS performs code embedding from three perspectives –
method names, API sequence and tokens, and finally concatenates
them together. However, in our application, we only consider the
token sequence of TSG descriptions. To enable comparison, we use
a LSTM model to embed the TSG descriptions and use it to replace
the code embedding model in DeepCS. Next, we will introduce the
details of our experiments.

4.1 Experimental Setup

4.1.1 Subjects. In the evaluation, we use the same dataset that is
used in our empirical study. It consists of 18 online service systems
and covers all the incident reports in the last two years. Additionally,
as presented in the previous study, a portion of TSGs can be handled
by existing systems. Therefore, to ensure the proposed approach
is useful in practice, we rule out this part of data and only focus
on those TSGs that need manual effort to find, which leaves us
around 10GB data and 300 kinds of TSGs for the evaluation. Due
to sensitivity, we cannot disclose data about the exact number of
incident reports and associated time-related information.

4.1.2 Metrics. We employ the metric of SuccRate@k to evaluate
the effectiveness of our approach, which is commonly used by pre-
vious researches [21, 32, 36]. SuccRate@k is also known as success
percentage at Top-k [32], i.e., the percentage of instances that are
correctly recommended within Top-k positions. Additionally, in our
application scenario, the related TSG is unique for each incident.
Therefore, for a recommended TSG, it is either correct or not. Since

developers need to confirm the correctness of the recommended
TSG, too many recommendations will not help much as it may
cost more time of developers to check one by one. Especially, we
consider SuccRate@k, where k ∈ {1, 3, 5} in our evaluation.

4.1.3 Implementation. We build our model with the Pytorch frame-
work. For incident description embedding, we configured the hyper
parameters of LSTM model with dropout as 0.25, learning rate as
0.0001. For TSG description embedding, we set the window size
of TextCNN model as [3, 4, 5]. Finally, the embedding size is 300.
Besides, since the lengths of descriptions in TSGs vary and may in-
volve irrelevant text, we only utilize the first 10 lines of non-empty
text by default. For other configurations of DeepCS, we adopt the
default configuration in the original paper.

Additionally, our application scenario is time sensitive, where the
training data should be produced prior to the testing data. Therefore,
we divide our dataset into two distinct subsets as training and
testing data respectively according to the chronological order of
incident creation. More concretely, we use the first 80% data for
training while the remaining 20% for testing, which ensures the
accessibility of training data for predicting.

4.2 Research Questions

In our evaluation, we answer the following research questions.

• How effective is DeepRmd in recommending TSGs?
• How effective is each component of DeepRmd?
• How dose the size of TSG description affect the prediction
results?

4.3 Experimental Results

4.3.1 Overall Effectiveness of DeepRmd. As introduced in previ-
ous sections, we evaluate our approach and compare it with the
other two baseline techniques, i.e., traditional IR-based approach
that utilizes TF-IDF algorithm and the adapted DeepCS approach.
Table 1 presents the experimental results of both DeepRmd and
the baseline approaches, where the first column denotes the corre-
sponding approaches, and the following columns show the results
on SuccRate@k. DeepRmd is able to correctly predict 80.3% of TSGs
at top 1, significantly outperforming the two baseline techniques.
Particularly, the improvements are from 47.6% to 104.8% with re-
spect to SuccRate@1. Please note that, this metric (SuccRate@1) is
more important than the others as it denotes that when an inci-
dent comes, the corresponding mitigation process can be correctly
recommended and reused without any delay since the prediction
process can be finished within about dozens of milliseconds. It
has the potential to greatly speed up the mitigation process. Ad-
ditionally, if we consider other ranks of correct recommendations
(i.e., SuccRate@3,5), our approach is still superior to the baseline
techniques, where the improvements range from 26.9% to 115.7%.
Particularly, if checking the top 5 recommendations, our approach
can recommend the desired TSGs for about 94.7% incidents.

The competitive results of our approach can be attributed to the
two important components, i.e., the TextCNN and the attention
mechanism. Especially, the attentionmechanism greatly contributes
to the results. For example, for the incident description of “[AX]
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Table 1: Evaluation results of DeepRmd comparing with

baseline.

