Silent Compiler Bug De-duplication via Three-Dimensional
Analysis

Chen Yang
yangchenyc@tju.edu.cn
College of Intelligence and
Computing, Tianjin University
Tianjin, China

Jiajun Jiang
jlangjiajun@tju.edu.cn
College of Intelligence and
Computing, Tianjin University
Tianjin, China

ABSTRACT

Compiler testing is an important task for assuring the quality of
compilers, but investigating test failures is very time-consuming.
This is because many test failures are caused by the same compiler
bug (known as bug duplication problem). In particular, this prob-
lem becomes much more challenging on silent compiler bugs (also
called wrong code bugs), since these bugs can provide little infor-
mation (unlike crash bugs that can produce error messages) for bug
de-duplication. In this work, we propose a novel technique (called
D3) to solve the duplication problem on silent compiler bugs. Its key
insight is to characterize the silent bugs from the testing process
and identify three-dimensional information (i.e., test program, opti-
mizations, and test execution) for bug de-duplication. However, there
are huge amount of bug-irrelevant details on the three dimensions,
D? then systematically conducts causal analysis to identify bug-
causal features from each of the three dimensions for more accurate
bug de-duplication. Finally, D ranks the test failures that are more
likely to be caused by different silent bugs higher by measuring
the distance among test failures based on the three-dimensional
bug-causal features. Our experimental results on four datasets (in-
cluding duplicate bugs of both GCC and LLVM) demonstrate the
significant superiority of D3 over the two state-of-the-art compiler
bug de-duplication techniques, achieving the average improvement
of 19.36% and 51.43% in identifying unique silent compiler bugs
when analyzing the same number of test failures.

CCS CONCEPTS
« Software and its engineering — Software testing and debug-
ging.

*Junjie Chen is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0221-1/23/07...$15.00
https://doi.org/10.1145/3597926.3598087

Junjie Chen*
junjiechen@tju.edu.cn
College of Intelligence and
Computing, Tianjin University
Tianjin, China

Xingyu Fan
fxyqaq@tju.edu.cn
College of Intelligence and
Computing, Tianjin University
Tianjin, China

Jun Sun
junsun@smu.edu.sg
Singapore Management University
Singapore

KEYWORDS

Compiler Bugs, Bug Deduplication, Fuzzing

ACM Reference Format:

Chen Yang, Junjie Chen, Xingyu Fan, Jiajun Jiang, and Jun Sun. 2023. Silent
Compiler Bug De-duplication via Three-Dimensional Analysis. In Proceed-
ings of the 32nd ACM SIGSOFT International Symposium on Software Testing
and Analysis (ISSTA °23), July 17-21, 2023, Seattle, WA, USA. ACM, New York,
NY, USA, 13 pages. https://doi.org/10.1145/3597926.3598087

1 INTRODUCTION

Compilers are one of the most fundamental software systems since
almost all the software are built on them. Due to the important
role of compilers, compiler bugs could potentially render all pro-
grams buggy, leading to unexpected behaviors, even disasters in
safety-critical domains [10, 16, 22]. Therefore, evaluating the qual-
ity of compilers is critical. In practice, compiler testing is the most
widely-used method for compiler quality assurance [8, 14, 47]. In
the literature, many compiler testing techniques have been pro-
posed [11, 14, 17, 32, 54, 58], which in general run a large number
of test programs to detect as many bugs as possible [14, 16].
Although some compiler testing techniques have been demon-
strated to be effective, diagnosing test failures is still a tedious and
time-consuming task. One major reason is that many test failures
are caused by the same compiler bug, which is known as the bug
duplication problem [20, 23]. Since debugging compiler bugs are
time-consuming [13], investigating duplicate bugs can cause the
huge waste of time and resource. Compiler bugs that produce error
messages (called crash bugs) can be effectively de-duplicated by
comparing the error messages produced by different test failures as
demonstrated by the existing work [20, 28]. However, there are also
a significant number of bugs that do not lead to crashes (called silent
bugs or wrong code bugs), and as a result, there is little information
facilitating the task of bug de-duplication. Regarding these silent
bugs, the bug duplication problem is thus much more challenging.
In the literature, there are de-duplication techniques proposed for
ordinary software, which are mostly based on textual description,
test inputs, or error messages [7, 40, 48]. However, compilers have
different forms of test inputs with ordinary software (i.e., the inputs
of compilers are programs) and meanwhile silent compiler bugs
do not have available textual description or error messages. Hence,

https://doi.org/10.1145/3597926.3598087
https://doi.org/10.1145/3597926.3598087

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

these techniques are not applicable to the duplication problem on
silent compiler bugs. In recent years, two de-duplication techniques
specific to compiler bugs have been proposed [20, 23], but they are
ineffective with respect to silent bugs. Specifically, Chen et al. [20]
proposed the first technique, which measures the distance among
test failures by investigating various combinations of program fea-
tures for bug de-duplication. The most effective one for silent bugs
works by comparing the function coverage achieved by each bug-
triggering test program and reports those bugs that have similar
function coverage as duplicates. However, the effectiveness is still
unsatisfactory (also confirmed by our study in Section 4.5) due to
the large gap between function coverage and root causes. Funda-
mentally, this is because many covered functions are not causal to
the bug. Subsequently, Donaldson et al. [23] proposed a technique
that is specific to the test failures produced by transformation-based
compiler testing. Hence, it is still very necessary to design a general
and effective de-duplication technique for silent compiler bugs.

In this work, we propose a novel technique, called D? (De-

Duplication via three-Dimensional analysis), to solve the de-duplication

problem on silent compiler bugs. As there is no bug-relevant in-
formation from the testing result for a silent bug (e.g., error mes-
sages), D® characterizes the silent bug from the testing process for
de-duplication. The general process of triggering a compiler bug
can be depicted as follows: a test program is provided to the com-
piler, then the compiler is executed by compiling the test program
under different optimization levels (in which the buggy compiler
code is triggered), finally a bug is detected via differential testing
(i.e., comparing the outputs under different optimization levels).
That is, a test failure involves three key elements: test program,
optimizations, and test execution. We remark that the three aspects
are essential for a compiler bug (i.e., each aspect alone may not
lead to the test failure) and thus in order to determine whether two
test failures are caused by the same bug, we must comprehensively
compare all the three aspects.

However, due to the huge amount of irrelevant details on all the
three dimensions (such as irrelevant optimizations or irrelevant
test program features), directly comparing the three aspects (e.g.,
comparing the function coverage of the executed compiler code) is
unlikely to be effective due to the significant level of noise. Note that
this is evident in the results reported by the existing study [20]. D3
thus solves the problem by reducing the irrelevant details on each
of the three dimensions systematically using a simple causality-
analysis method.

e For a bug-triggering test program, D? first reduces it to the
minimal one that can still trigger the bug based on the idea
of generalized delta debugging [42, 56]. Actually, the min-
imal program still contains some bug-irrelevant program
elements in order to ensure its validity, and thus D* further
utilizes some mutation rules to transform the minimal bug-
triggering test program to a set of passing test programs.
Then, D3 extracts the differences between the minimal bug-
triggering test program and the set of passing ones as the
bug-causal features in this dimension.

e For optimizations, D* opens the bug-triggering optimization
level as a set of optimization options and then adapted delta
debugging [56] to reduce it as a minimal set of optimization

Chen Yang, Junjie Chen, Xingyu Fan, Jiajun Jiang, and Jun Sun

options that can still trigger the bug, which is taken as the
bug-causal features in this dimension.

e For test execution, D3 collects function coverage achieved by
the bug-triggering test program as the original information
in this dimension (similar to the existing work [20]). Then,
it identifies the bug-causal functions from all the covered
functions by estimating their suspicious scores via the idea
of spectrum-based bug localization [6], and finally treats
highly suspicious functions as the bug-causal features in this
dimension.

By combining the three-dimensional bug-causal features, D* calcu-
lates the distance among test failures, and prioritizes them based on
the furthest-point-first strategy [25] following the existing work [20].
In this way, the test failures that are more likely to trigger different
bugs can be diagnosed by developers earlier.

To evaluate the effectiveness of D3, we conducted an empirical
study based on four released datasets, which contain 2,024 test
failures caused by 62 uniques bugs from four versions of GCC [3]
and LLVM [4]. Our results show that D? significantly outperforms
the two state-of-the-art compiler bug de-duplication techniques
(called Tamer [20] and Transformer [23] in our work). The average
improvement of D* over Tamer and Transformer is 19.36% and
51.43% in identifying unique silent compiler bugs when analyzing
the same number of test failures. Besides, our study also confirmed
the significant contribution of each dimension of features to the
overall effectiveness of D3.

In summary, we make the following major contributions:

e We propose a novel technique (D?) for addressing the de-
duplication problem on silent compiler bugs, which systemat-
ically considers three-dimensional information and extracts
bug-causal features from each dimension.

e We conducted an empirical study to investigate the effec-
tiveness of D3. The results demonstrate that D? significantly
outperforms existing approaches, which illustrates the ef-
fectiveness of noise reduction and extraction of bug-causal
features for characterizing test failures.

e We developed a tool for D® and released it as well as our
experimental data for replication and future research.