SuccRate@1 SuccRate@3 SuccRate@5

TF-IDF 39.2% 42.6% 46.7%
DeepCS 54.4% 65.8% 74.6%
DeepRmd 80.3% 91.9% 94.7%

- Watch Dog RuleName DatabaseSpaceUsedRule 10PercentRemain-
ing for Tenant 9a083aab-e8d6-459d-8407-xxxxx ...” shown in Fig-
ure 1, with the attention mechanism, the words “watch”, “rule”
and “database” are correctly identified and highlighted (i.e., with
bigger weights). As a result, they exactly match those in the TSG
description which looks like “Watchdog Rule Failure: Database Space
Used ...’. However, without the help of the attention mechanism,
the network will fail to identify those keywords and miss the cor-
rect recommendation. On the contrary, for traditional IR-based
technique, the words such as “watch”, “rule” and “database” are
frequently appeared in different TSGs and TF-IDF cannot capture
the contextual information of these words, and thus it fails to give
the accurate recommendation.

In summary, the experimental results indicate that our approach
is effective and outperforms the baseline approaches.

4.3.2 Effectiveness of Each Component. As introduced in the previ-
ous section, compared with the commonly-used text query tech-
niques [16, 21], our approach has twomajor improvements in model
design. First, we adopt the attention mechanism when embedding
the incident descriptions. Second, we employ the TextCNN model
for TSG description embedding. To evaluate the effectiveness of
each component in DeepRmd and explore different combinations
of models, we conduct an extensive experiment on a set of variants
of DeepRmd with different configurations. The details are listed as
follows.
DeepRmdnatt In this variant, we remove the attention mecha-

nism for incident embedding and keep others unchanged,
aiming at exploring the impact of attention on the results.

DeepRmdlstm This variant changes the TextCNNmodel to LSTM
model. In other words, the TSG description embedding pro-
cess shares the same model with that of incident embedding.
Through this variant, we aim to investigate the effectiveness
of TextCNN in DeepRmd.

DeepRmdcnn Similar to DeepRmdlstm , this variant changes the
incident embedding model to a TextCNN model. That is
to say that both two embedding processes are using the
TextCNN. The target is to validate the effectiveness of LSTM
model for incident embedding.

DeepRmdinv The above variants are exploring the effectiveness
of individual components. For this variant, we simply inverse
the two embedding models for incident and TSG description
in DeepRmd to explore whether the current combination is
a relatively better choice.

DeepRmdf c As shown in Figure 5, we employ the simple cosine
function to compute the similarity between embedded vec-
tors. In order to investigate its effectiveness and to seewhether
a more complex neural network brings better results in the

experiment, we replace it with a full-connected network to
measure the similarity.

To compare the effectiveness of different variants, we repeat
our experiments multiple times. Except the differences introduced
above, all the other experimental settings are the same. We present
the final results in Table 2.

Table 2: Evaluation results of different variations

SuccRate@1 SuccRate@3 SuccRate@5

DeepRmdnatt 69.2% 90.3% 94.4%
DeepRmdlstm 71.0% 89.8% 93.3%
DeepRmdcnn 71.2% 86.6% 86.9%
DeepRmdinv 70.1% 90.9% 95.4%
DeepRmdf c 27.6% 53.4% 66.5%
DeepRmd 80.3% 91.9% 94.7%

According to the experimental results shown in the table, our
approach achieves the best result among all variants with respect
to both SuccRate@1 and SuccRate@3. Particularly, except for Deep-
Rmdf c all other variants achieve similar results, demonstrating the
effectiveness of the cosine function. Additionally, from the table we
can further confirm that the attention mechanism is important as
it causes the largest impact on the final results, i.e., DeepRmdnatt
achieves the lowest success rate on top 1. From the table, we can
find that when using the same model to embed incident descrip-
tions and TSGs, the results of DeepRmdlstm are similar to those of
DeepRmdcnn , which only employ either LSTM with attention or
TextCNNmodel. However, both of them aremuch less effective than
our approach, indicating that TextCNN is effective in handling long
texts (i.e., TSGs) while LSTM should be a more appropriate method
for short texts (i.e., incident descriptions). Overall, our approach
DeepRmd achieves better success rates than the variants, and the
improvements range from 12.8% to 190.9% in terms of SuccRate@1.

In summary, our approach performs better than the variants of
different configurations. Especially, when considering SuccRate@1,
DeepRmd achieves the best result, which is preferable as it can lead
to tangible benefits of reducing the mitigation time for incidents.

4.3.3 Impact of Employed TSG Description Size. In our experiment,
we read the first 10 lines of TSG descriptions by default. To explore
the impact of different sizes of used texts, We further conduct a
set of comparison experiments. We utilize different sizes of TSG
descriptions and feed them to the TextCNN model of DeepRmd
while keep other configurations unchanged. Table 3 reports the
details of the experimental settings and the corresponding results.