2 MOTIVATION

Here, we use an example to motivate our technique. Figure 1 shows
two bug-triggering test programs that correspond to the same bug
(i.e., duplicate bugs) in GCC-4.4.0. Both of them produced inconsis-
tent outputs under the optimization levels “-00” and “-O1”.
Identifying duplicate bugs is important to save debugging ef-
fort. The state-of-the-art technique proposed by Chen et al. [20]
measures the similarity of compiler function coverage achieved
by the corresponding bug-triggering test programs for silent bug
de-duplication. However, the complete coverage tends to be large
due to the complexity of compilers, but the coverage causal to a
test failure is often very small [13, 15]. Hence, there could be too
much noise in the compiler coverage for bug de-duplication, thus
negatively affecting the de-duplication effectiveness. For example,
although the two test programs (in Figure 1) trigger the same bug,
the compiler coverage achieved by them differs largely. Specifically,
the first test program covers 3,427 functions while the second one

Silent Compiler Bug De-duplication via Three-Dimensional Analysis

1 int printf(const char *, --); 1 int printf(const char *, --);
2 union { 2 union {
3 signed a : 29; 3 char a;
4 int b; 4 unsigned b : 5;
5 }constc = {447019919}; 5 }constc[9] = {34};
6 int main() { 6 int main() {
7 printf(*%d\n”, c.b); 7 intd=0;
8 return 0; 8 for (;d<9;d++) {
9 } 9 printf(“%d\n”, c[d].b);
10}
11 return 0;
12}

(a) Failing test program - 1 (b) Failing test program - 2

Figure 1: Illustrative example

covers 4,331 functions. This causes that the two test failures are re-
garded as non-duplicates by the function-coverage-based technique
proposed by Chen et al. [20]. Therefore, identifying the bug-causal
coverage information from the complete coverage can be helpful to
achieve more accurate bug de-duplication. Indeed, we adopted the
spectrum-based fault localization method (i.e., Ochiai [6]) to iden-
tify highly suspicious functions for each test failure, and found that
Top-5 suspicious functions for the two test failures are the same,
indicating that they are very likely to be duplicate.

In fact, the triggering of a bug is not only relevant to the test exe-
cution information (i.e., compiler coverage). Both the bug-triggering
test program and the bug-triggering optimizations can also provide
bug-causal information, which could help improve the effective-
ness of bug de-duplication. In this example, the two bug-triggering
test programs look dissimilar, but actually the bug-causal program
elements in them are the same. Specifically, when we delete the
initialization of the union variable from the two test programs (i.e.,
c at Line 5 in Figure 1a and c[9] at Line 5 in Figure 1b), both of
them become passing, indicating that the initialization of the union
variable is bug-causal for both of test failures. With the bug-causal
test-program features, they can be identified as duplicates accu-
rately. Moreover, after reducing the set of optimizations enabled in
the bug-triggering optimization level to the minimal set of optimiza-
tions that still trigger the bug, both of test failures obtain the same
minimal set (i.e., only the -ftree-fre optimization). This is also
helpful to identify them as duplicates. Therefore, both test program
and optimization information can facilitate bug de-duplication, but
it is also necessary to extract bug-causal features from them.

3 APPROACH

In this work, we propose an effective technique for solving the du-
plication problem on silent compiler bugs, called D*. D? identifies
duplicate silent bugs from a set of test failures by systematically
analyzing them. Specifically, for a silent bug (denoted as b), D?
considers three-dimensional information to depict the test failure,
i.e., test program (denoted as p), optimizations (denoted as o), and
test execution (denoted as c). Then, D measures the distance among
test failures based on the three-dimensional information for silent
bug de-duplication. However, only a small portion of information in

ISSTA 23, July 17-21, 2023, Seattle, WA, USA

[

i _program]

| feature distance prioritized
. {;6} optimization vector matrix result

I

1 HH
| Gtest—executlon
\

Feature Feature Distance FPF
Extraction Representation Calculation Prioritization

Figure 2: Overview of D3

p, 0, and c is bug-causal. Hence, D3 systematically conducts causal
analysis to identify those bug-causal information from each of the
three dimensions. That is, D? extracts bug-causal features from p,
o, and ¢, denoted as pJ, of, and c/, for improving the accuracy
of bug de-duplication. Figure 2 presents the workflow of D3. In
the following, we introduce the bug-causal feature extraction and
distance calculation process for the three dimensions, respectively
(Section 3.1 for test program dimension, Section 3.2 for optimiza-
tion dimension, Section 3.3 for test execution dimension). Then, we
present how to integrate them for test failure prioritization (thus
silent bug de-duplication) (Section 3.4).

3.1 Test Program Dimension

3.1.1 Bug-Causal Feature Extraction. As discussed in the exist-
ing work [11], only a small portion in a test program is causal
to the triggering of a compiler bug, which tends to involve the
combination of some program elements. We call them bug-causal
test-program features. However, a bug-triggering test program can
be large, e.g., test programs generated by Csmith [54] (one of the
most widely-used C test program generators) contain thousands of
lines of code. Hence, identifying bug-causal features from a large
bug-triggering test program is challenging. Following the compiler
debugging practice [45], D3 first reduces the large bug-triggering
test program to the minimal one that still triggers the bug, which
can largely reduce the feature space. In the literature, a number of
methods have been proposed for the task of test program reduc-
tion [9, 38, 42, 57]. Instead of re-inventing the wheel, D3 adopts
a widely-used test program reduction tool (i.e., C-Reduce [42]) to
reduce each bug-triggering test program.

Even after such program reduction, not all the program elements
in the reduced program are causal to the triggered bug. This is
because some program elements are required to ensure the valid-
ity of the minimal test program. However, for bug de-duplication,
these validity-required but bug-irrelevant features are also noise.
To identify the program elements causal to the triggering of a bug,
D? implements a set of mutation rules and applies them to the
minimal bug-triggering test program in order to construct passing
test programs with minimal changes. Then, the minor differences
between them can be regarded as the bug-causal features. Since
a bug tends to correspond to a combination of several program
elements, different passing test programs can be constructed when
applying different mutation rules to the bug-triggering test program
or applying the same mutation rule to different locations in the
bug-triggering one. Hence, D* aggregates the differences between
a set of passing test programs and the bug-triggering test program

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

1 int printf(const char *, ---); 1 int printf(const char *, --+);
2 union{ 2 union {

3 signed a : 29; 3 signed a : 29;

4 int b; 4 int b;

5 }constc = {447019919}; 5 }constc;

6 int main() { 6 int main() {

7 printf(*%d\n”, c.b); 7 printf(“%d\n”, c.b);

8 return 0; 8 return O;

9 } 9 }

(a) Failing test program (b) Passing test program

Figure 3: Example of passing test program generation

to identify bug-causal features, which is also helpful to avoid incur-
ring bias due to a single passing test program. In the following, we
first illustrate the process of passing test program construction via
mutation, and then present the process of difference extraction for
identifying bug-causal features.

Passing test program construction. Inspired by the existing
work [42], we consider four categories of mutation rules in D3: (1)
identifier-level mutation (e.g., changing an identifier to a constant,
removing the qualifier of an identifier), (2) operator-level muta-
tion (e.g., changing an operator to another one), (3) delimiter-level
mutation (e.g., removing a pair of balanced parentheses), and (4)
statement-level mutation (e.g., removes one or more statements fol-
lowing Berkeley Delta [56], changing an union to a struct following
the source-to-source transformations in C-reduce [42]). The com-
plete list of mutation rules can be found at our project homepage [2].
In particular, D® just performs first-order mutation to construct
each passing test program, so that the difference between each pair
of passing and bug-triggering test programs can be guaranteed to
be minimal for affecting the triggering of the bug, indicating that
noise can be effectively filtered out.

We formally illustrate the process of passing test program con-
struction with Algorithm 1. For each mutation rule r, D3 first iden-
tifies all the locations in the bug-triggering test program (denoted
as L(r)), where this mutation rule is applicable (Line 1-5, 9). For
each location ! in £(r), D® then applies r to I for constructing a
mutated test program (denoted as P’) (Line 11). If P’ is a passing
test program, D3 saves it (Line 13). If P’ is still a bug-triggering test
program, D? discards it and moves to the next location. After enu-
merating all the mutation rules on all the corresponding applicable
locations, the process terminates and a set of passing test programs
are produced. In particular, Figure 3 shows the illustrative example,
where Figure 3a is a minimal bug-triggering test program shown in
Figure 1 while Figure 3b is a passing test program constructed by
the mutation process. In this example, the triggering of this bug is
related to the initialization and access of c. When we removed this
part by mutation, the mutated program becomes a passing one.

Difference extraction. After obtaining a set of passing test pro-
grams from a minimal bug-triggering test program, D? extracts
their differences at the AST (Abstract Syntax Tree) level as the bug-
causal features. Instead of the token level, the AST level can capture
both syntactic and structural differences, which can more com-
prehensively represent bug-causal features. Following the existing

Chen Yang, Junjie Chen, Xingyu Fan, Jiajun Jiang, and Jun Sun

Algorithm 1: Passing Test Program Generation

Input: R: A set of mutation rules
FP: A failing test program
Output: P: A set of passing test programs
1 Function opportunities(r, ¥P):
2 L(r) —{};
3 for pos in iterator(FP) do
4 if is_available(r, pos) then
5 L L L(r) < L(r) U {pos}

6 return £(r) ;

7 Function ProgramGeneration(7, FP):

8 for r in R do
9 L(r) « opportunities(r, FP) ;
10 for lin L(r) do
1 P’ — mutate(FP, r, 1) ;
12 if P’ is valid && P’ is passing then
13 | PP U (P}
14 return P ;
Translation 1 Translation

Function Unit Function Unit
Decl Decl

Record Var Decl . Record[3
Decl constc = 2 Decl

(447019919} Var Decl

o N I isal

Param Field Decl Field Decl 1447019919} Param Field Decl Field Decl

Decl Integer Decl

447019919

Figure 4: The AST differences of the example in Figure 3

work [27, 51], D? depicts the difference between the bug-triggering
test program and each of the passing ones as the operations on
the AST corresponding to the bug-triggering test program. Given
a modified node Ns and its parent node N, we consider the three
kinds of operations in D3: insertion (inserting Ny under Np), dele-
tion (deleting Ns under Np), and update (updating Ns under Np).
Here, the parent node provides the context information in order
to more precisely represent bug-causal features, since the same
operation under different contexts could lead to different testing
results (i.e., passing or failing). Note that if all the nodes of a subtree
are modified, D? directly uses the root node of this subtree as N
following the existing work [27, 33]. In this way, D3 extracts the
bug-causal features from the test-program dimension, which are a
group of operations based on the set of AST differences between
passing test programs and the bug-triggering one.

Figure 4 shows the ASTs for the pair of bug-triggering and pass-
ing test programs (shown in Figure 3). From Figure 4, the difference
at the AST level between them can be represented as “deleting
an InitList Expression under a Var Declaration”. Although there is
another modified node in Figure 3 (i.e., Integer), we directly use the
InitList Expression node as N;. This is because (1) the two modified
nodes belong to the same subtree and the InitList Expression node

Silent Compiler Bug De-duplication via Three-Dimensional Analysis

is the root of this subtree, (2) and all the child nodes of this sub-
tree (i.e., Integer) are modified, which can be completed by a single
operation on the root node of the subtree (i.e., deleting the subtree).

3.1.2 Distance Calculation. Before distance calculation, D3 vector-
izes the extracted bug-causal test-program features (i.e., a group
of AST operations) for each test failure. Here, D? counts the oc-
currence times of each operation in the group of AST operations
and ranks these AST operations as the descending order of their
occurrence times. Then, D? obtains the test-program feature vector,
where each element represents a specific operation and the element
value is the rank of the operation. The reason why we adopt such
a vectorization method is that a frequently-occurring operation
indicates that it is more likely causal to the triggered bug. Accord-
ingly, if similar lists of operations occur more frequently for two
test failures, they are more likely to be caused by the same bug.
After obtaining the test-program feature vector for each test
failure, D3 calculates the distance between two test failures based
on the Spearman correlation coefficient [55]. This is because our
test-program feature vectors embody the ranking information, and
this metric is a statistical measure of the strength of a monotonic
relationship between two paired variables or ranking lists [55]. In
our scenario, it measures how similar two ranking lists of operations
for two test failures are. Specifically, given two test failures b; and
b; and the corresponding test-program feature vectors U(pi/) =
(xi1, Xi2, - . ., Xiy) and U(pj/) = (xj1, Xj2, . . ., Xju), where u refers to
the number of AST operations, Formula 1 shows the calculation of
the Spearman correlation coefficient between U(p;/) and U(pj/)t

6 X T¥_, (xik — x)°
u(u? -1)

The Spearman correlation coefficient ranges from -1 to 1 and a

larger value indicates the higher similarity. Moreover, the distance

cannot be negative numbers. Hence, D3 calculates the distance

between b; and b; in this dimension as shown in Formula 2.

1)

spearman(u(pi/),U(Pj/)) =1-

dp(p . p;) = 1= spearman(o(py), (p}) ®)

3.2 Optimization Dimension

3.2.1 Bug-Causal Feature Extraction. In general, a test program is
compiled under several optimization levels (e.g., 01, -02, -03, and
-0s for GCC and LLVM) [16]. The bugs may be triggered under
certain optimization levels rather than any levels. Hence, a test
failure has the corresponding bug-triggering optimization level.
An optimization level enables a set of optimizations pre-defined
by compiler developers, which aims to ease the practical use of
compiler optimizations [17]. That is, the set of optimizations in an
optimization level are not pre-defined for detecting bugs, indicating
that not all the enabled optimizations in the bug-triggering opti-
mization level are causal to the triggering of the bug. Therefore,
it is necessary to identify the bug-causal optimizations from the
whole set as the bug-causal features in this dimension.

Here, D3 adapts the idea of delta debugging [56] to identify the
minimal bug-triggering optimizations. Specifically, supposed that
the whole set of optimizations in the bug-triggering optimization
level is denoted as c, if ¢ contains only one optimization, it is the
bug-triggering one. Otherwise, D3 evenly splits ¢ into two subsets,

ISSTA 23, July 17-21, 2023, Seattle, WA, USA

denoted as c; and c2, where ¢ just enables half of optimizations in
c and disables the other half while cy is the opposite of c1. Then, it
checks whether each of them still makes the test program trigger
the bug or not. There are three possible outcomes:

(1) c1 makes the test program trigger the bug, indicating that c;
contains the bug-triggering optimizations;

(2) c2 makes the test program trigger the bug, indicating that cy
contains the bug-triggering optimizations;

(3) both of them cannot make the test program trigger the bug,
indicating that the combination of some optimizations in c¢;
and ¢z composes the bug-triggering optimizations.

For the first two cases, D continues the binary search in the bug-
triggering subset. For the last case, D® performs the binary search in
one subset by still reserving all the optimizations in the other subset,
respectively. The reduction process terminates until a minimal set of
optimizations that can trigger the bug is found, which is regarded as
the bug-causal features extracted from the optimization dimension.
We refer the readers to the existing work [56, 57] for a discussion
on the soundness of such a method for identifying the minimal
causal optimizations.

3.2.2 Distance Calculation. Since a compiler optimization can be
enabled or disabled, D* represents the extracted bug-causal opti-
mization features for a test failure as a vector, where each element
represents a specific optimization and the element value is 0 (indicat-
ing the optimization is disabled) or 1 (indicating the optimization is
enabled). Then, D3 calculates the distance between two test failures
based on the Euclidean metric. Specifically, assuming that the opti-

mization feature vectors for b; and b; are v(oi/) = (X1, Xi2, - « > Xiv)
and v(oj/) = (xj1, Xj2, . . ., Xjv) (Where v refers to the total number of

compiler optimizations provided by the compiler under test) respec-
tively, Formula 3 shows the calculation of the Euclidean distance

between v(oiJ) and v(oj/):

do(oi/,oj/) = Euclidean(v(oi/),u(oj/)) =

D i —xw)? (3)
k=1

3.3 Test Execution Dimension

3.3.1 Bug-Causal Feature Extraction. For a test failure, the bug-
triggering test program must execute the buggy code in the compiler
under test. With this intuition, Chen et. al. [20] uses the function
coverage achieved by the test failure as the features for bug de-
duplication. While it outperforms the other features studied at the
time [20], indicating the importance of test-execution features for
the task of bug de-duplication, its effectiveness is still limited (also
confirmed by our study in Section 4.5). The main reason is that,
the compiler code executed by the bug-triggering test program
is often large, since various functionalities of the compiler (e.g.,
lexical analysis, syntactic analysis, and semantic analysis) have to
be invoked when compiling any test programs. However, the buggy
code tends to just occupy a very small portion [13, 15], indicating
that there is much noise in the compiler code covered by the test
failure for bug de-duplication. Therefore, it is necessary to identify
bug-causal test-execution features from this dimension for more
accurate de-duplication.

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

In particular, D* considers the test-execution features at the com-
piler function level following the existing work [20]. Inspired by
the research on automatic fault localization [6, 46], it is challenging
to accurately identify the buggy function from all the covered func-
tions by the bug-triggering test program, Here, D* adopts the idea
of the widely-studied spectrum-based fault localization (SBFL) [29]
to estimate the suspiciousness of each compiler function covered
by the bug-triggering test program. In our scenario, the key insight
of SBFL is to utilize a set of passing test programs to reduce the
suspiciousness of each covered compiler function. If a compiler
function covered by the bug-triggering test program is covered by
more passing test programs, its suspicious score should be smaller,
and vice versa. D® uses the developer-provided test suite as the
set of passing test programs rather than the constructed passing
test programs through mutation (presented in Section 3.1). The
reasons are twofold: (1) The number of the former is significantly
larger than the latter, which is more helpful to accurately estimate
the suspiciousness of each covered function; (2) The set of pass-
ing test programs for all the test failures are the same when using
the former, indicating the coverage collection process for the set of
passing test programs is conducted only once and then the collected
coverage information can be used for all the test failures. Hence,
the coverage collection overhead can be largely reduced.