In the table, the first column denotes the lines of TSG text used
in the experiments. From the table, we can find that the impact
of TSG text size on the final results is small, especially when the
number of lines is less than 20. The results demonstrate that the
TextCNN model is not sensitive to the length of input text, which
can be attributed to its convolutional structure as it does not face
the long-distance dependency problem. When reading the first 10
lines of TSG descriptions, DeepRmd performs the best with respect
to SuccRate@1. However, when the entire TSG text is used the
result becomes worse. The reason is that TSGs record the complete

1417



How to Mitigate the Incident? An Effective Troubleshooting Guide Recommendation Technique for Online Service ... ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

Table 3: Evaluation results when reading different lines of

TSG description from the beginning.

Line Number SuccRate@1 SuccRate@3 SuccRate@5

1 78.5% 90.8% 93.3%
3 79.5% 91.2% 94.0%
5 79.8% 92.0% 94.7%
10 80.3% 91.9% 94.7%
20 79.9% 91.4% 94.8%
50 75.6% 90.7% 94.4%
All 73.9% 92.8% 94.4%

mitigation process of incidents and thus contain many irrelevant
texts, such as database queries for symptom investigation, such
as the example shown in Figure 1. As a result, when using the
complete description, more noise would be introduced.

5 LESSONS LEARNED

Recommendation Interpretability. Since the TSGs are recom-
mended to developers, who will check their compatibility before
applying them, therefore, the interpretability of the recommen-
dation will affect the time cost of manual examination, and thus
further affect the time for mitigation, especially for TSGs with a
long description. As shown in Table 1, a small portion of incidents
are still cannot be accurately recommended by DeepRmd. To deal-
ing with this issue, the attention mechanism in DeepRmdwill aid in
some degree, which highlights the critical and representative words
in an incident by assigning a larger weight. Therefore, when the
TSG is too long, checking the vector representation of the incident
potentially can help reduce the time cost. However, a user-friendly
way to present such information to developers still needs further
investigation.
Online Refinement. In practice, both incidents and TSGs may
evolve, such as changing the descriptions of incidents and introduc-
ing new TSGs, etc. In these cases, the learned model can produce
unsatisfiable recommendations and reduce the usability of the ap-
proach. To tackle such issues, incremental learning [45, 47] and
active learning [40, 41] can be further incorporated, where the for-
mer can reuse the historical learned knowledge with small training
overhead for timely recommendation while the latter can continu-
ously refine the model via incorporating developers’ feedback to
the model training process.

6 THREATS TO VALIDITY

Threats to internal validity relate to factors that affect the claims
and results in the paper. There are mainly two such factors in
this work. The first one is about the experimental settings. We
employ two distinct existing techniques that are related to our
approach as baselines for comparison, which are either commonly-
used (i.e., TF-IDF) or recently proposed (i.e., DeepCS). Besides, to
mitigate the implementation bias, we have used the open-source
implementation of DeepCS and adopt its default configuration in
our evaluation. In addition to the comparison with baselines, we
also systematically explored the impact of different configurations
of our model. The second factor is about the implementation of our

approach. To avoid implementation errors, we have employed a
mature and widely-used deep learning framework – Pytorch.

Threats to external validity refer to the generalizibility of our
approach. The main factor is the dataset utilized in our empirical
study and evaluation, which is from the online services of Microsoft.
It may not be generalizable to a wider range of online services from
other companies. To mitigate the threat of using a single system,
we have used 18 distinct online service systems, some of which
are widely used products around the world. Moreover, we have
used all data from the past two years for these systems, which
cover different application domains, such as cloud (e.g., Microsoft
Azure), development (e.g., Visual Studio), and social communication
(e.g., Skype). We believe that these large-scale systems could be
representative to some extent.

Threats to construct validity mainly refer to the inaccuracy of
the measurements in our empirical study. In the study, we rely
on the historical incident records, which may not be accurate. For
example, the percentage of incidents shown in Figure 2 would be
affected if the developers had used a TSG during the mitigation
process but forgot to record it. In other words, the percentage of
incidents that use TSGs could be higher. As a result, the average
mitigation time comparison of incidents would be affected as well
(ref. Figure 3). Finally, we have used the timestamp of attaching a
TSG to the incident to approximate the time to locate the TSG. The
result may not be very accurate since the developers may not record
the TSGs as soon as they find them, i.e., the recorded time could be
later than that in reality. Similar threat affects the entire mitigation
time as well. As a consequence, we have employed different service
systems developed by hundreds of teams, aiming to mitigate the
inaccuracy caused by a small number of developers.