D3 adopts the state-of-the-art aggregation-based SBFL [46] to
estimate the suspicious score of each covered function based on the
set of passing test programs. D3 first estimates the suspicious score
of each statement in each covered function, where the widely-used
formula [6] is adopted as shown in Formula 4.

efs
V(efs +nfs)(efs +eps)

where ef; and nf; represent the number of bug-triggering test
programs that execute and do not execute the statement s, and eps
represents the number of passing test programs that execute the
statement s. Since D> estimates the suspicious score of each covered
function for each test failure, there is only one bug-triggering test
program, and thus ef; < 1. Then, D3 aggregates the suspicious
scores of the covered statements in a function to the suspicious
score of the function following the existing work [11, 46]. The
aggregation formula is defined as follows.

©)

score(s) =

score(f) = max(score(s;)),1 <i<nf (5)

where ny is the total number of the statements in the function f.
Overall, for a test failure, D* can identify bug-causal test-execution
features based on the suspicious scores of all the compiler functions
covered by the bug-triggering test program.

3.3.2 Distance Calculation. For a test failure, D3 represents the
extracted test-execution features as a vector, where each element
represents a specific compiler function and the element value is
the suspicious score of the function. Then, D3 uses the Euclidean
metric to calculate the distance between two test failures following
the practice of distance calculation for optimization feature vectors.
Specifically, let the test-execution feature vectors for b; and b; be
U(Ci/) = (i1, Xiz, - .., Xiw) and v(cY) = (xj1, Xj2, . . ., Xjw) (Where
w refers to the total number of compiler functions) respectively,

Chen Yang, Junjie Chen, Xingyu Fan, Jiajun Jiang, and Jun Sun

Formula 6 shows the distance calculation between v(ci/) and v(cj/):

1

de(cf . ¢) = Euclidean(o(c}), 0(c})) =

D - xp)2 (6)
k=1

3.4 Test Failure Prioritization

Following the existing work [20], we also transform the bug de-
duplication problem as the test failure prioritization problem. That
is, D3 ranks the test failures that are more likely to be caused by
different silent bugs higher by calculating the distance among test
failures based on the three dimensional bug-causal features. Specifi-
cally, D3 calculates the distance between two test failures bjand b;
according to Formula 7, where w1, w2 and w3 are constant parame-
ters weighting the aforementioned three-dimensional features to
avoid the influence of different distributions among the three dimen-
sions. The larger the distance value is, the smaller the possibility
that b; and b; are caused by the same bug is.

Y
i05)

dist(bi, bj) = 01 % dp(p} ,p}) + w2 * do (o
= . v 7)
+w3 * dc(cj e)

In particular, since the scales of the results of dp, do, and d; are
different, D3 normalizes the distance results in each dimension into
the interval [0, 1] through the widely-used min-max normalization
method [31] respectively, in order to adjust them to a common scale.
In the formula, we use Ep, d, and d, to represent the corresponding
mean(dp(-))

= , and
mean(do (+))

normalized value. Finally, we set w1 = 1, wy =

w3 = mean(on+dp (| Jtwzrdo () , where Ep(-), do(+) and d.(-) denote
mean(d.(-))

the distance results for all the test failures computed by the corre-

sponding function, and mean refers to the mean function. In this

way, the three-dimensional features can be well balanced.

With the final distance between each pair of test failures from
the overall perspective of the three-dimensional features, D3 ranks
all the test failures by the furthest-point-first (FPF) algorithm [25]
following the existing work [20]. Specifically, D* first randomly
selects a test failure as the starting point of the prioritization result
and labels it as already-prioritized. Then, D3 selects the test failure
that has the maximal minimum final distance with the test failures
labeled as already-prioritized, as the next one in the prioritization re-
sult, and also labels it as already-prioritized. The process terminates
until all the test failures are labeled as already-prioritized. According
to the prioritization result, developers can diagnose these test fail-
ures in turn and then can obtain more unique bugs by investigating
fewer test failures, thus largely saving developers’ effort.

4 EVALUATION

In our study, we aim to address the following research questions:

e RQ1: How does D? perform in silent compiler bug de-duplication?
e RQ2: Does each dimension of features contribute to D3?
e RQ3: How does D? perform under different configurations?

4.1 Datasets

Our datasets used in the study are from two sources, i.e., the dataset
released by the existing study on compiler bug de-duplication [20]

Silent Compiler Bug De-duplication via Three-Dimensional Analysis

ISSTA 23, July 17-21, 2023, Seattle, WA, USA

700 s
60 300 7 N 60
" "]
g 500 0 250 06 g 50
=] =]
5 0 W i 74
[[- 4 [
+ 300 4 150 - + 30
0 ("] (0] 0
£ 200 100 g3 32
#* #* #2 *
100 50 1 10
0 0
5 10 15 20 25 0 5 10 15 20 0 1 2 3 4 5 6 7 1 2 3 4 5 6
Bug id Bug id Bug id Bug id
GCC-4.3.0 GCC-4.4.0 GCC-4.5.0 LLVM-2.8.0

Figure 5: The relationship between test failures and unique bugs

and the datasets released by the existing studies on testing compil-
ers [17, 18]. Regarding the former, it consists of 1,275 test failures
caused by 35 unique silent bugs for GCC-4.3.0. With some non-
trivial effort, we aim to reproduce each test failure in our experi-
mental environment, which is necessary as D3 needs to collect the
function coverage for each test failure. Finally, 1,235 test failures
can be successfully reproduced, which corresponds to 29 unique
silent bugs. The remaining test failures are not reproduced mainly
due to the environment and architecture differences. Regarding
the latter, we collected three datasets in total. All of them are the
results of evaluating some compiler testing techniques in the ex-
isting studies [17, 18]. They contains 647 test failures caused by 20
unique silent bugs in GCC-4.4.0, 26 test failures caused by 7 unique
silent bugs in GCC-4.5.0, and 116 test failures caused by 6 unique
silent bugs in LLVM-2.8, respectively. In particular, the original
datasets also contain crash bugs but we filtered them out, since
our work aims to address the challenging duplication problem on
silent compiler bugs. All the test failures from the three datasets
can be successfully reproduced in our experimental environment.
In total, we used four datasets from four versions of two popular C
compilers (i.e., GCC and LLVM), including 2,024 test failures caused
by 62 unique silent bugs. All of these bugs are real-world, which is
helpful to demonstrate the practicability of D? to some degree.
Figure 5 shows the relationship between test failures and unique
bugs, where the x-axis represents each unique silent bug while the
y-axis represents the number of test failures caused by the corre-
sponding bug. We found that the distribution of test failures is very
uneven to the bugs for each dataset. For example, for the dataset
of GCC-4.3.0, there is a bug that caused 696 test failures, yet some
bugs caused only one test failure. This phenomenon further shows
the compiler bug de-duplication task is significantly challenging.

4.2 Implementation and Environment

We implemented D* based on several mature tools or third-party
libraries. Specifically, it transforms a test program to an AST via
tree-sitter [5], extracts AST differences via GumTree [24], collects
function coverage via Geov [1]. All the studied techniques (D?
and the compared ones to be presented in Section 4.3) involve
randomness (e.g., randomly selecting the first test failure during
prioritization), and thus we repeated each technique on each dataset
100 times and calculated the average result for comparison.

We released our implementation and all the experimental data
at the project homepage https://github.com/chenyangyc/D3 for

replication, future research, and practical use. All of our experi-
ments were conducted on a workstation with 28-core CPU, 120G
memory and CentOS 7 operating system.

4.3 Compared Techniques

To answer RQ1, we compared D? with two state-of-the-art compiler
bug de-duplication techniques.

o Chen et al’s technique (named Tamer in this paper) [20]: It in-
vestigates various combinations of several program features for
compiler bug de-duplication. Here, we adopted the most effec-
tive one, which utilizes the compiler function coverage achieved
by the bug-triggering test program (i.e., the number of execu-
tion times for each function) to calculate the distance between
each pair of test failures. Then, Tamer ranks all the test fail-
ures with the FPF algorithm. We re-implemented it based on the
corresponding paper and reproduced their results to ensure the
correctness of our re-implementation.

Donaldson et al’s technique (named Transformer in this pa-
per) [23]: It is designed specific to transformation-based compiler
testing. Its insight is that if two bug-triggering test programs
are generated based on the same set of transformations, they
are regarded to trigger the same bug. However, our datasets are
not based on transformation-based compiler testing, and thus we
adapted it to fit our scenario. Specifically, we applies our designed
mutation rules (presented in Section 3.1) to transform each bug-
triggering test program to be passing. If two bug-triggering test
programs obtain the similar sets of transformations, they are
more likely to trigger the same bug. For sufficient comparison,
the last step of Transformer is to rank all the test failures with
the FPF algorithm as well.

To answer RQ2, we constructed six variants of D3 to investigate
the contribution of each dimension of features in D3, including

wap (removing the test-program dimension), Df’wo (removing

the optimization dimension), wac (removing the test-execution
D;
using the optimization dimension) and D3C (only using the test-
execution dimension).

In RQ3, we considered two important configurations in D3,
i.e., the used SBFL formula for estimating the suspiciousness of
each function and the method of integrating the distance results

dimension), D3, (only using the test-program dimension), D?) (only

https://github.com/chenyangyc/D3

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

from the three dimensions. Indeed, there are some other com-
mon methods to complete the two tasks in the literature. Regard-
ing the former, besides the default Ochiai in D3, we also stud-
ied the other five widely-studied SBFL formulae, including Taran-
tula [30], Jaccard [19], Ochiai2 [39], Kulczynski2 [37], and D* [52].
The details about them can be found in the survey of fault local-
ization [29, 46]. Regarding the latter, besides the default weighted
summation method in D3, we also studied the min-max summation
method, which directly sums the distance from each dimension
after min-max normalization. That is, w1, w2, and w3 are all equal
to 1 in Formula 7.

4.4 Measurements

Following the existing work [20], we solved the bug de-duplication
problem by prioritizing test failures. Hence, we adopted the widely-
used metric in prioritization, i.e., RAUC-n, to measure the effective-
ness of each de-duplication technique. Specifically, it transforms the
prioritization result produced by a technique to a plot, where the
x-axis represents the number of test failures and the y-axis repre-
sents the number of corresponding unique bugs. Then, it calculates
the ratio of the area under the curve for a technique to that for the
ideal prioritization. Larger RAUC values mean more unique bugs
that developers can identify when investigating the same number
of test failures, indicating better de-duplication effectiveness. Since
test failures tend to be not diagnosed by developers completely in
practice as demonstrated by the existing work [20, 21, 28], we set n
to Top 20% and 100% test failures for measuring the effectiveness
of each de-duplication technique, respectively.

RAUC-n measures the effectiveness of each technique from the
overall view for the prioritization result. We further analyzed the
effectiveness of each technique for identifying each unique bug
according to the prioritization result. Specifically, we measured the
number of investigated test failures before identifying each unique
bug. This metric is called wasted effort in the study. Fewer test
failures are investigated before identifying each unique bug means
that less developers’ effort is wasted on analyzing duplicate bugs,
indicating better bug de-duplication effectiveness.

4.5 Results and Analysis

4.5.1 RQI: Effectiveness of D?. Table 1 shows the comparison re-
sults among D3, Tamer, and Transformer in terms of RAUC-20% and
RAUC-100%. From this table, D* outperforms both Tamer and Trans-
former on all the datasets regardless of RAUC-20% or RAUC-100%,
indicating its stably good effectiveness. For example, on GCC-4.3.0,
the RAUC-20% value of D? is 0.8768 while those of Tamer and
Transformer are 0.8017 and 0.4037, where the improvement of the
former over the latter two is 9.37% and 117.19% respectively. In
terms of the average RAUC-20% value across all the datasets, D3 im-
proves Tamer and Transformer by 19.36% and 51.43%, respectively.
In terms of the average RAUC-100% value across all the datasets, D
improves Tamer and Transformer by 9.54% and 20.85%, respectively.
The results demonstrate the overall effectiveness of D3. In particu-
lar, the superiority of D? is more obvious in terms of RAUC-20%
(than RAUC-100%), also demonstrating the practicability of D3.
Then, Table 2 presents the comparison results in terms of wasted
effort for identifying each unique bug. In this table, Column “ID”

Chen Yang, Junjie Chen, Xingyu Fan, Jiajun Jiang, and Jun Sun

Table 1: The RAUC values of different techniques

RAUC-20%
APP. GCC-43.0 GCC-44.0 GCC-4.50 LLVM-2.8.0
Tamer 0.8017 0.6999 0.7805 0.6057
Transformer 0.4037 0.4277 0.7875 0.6576
D3 0.8768 0.7722 0.9165 0.8716
RAUC-100%
APP. GCC-43.0 GCC-44.0 GCC-4.5.0 LLVM-2.8.0
Tamer 0.9527 0.9088 0.7920 0.8156
Transformer 0.7302 0.7560 0.7923 0.8576
D3 0.9701 0.9380 0.9041 0.9778

presents each unique bug. Columns “D3”, “Tamer” and “Trans-
former” present the number of test failures investigated before
identifying each unique bug according to the prioritization re-
sult produced by each technique. Columns “f} 7amer(%)” and “ff
Transformer(%)” present the improvements of D3 over Tamer and
Transformer, respectively. For example, before identifying the 16
unique bug in the dataset of GCC-4.3.0, developers need to inves-
tigate on average 27.11 test failures with D3, while they need to
investigate 41.53 and 258.96 test failures with Tamer and Trans-
former, respectively. That is, D3 saves 34.72% and 89.53% effort
compared with them. From this table, compared with Transformer,
D? is able to save more effort for identifying each unique bug in
each dataset. The improvement of D over Transformer ranges from
3.08% to 90.09%. Compared with Tamer, D3 performs better for 88.7%
(55 out of 62) cases across the four datasets, and the improvement
ranges from 1.79% to 85.18%. The results further demonstrate the
superiority of D? in identifying each unique bug.

Although D3 performs slightly worse than Tamer on some cases,
the performance decline is quite small. In particular, on these cases,
both D® and Tamer can accurately identify the unique bugs. For
example, the first 7 unique bugs from GCC-4.3.0 can be identified
by investigating 8.02 and 7.66 test failures on average when us-
ing D? and Tamer, respectively. In other words, almost no effort
was wasted, demonstrating their effectiveness. Furthermore, we
performed a paired sample Wilcoxon signed-rank test [53] at the
significance level of 0.05 to investigate whether D3 can significantly
outperform the compared techniques in statistics. Since the num-
ber of unique bugs in the datasets of GCC-4.5.0 and LLVM-2.8.0
is relatively small, which cannot support the statistical test well,
we performed the statistical test on the other two datasets. The
p-values on the two datasets (GCC-4.3.0 and GCC-4.4.0) are both
smaller than 0.002, indicating the significant superiority of D* over
both Tamer and Transformer.

4.5.2 RQ2: Contributions of Each Dimension of Features. To inves-
tigate the contribution of each dimension of features in D3, we
compared D3 with a set of its variants (introduced in Section 4.3).
Table 3 presents the comparison results, where the second row
present the average RAUC-20% result across all the dataset. We
also performed a paired sample Wilcoxon signed-rank test at the
significance level of 0.05 to investigate whether D? significantly