7 RELATEDWORK

7.1 Incident Management

As online service systems become more and more popular, inci-
dents are almost inevitable. Recently, researchers have noticed this
issue and conducted a series of investigations. For example, Lou
et al. [34, 35, 48] carried out a two-year research on large-scale,
real-world online systems and reported their experience on the
management and diagnosis of incidents. Similarly, Karim et al. [27]
reported their lessons learned from the study on issue management
and reported a set of insights to help product managers. Addi-
tionally, Chen et al. [8] explored the prevalence of reassignment
during incident triage process in online service systems. Besides,
they empirically investigated the applicability of traditional bug-
triage techniques to incident triage, which aims to provide useful
insights for future study. Recently researchers also proposed vari-
ous techniques to assist manual management of online services. For
example, Kikuchi [29] proposed to predict the workload of resolv-
ing incidents in incident management, which leverages text mining
techniques for updating histories of incident tickets. Chen et al. [9]
proposed DeepCT, which incorporates a GRU-based model with
an attention-based mask strategy to perform continuous incident
triage. It can incrementally learn knowledge from discussions and
update incident-triage results. Cohen et al. [11] employed proba-
bilistic models (Tree-Augmented Bayesian Networks) to perform
automated performance diagnosis and management on Internet
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server platforms. Similarly, Duan and Babu [15] employed an active
learning algorithm to make the best use of manual effort and help
the failure diagnosis process. In this paper, we conduct the first
empirical study on the usage and characteristics of troubleshooting
guide in online service systems, which complements the previous
research. Another related research was conducted by Lim et al. [33],
which proposed to use Hidden Markov Random Field for perfor-
mance issue clustering, targeting to identify repetitive issues to
speed up the troubleshooting process. However, it is different from
our work as we aim at the recommendation of troubleshooting
guides but not the classification of performance issues.

7.2 Bug Report Management

There are also a lot of research on bug reports for software sys-
tems. For example, Zhou et al. [52] proposed BugLocator, which
locates candidate buggy source files based on the textual similarity
between bug reports and source code with considering previous
similar bug information. There are also many other approaches that
use bug report to assist in fault localization. For example, Huang
et al. [25] leveraged ensemble learning technique to recommend
the affected package of source code based on the description of
bug reports. Fujiwara [18] proposed to recommend programmers a
bug report that is likely to contain failure descriptions related to a
source file being inspected. Similar to incidents, bug reports have
the associated responsible developers as well. Much research has
been conducted to automatically assign bug reports to developers.
For example, Hu et al. [24] proposed BugFixer, which leverages the
historical bug-fix information for developer recommendation when
new bug reports come. Jalbert and Weimer [26] and Tian et al. [44]
proposed approaches aiming to identify duplicate bug reports and
thus reduce human efforts of manual tagging. As discussed in [8],
incident reports and bug reports are similar but still different. Tradi-
tional bug reports are written manually by submitters, while most
of the incident reports for online service systems are created and
submitted automatically by monitors of the systems. Also, for an
online service system, incidents occur more frequently than bugs
as a variety of factors can lead to incidents. Because incidents affect
service availability and cause financial loss, timely mitigation of
incidents is critical.

8 CONCLUSION

Recently, online services are becoming increasingly popular. Be-
cause they provide 7x24 availability to users around the world, in-
cidents are inevitable and may cause great financial loss. Therefore,
mitigating incidents is important and time critical. In Microsoft,
a mitigation process is usually recorded in a document, called a
troubleshooting guide (TSG). To explore the usage and characteris-
tics of TSGs in real-world online services, we conducted the first
large-scale empirical study on 18 online services in Microsoft. Ac-
cording to the empirical result, we proposed a TSG recommendation
technique, DeepRmd, to facilitate the incident mitigation process.
DeepRmd leverages deep learning techniques to identify the textual
similarity between incident description and its corresponding TSG,
based on which it recommends a list of candidate TSGs that may
guide the developer to mitigate a given incident. We have evalu-
ated the effectiveness of DeepRmd on real-world online service

systems. The result indicates that DeepRmd can recommend the
correct TSG for around 80.3% incidents as the Top 1 returned result,
which significantly outperforms the baseline approaches.
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