Silent Compiler Bug De-duplication via Three-Dimensional Analysis

ISSTA 23, July 17-21, 2023, Seattle, WA, USA

Table 2: Comparison between D3, Tamer and Transformer in terms of wasted effort

GCC-4.3.0
D D3 Tamer I mumerw) Transformer 1 mansformerz) 1D D} Tamer | mumerw) Transformer 0 Transformen(s)
2 2.01 2.00 -0.50% 2.60 22.69% 16 27.11 41.53 34.72% 258.96 89.53%
3 3.15 3.04 -3.62% 541 41.77% 17 30.67 51.20 40.10% 302.11 89.85%
4 4.34 4.63 6.26% 9.06 52.10% 18 34.62 59.71 42.02% 349.23 90.09%
5 5.52 5.65 2.30% 14.86 62.85% 19 40.22 67.62 40.52% 393.40 89.78%
6 6.70 6.65 -0.75% 22.86 70.69% 20 48.19 76.75 37.21% 440.83 89.07%
7 8.02 7.66 -4.70% 31.98 74.92% 21 54.54 90.19 39.53% 501.09 89.12%
8 9.39 8.88 -5.74% 45.04 79.15% 22 61.24 102.58 40.30% 558.72 89.04%
9 11.01 11.34 2.91% 63.02 82.53% 23 67.64 109.68 38.33% 621.68 89.12%
10 | 12.79 13.98 8.51% 83.54 84.69% 24 76.77 119.48 35.75% 692.86 88.92%
11 | 15.00 18.06 16.94% 107.93 86.10% 25 87.98 138.56 36.50% 781.19 88.74%
12 | 17.46 21.37 18.30% 131.27 86.70% 26 | 101.20 153.73 34.17% 853.59 88.14%
13 | 19.40 24.26 20.03% 156.39 87.60% 27 | 118.69 165.72 28.38% 936.48 87.33%
14 | 21.72 29.06 25.26% 183.50 88.16% 28 | 133.22 202.61 34.25% 1,034.27 87.12%
15 | 24.36 37.78 35.52% 219.01 88.88% 29 | 454.07 602.25 24.60% 1,131.07 59.85%
GCC-4.4.0
D D3 Tamer T rumerw) Transformer 1 ansformerz) 1D D3 Tamer T umerw) Transformer 1 Tansformen(s)
2 2.08 3.47 40.06% 2.50 16.80% 12 32.87 27.33 -20.27% 143.30 77.06%
3 3.43 5.48 37.41% 5.37 36.13% 13 37.77 40.47 6.67% 173.08 78.18%
4 4.87 6.50 25.08% 10.03 51.45% 14 44.05 50.50 12.77% 212.47 79.27%
5 5.98 7.75 22.84% 17.45 65.73% 15 54.97 67.15 18.14% 250.62 78.07%
6 7.25 8.76 17.24% 29.49 75.42% 16 69.59 97.99 28.98% 297.23 76.59%
7 10.38 10.57 1.80% 40.41 74.31% 17 81.31 111.64 27.17% 350.31 76.79%
8 14.02 18.02 22.20% 53.79 73.94% 18 88.75 123.01 27.85% 414.23 78.57%
9 17.94 21.39 16.13% 70.66 74.61% 19 | 103.31 137.66 24.95% 488.89 78.87%
10 | 21.71 22.61 3.98% 88.95 75.59% 20 | 403.15 577.71 30.22% 550.67 26.79%
11 | 26.82 23.75 -12.93% 113.55 76.38%
GCC-4.5.0
1D D3 Tamer T 1umerzy Transformer 1 ansformerz) 1D D3 Tamer T wumers) Transformer 1 Transformer(%)
2.20 2.24 1.79% 2.27 3.08% 5 7.19 9.60 25.10% 9.42 23.67%
3.31 3.52 5.97% 4.09 19.07% 6 8.89 13.69 35.06% 12.92 31.19%
4.78 5.83 18.01% 6.39 25.20% 7 10.97 16.44 33.27% 16.22 32.37%
LLVM-2.8.0
1D D3 Tamer T rumerw) Transformer 1 ansformerz) 1D D3 Tamer T umerw) Transformer 1 Tansformen(%)
2 2.04 2.12 3.78% 2.56 20.35% 5 7.21 48.67 85.18% 27.90 74.15%
3 3.52 3.74 6.02% 5.15 31.75% 6 15.96 59.51 73.19% 57.79 72.39%
4 5.17 13.87 62.76% 9.27 44.28%

! The ID starts from 2, as all the techniques find the first bug with only one test failure investigated.

outperforms each variant by integrating all the datasets together,
and present the p-values at the third row in Table 3. We further
counted the percentage of the cases where D3 outperforms each
variant across all the datasets, and present the results at the last
row in Table 3.

From Table 3, in terms of RAUC-20%, using three-dimensional
features (i.e., D) outperforms using any combination of two dimen-
sional features (i.e., D?mP’ wao, wac), and the latter also outper-
forms using only one dimensional features (i.e., D%, D?), D3). The

C
results demonstrate the contribution of each dimension of features

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

Table 3: Comparison between D3 and its variants

3 3 3
DnaO DnaC D
RAUC-20% | 0.7540 0.7491 0.7549 | 0.8406 0.8175 0.8098 | 0.8593
p-value 1.49e-7 7.27e-7 2.17e-7 | 2.45e-6 2.46e-5 2.27e-8 -

Percentage | 84.48% 81.03% 82.76% | 75.86% 70.69% 93.10% -

3 3 3 3
D) D) D. | D

noP

o [}
cos » V\
] Ochiai ®
> D" >
(%) . (%)
2 Kulczynski2 2
< L <
o« —- Ochiai2 <
0.6 —— Tarantula 0.6 —— weighted summation
—«- Jaccard min-max summation
GCC-43.0 GCC-44.0 GCC-45.0 LLVM-2.8 GCC-43.0 GCC-44.0 GCC-450 LLVM-2.8

(a) Different SBFL formulae (b) Different summations
Figure 6: Performance of D® with different SBFL formulae
and summations

to the overall effectiveness of D3. Moreover, all the p-values are
much smaller than 0.05, demonstrating that the contribution of each
dimension of features is statistically significant. While the improve-
ment of D? over wap is relatively small in terms of RAUC-20%,
there are actually more than 80% bugs for which D? outperforms
D;310 p- Through investigation, we found the reason for the relatively
small improvement is that for some cases, D> generates a very small
number of passing test programs via mutation, which limits the
effectiveness of the test-program features. In the future, we may
introduce high-order mutation to increase the number of passing
test programs, in order to further improve the effectiveness of D3.

4.5.3 RQ3: Influence of Different Configurations. In RQ3, we first
investigated the effectiveness of D* with different SBFL formulae,
which are used to estimate the suspiciousness of each compiler
function in D3. Figure 6a shows the comparison results in terms
of RAUC-20% on each dataset. From this figure, different SBFL
formulae have similar effectiveness on all the datasets, and mean-
while there is no SBFL formula that can perform the best on all the
datasets. That demonstrates the stable effectiveness of D and in the
future we may integrate several SBFL formulae in D? to improve
the effectiveness of D3.

We then compared our weighted summation of the three-dimensional

features (which aims to avoid the influence of different distributions
of the distance results in different dimensions) with the min-max
summation method (without weighting). Figure 6b shows the com-
parison results in terms of RAUC-20%. From this figure, we found
that on each dataset, our weighted summation method in D3 outper-
forms the other method. The results demonstrate that inconsistent
distributions among distances do have a negative impact. Hence,
adopting the weighted summation method in D? is useful.

5 THREATS TO VALIDITY

The internal threat mainly comes from the implementations of
D? and the baseline techniques. To mitigate this threat, we have

Chen Yang, Junjie Chen, Xingyu Fan, Jiajun Jiang, and Jun Sun

1 int printf(const char *, -+);

2 struct { 4 static short e() {

3 signed a: 4; 5 b=2;

4 signed b : 8; 6 for (; b>=0;b - -) {

5 }cd={5 ! c=0;

6 int main0 { 8 for Gc<=T;c++) {

7 b= d.b: 9 alb][c] = - (short)a[b][b];
¢ 1= a.b; 10 alb][1] = a[b][b];

8 printf(“%d\n”, c.a);

9 }

(a) Failing test program - 1 (b) Failing test program - 2

Figure 7: Deduplication example from LLVM-2.8

performed a code review and replicated the results of baseline
techniques to ensure the correctness. Besides, we have published
all the implementations at our project homepage for replication
and promoting future research.

The external threat mainly lies in the used subjects. In our exper-
iment, we have utilized the widely-used GCC and LLVM compilers
like previous work [20, 28]. Furthermore, we have included all the
62 real-world silent compiler bugs from previous studies, which
can be representative to some degree. However, the effectiveness
of D? on a wider range remains to be evaluated in the future.

The construct threats mainly lie in the metrics, configurations,
and the randomness involved in the results. In our study, we have
employed the widely-used metrics by following previous stud-
ies [11, 20, 21, 28]. In fact, we also analyzed the overhead of our
technique. The average time spent on each test program by D? is
45.64s while that by Tamer and Transformer is 1.36s and 25.57s. The
overhead is acceptable in view of its best de-duplication effective-
ness and much saved manual effort. Since this process is performed
offline in practice and it can be further accelerated via parallel
executions. To avoid configuration bias, we further conducted a
series of comparative experiments to investigate their influence
to the effectiveness of D3 (Section 4.5.3). Finally, to mitigate the
influence of randomness, we have repeated our experiments 100
times for each technique and calculated the average results as the
representative.

6 DISCUSSION
6.1 Case Study

As presented in section 1, the three dimensions are essential for a
compiler bug, i.e., each aspect alone may not lead to test failures.
That is, the three dimensions are complementary to each other.
We used two reduced test programs triggering different bugs as
an example to further demonstrate their complementarity. They
are selected from our LLVM-2.8 dataset and shown in Figure 7
(note that for the presentation purpose, we have used the simplified
versions of programs).

Through the extraction of bug-causal features from the test-
program dimension, we observed that the most frequent operation
on AST differences for both test programs was “deleting an as-
signment expression under a compound statement”. Based solely
on this dimension, the test failures were classified as duplicates.
However, upon extracting bug-causal features from the other two

Silent Compiler Bug De-duplication via Three-Dimensional Analysis

dimensions, we found that the Top-20 suspicious functions did not
overlap for both test failures, and the bug-causal optimizations
were different. The first test failure utilized -instcombine optimiza-
tion, whereas the second one employed -adce -basiccg -constmerge
-correlated-propagation -verify. By integrating these two dimensions
with the test-program dimension, we accurately identified the fail-
ures as non-duplicates. Here, Tamer incorrectly identifies them as
duplicates due to a 98.2% overlap in the covered functions.

6.2 Limitation

D3 is inapplicable in black-box scenarios, as it relies on compiler-
code-coverage information for test execution. Tamer also suffers
from this limitation, whereas Transformer does not, making it a
complementary technique. In the case of closed-source compilers,
compiler developers and maintainers can use D* in-house, which
aligns with one of our research goals.

In the optimization dimension, the use of fine-grained optimiza-
tions is necessary, rendering D* impractical when such optimiza-
tions are unavailable. However, based on the results presented in
Section 4.5.2, D3 still outperforms Tamer and Transformer without
this dimension. For instance, the average RAUC-20% of D3 without
this dimension is 0.8175, while Tamer and Transformer achieve
0.7219 and 0.5691, respectively (as computed from the results in
Section 4.5.1). Consequently, it is acceptable to disregard this di-
mension when fine-grained optimizations are not available.

D3 currently treats different optimizations equally in a binary
manner. However, various optimizations in the minimal set may
contribute differently to a test failure. Some of them are inherently
buggy, while others are solely meant to activate buggy optimiza-
tions. Moreover, parameterized optimizations are currently config-
ured with default settings without any tuning. We plan to conduct
further studies to alleviate these limitations.

7 RELATED WORK

Bug De-duplication. Since our work aims at the problem of silent

compiler bug de-duplication, the most related work to us are Tamer [20]

and Transformer [23], which have been introduced in Section 4.3.
We have compared the performance of our technique with them in
our experimental study. Correcting Commits is an effective method
of de-duplicating historical compiler bugs [14], which regards bug-
triggering test programs with the same correcting commit (the first
commit making a bug-triggering program pass) as duplicates. It has
the advantage of not requiring fully-reduced programs, but cannot
be used to de-duplicate new bugs, which can be relieved by D.
Besides, there are also many studies that target the problem
of bug de-duplication based on the textual descriptions, such as
crash messages and bug reports. For example, Alipour et al. [7]
proposed to use BM25F [41] to extract the contextual features from
bug reports for bug de-duplication. Sun et al. [48] proposed REP,
which performs statistical analysis on the textual information in
bug reports to measure the similarity between bug reports. After
that, Sun et al. [49] further proposed a discriminative model for
searching similar bug reports in bug tracking systems using infor-
mation retrieval method. Similarly, Nguyen et al. [40] proposed a
combination of information retrieval and topic modeling methods
for characterizing the failures from bug reports. Furthermore, Zou

ISSTA 23, July 17-21, 2023, Seattle, WA, USA

et al. [59] proposed to combine LDA [26] and N-gram models to
assist in the measurement of similarity between bug reports, while
Lin et al. [36] proposed SVM-SBCTC that employs the SVM dis-
criminative schema for text feature embedding. Besides, Wang et
al. [50] proposed to combine the textual information in bug reports
and the test execution information for bug de-duplication, while
Lerch et al. [34] incorporated the stack traces of failures to promote
bug de-duplication.

However, for silent compiler bug de-duplication, it is common
that only bug-triggering test programs and bug-triggering optimiza-
tions [20, 28] are available, whereas stack traces and descriptive
bug reports are usually unavailable. Hence, the aforementioned
techniques cannot be applied to our target problem.

Compiler Test Prioritization. Like the existing work [20], we
solve the problem of silent compiler bug de-duplication by priori-
tizing test failures (including bug-triggering test programs). Hence,
our work is also related to compiler test prioritization to some
degree. The compiler test prioritization techniques aim to accel-
erate the compiler testing process. For example, Chen et al. [12]
proposed a text-vector based prioritization technique, which trans-
forms each test program into a text-vector and then measure the
distance of the vectors. Besides, Chen et al. [11] further proposed
the idea of learning-to-test, which first learns a capability model
from the history data for predicting the bug-revealing possibility
of test programs as prioritization guidance. There are also many
other test prioritization techniques that are not specific to compil-
ers [35, 43, 44]. However, all these techniques are different from
ours since their target is the testing efficiency while our target is
bug de-deplication, which is the downstream task of the former.

8 CONCLUSION

Compiler debugging suffers from the bug de-duplication problem,
i.e., many test failures are caused by the same compiler bug. Unlike
crash bugs, which can be de-duplicated based on the produced error
messages, silent compiler bugs produce little information for bug de-
duplication. Hence, this problem becomes much more challenging.
To solve the challenging problem, we propose a novel technique
(called D?) by characterizing three-dimensional information that is
essential for a compiler bug. They are test program, optimizations,
and test execution. To improve the de-duplication accuracy, D? sys-
tematically conducts causal analysis to identify bug-causal features
from each dimension. Based on the three-dimensional bug-causal
features, D3 ranks the test failures that are more likely to be caused
by different silent bugs higher by measuring their distance. Our
experimental results on four datasets from GCC and LLVM demon-
strate that D3 significantly outperforms the two state-of-the-art
compiler bug de-duplication techniques.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their constructive sugges-
tions to help improve the quality of this paper. The work has been
supported by the National Natural Science Foundation of China
under Grant Nos. 62002256, 62232001, 62202324 and Ministry of
Education, Singapore under its Academic Research Fund Tier 3
(Award ID: MOET32020-0004).

ISSTA °23, July 17-21, 2023, Seattle, WA, USA Chen Yang, Junjie Chen, Xingyu Fan, Jiajun Jiang, and Jun Sun

REFERENCES

[27] Foyzul Hassan and Xiaoyin Wang. 2018. Hirebuild: An automatic approach
1] 2020. Clang Static Analyzer. https:/gcc.gnu.org/onlinedocs/gec/Geov.html to history-driven repair of build scripts. In 2018 IEEE/ACM 40th International

2] 2022. D3 homepage. https:/github.com/chenyangyc/D3 Conference on Software Engineering (ICSE). IEEE, 1078-1089.
2022. GCC. https://gcc.gnu.(;rg b [28] Josie Holmes and Alex Groce. 2018. Causal distance-metric-based assistance for

[

[

Ld 2022. LLVM. https://llvm.org debugging after compiler fuzzing. In 2018 IEEE 29th International Symposium on
(5]

(6]

w

5] 2022. tree-sitter. https://github.com/tree-sitter/tree-sitter Stoftwarf? Reliability Engine?ring'(IS.'SRE). IEEE’ 16'67177'
6] Rui Abreu, Peter Zoeteweij, and Arjan JC Van Gemund. 2007. On the accuracy of [29] Jiajun Jiang, Ran Wang, Yingfei Xiong, Xiangping Chen, and Lu Zhang. 2019.

spectrum-based fault localization. In Testing: Academic and industrial conference
practice and research techniques-MUTATION (TAICPART-MUTATION 2007). IEEE,
89-98.

Anahita Alipour, Abram Hindle, and Eleni Stroulia. 2013. A contextual approach
towards more accurate duplicate bug report detection. In 2013 10th Working
Conference on Mining Software Repositories (MSR). IEEE, 183-192.

Mohammad Amin Alipour, Alex Groce, Rahul Gopinath, and Arpit Christi. 2016.
Generating focused random tests using directed swarm testing. In Proceedings of
the 25th International Symposium on Software Testing and Analysis. 70-81.
Cyrille Artho. 2011. Iterative delta debugging. International Journal on Software
Tools for Technology Transfer 13, 3 (2011), 223-246.

Scotty Bauer, Cuoq Pascal, and Regehr John. [n. d.]. Deniable Backdoors Using
Compiler Bugs. International Journal of PoC||GTFO ([n. d.]).

[11] Junjie Chen, Yanwei Bai, Dan Hao, Yingfei Xiong, Hongyu Zhang, and Bing Xie.

2017. Learning to prioritize test programs for compiler testing. In 2017 IEEE/ACM
39th International Conference on Software Engineering (ICSE). IEEE, 700-711.

[12] Junjie Chen, Yanwei Bai, Dan Hao, Yingfei Xiong, Hongyu Zhang, Lu Zhang,

and Bing Xie. 2016. Test case prioritization for compilers: A text-vector based
approach. In 2016 IEEE international conference on software testing, verification
and validation (ICST). IEEE, 266—-277.

[13] Junjie Chen, Jiaqi Han, Peiyi Sun, Lingming Zhang, Dan Hao, and Lu Zhang.

2019. Compiler bug isolation via effective witness test program generation. In
Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 223-234.

[14] Junjie Chen, Wenxiang Hu, Dan Hao, Yingfei Xiong, Hongyu Zhang, Lu Zhang,

and Bing Xie. 2016. An empirical comparison of compiler testing techniques. In
Proceedings of the 38th International Conference on Software Engineering. 180-190.

[15] Junjie Chen, Haoyang Ma, and Lingming Zhang. 2020. Enhanced compiler bug

isolation via memoized search. In Proceedings of the 35th IEEE/ACM International
Conference on Automated Software Engineering. 78-89.

[16] Junjie Chen, Jibesh Patra, Michael Pradel, Yingfei Xiong, Hongyu Zhang, Dan

Hao, and Lu Zhang. 2020. A survey of compiler testing. ACM Computing Surveys
(CSUR) 53, 1 (2020), 1-36.

[17] Junjie Chen and Chenyao Suo. 2022. Boosting Compiler Testing via Compiler

Optimization Exploration. ACM Transactions on Software Engineering and Method-
ology (2022).

[18] Junjie Chen, Guancheng Wang, Dan Hao, Yingfei Xiong, Hongyu Zhang, and

Lu Zhang. 2019. History-guided configuration diversification for compiler test-
program generation. In 2019 34th IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE). IEEE, 305-316.

M.Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer. 2002. Pinpoint: problem
determination in large, dynamic Internet services. In Proceedings International
Conference on Dependable Systems and Networks. 595-604. https://doi.org/10.
1109/DSN.2002.1029005

Yang Chen, Alex Groce, Chaoqiang Zhang, Weng-Keen Wong, Xiaoli Fern, Eric
Eide, and John Regehr. 2013. Taming compiler fuzzers. In Proceedings of the 34th
ACM SIGPLAN conference on Programming language design and implementation.
197-208.

Zhichao Chen, Junjie Chen, Weijing Wang, Jianyi Zhou, Meng Wang, Xiang
Chen, Shan Zhou, and Jianmin Wang. [n. d.]. Exploring Better Black-Box Test
Case Prioritization via Log Analysis. ACM Transactions on Software Engineering
and Methodology ([n. d.]).

Alastair F Donaldson, Hugues Evrard, and Paul Thomson. 2020. Putting ran-
domized compiler testing into production (experience report). In 34th European
Conference on Object-Oriented Programming (ECOOP 2020). Schloss Dagstuhl-
Leibniz-Zentrum fir Informatik.

Alastair F Donaldson, Paul Thomson, Vasyl Teliman, Stefano Milizia, André Perez
Maselco, and Antoni Karpinski. 2021. Test-case reduction and deduplication
almost for free with transformation-based compiler testing. In Proceedings of the
42nd ACM SIGPLAN International Conference on Programming Language Design
and Implementation. 1017-1032.

[24] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Martin

Monperrus. 2014. Fine-grained and accurate source code differencing. In Pro-
ceedings of the 29th ACM/IEEE international conference on Automated software
engineering. 313-324.

Teofilo F Gonzalez. 1985. Clustering to minimize the maximum intercluster
distance. Theoretical computer science 38 (1985), 293-306.

Dan Han, Chenlei Zhang, Xiaochao Fan, Abram Hindle, Kenny Wong, and Eleni
Stroulia. 2012. Understanding android fragmentation with topic analysis of

vendor-specific bugs. In 2012 19th Working Conference on Reverse Engineering.
IEEE, 83-92.

(30]

[31

[32

[33

(34]

@
2

[36

[37

[38

[39

[41

[42

[43

=
ot

[45

[46

(47]

[48

[49

[50

(51]

Combining spectrum-based fault localization and statistical debugging: An empir-
ical study. In 2019 34th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 502-514.

James A Jones and Mary Jean Harrold. 2005. Empirical evaluation of the taran-
tula automatic fault-localization technique. In Proceedings of the 20th IEEE/ACM
international Conference on Automated software engineering. 273-282.

Ajmeera Kiran and D Vasumathi. 2020. Data mining: min-max normalization
based data perturbation technique for privacy preservation. In Proceedings of
the Third International Conference on Computational Intelligence and Informatics.
Springer, 723-734.

Vu Le, Mehrdad Afshari, and Zhendong Su. 2014. Compiler validation via equiv-
alence modulo inputs. ACM Sigplan Notices 49, 6 (2014), 216-226.

Suyoung Lee, HyungSeok Han, Sang Kil Cha, and Sooel Son. 2020. Montage:
A Neural Network Language Model-Guided JavaScript Engine Fuzzer. In 29th
USENIX Security Symposium (USENIX Security 20). 2613-2630.

J. Lerch and M. Mezini. 2013. Finding Duplicates of Your Yet Unwritten Bug
Report. In Software Maintenance and Reengineering (CSMR), 2013 17th European
Conference on.

Zheng Li, Mark Harman, and Robert M Hierons. 2007. Search algorithms for
regression test case prioritization. IEEE Transactions on software engineering 33,
4(2007), 225-237.

Meng-Jie Lin, Cheng-Zen Yang, Chao-Yuan Lee, and Chun-Chang Chen. 2016.
Enhancements for duplication detection in bug reports with manifold correlation
features. Journal of Systems and Software 121 (2016), 223-233.

Fernando Lourenco, Victor Lobo, and Fernando Bacao. 2004. Binary-based sim-
ilarity measures for categorical data and their application in Self-Organizing
Maps. (2004).

Ghassan Misherghi and Zhendong Su. 2006. HDD: hierarchical delta debugging.
In Proceedings of the 28th international conference on Software engineering. 142—
151.

Lee Naish, Hua Jie Lee, and Kotagiri Ramamohanarao. 2011. A Model for Spectra-
Based Software Diagnosis. ACM Trans. Softw. Eng. Methodol. 20, 3 (2011), 32 pages.
https://doi.org/10.1145/2000791.2000795

A. T.Nguyen, T. T. Nguyen, T. N. Nguyen, D. Lo, and C. Sun. 2012. Duplicate bug
report detection with a combination of information retrieval and topic modeling.
(2012).

José R Pérez-Agiiera, Javier Arroyo, Jane Greenberg, Joaquin Perez Iglesias, and
Victor Fresno. 2010. Using BM25F for semantic search. In Proceedings of the 3rd
international semantic search workshop. 1-8.

John Regehr, Yang Chen, Pascal Cuoq, Eric Eide, Chucky Ellison, and Xuejun
Yang. 2012. Test-case reduction for C compiler bugs. In Proceedings of the 33rd
ACM SIGPLAN conference on Programming Language Design and Implementation.
335-346.

Gregg Rothermel, Roland H Untch, Chengyun Chu, and Mary Jean Harrold. 1999.
Test case prioritization: An empirical study. In Proceedings IEEE International
Conference on Software Maintenance-1999 (ICSM’99).’Software Maintenance for
Business Change’(Cat. No. 99CB36360). IEEE, 179-188.

Gregg Rothermel, Roland H. Untch, Chengyun Chu, and Mary Jean Harrold.
2001. Prioritizing test cases for regression testing. IEEE Transactions on software
engineering 27, 10 (2001), 929-948.

Hanan Samet. 1977. Toward automatic debugging of compilers. In Proceedings of
the 5th international joint conference on Artificial intelligence-Volume 1. 379-379.
Jeongju Sohn and Shin Yoo. 2017. Fluccs: Using code and change metrics to
improve fault localization. In Proceedings of the 26th ACM SIGSOFT International
Symposium on Software Testing and Analysis. 273-283.

Chengnian Sun, Vu Le, Qirun Zhang, and Zhendong Su. 2016. Toward under-
standing compiler bugs in GCC and LLVM. In Proceedings of the 25th International
Symposium on Software Testing and Analysis. 294-305.

Chengnian Sun, David Lo, Siau-Cheng Khoo, and Jing Jiang. 2011. Towards more
accurate retrieval of duplicate bug reports. In 2011 26th IEEE/ACM International
Conference on Automated Software Engineering (ASE 2011). IEEE, 253-262.

C. Sun, D. Lo, X. Wang, J. Jing, and S. C. Khoo. 2010. A discriminative model
approach for accurate duplicate bug report retrieval. In Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering - Volume 1, ICSE 2010,
Cape Town, South Africa, 1-8 May 2010.

Xiaoyin Wang, Lu Zhang, Tao Xie, John Anvik, and Jiasu Sun. 2008. An approach
to detecting duplicate bug reports using natural language and execution informa-
tion. In 30th International Conference on Software Engineering (ICSE 2008), Leipzig,
Germany, May 10-18, 2008.

Ming Wen, Junjie Chen, Rongxin Wu, Dan Hao, and Shing-Chi Cheung. 2018.
Context-aware patch generation for better automated program repair. In 2018

https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://github.com/chenyangyc/D3
https://gcc.gnu.org
https://llvm.org
https://github.com/tree-sitter/tree-sitter
https://doi.org/10.1109/DSN.2002.1029005
https://doi.org/10.1109/DSN.2002.1029005
https://doi.org/10.1145/2000791.2000795

Silent Compiler Bug De-duplication via Three-Dimensional Analysis

IEEE/ACM 40th International Conference on Software Engineering (ICSE). IEEE,
1-11.

[52] W Eric Wong, Vidroha Debroy, Ruizhi Gao, and Yihao Li. 2013. The DStar method
for effective software fault localization. IEEE Transactions on Reliability 63, 1
(2013), 290-308.

[53] Robert F Woolson. 2007. Wilcoxon signed-rank test. Wiley encyclopedia of clinical
trials (2007), 1-3.

[54] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and under-
standing bugs in C compilers. In Proceedings of the 32nd ACM SIGPLAN conference
on Programming language design and implementation. 283-294.

[55] Jerrold H Zar. 2005. Spearman rank correlation. Encyclopedia of biostatistics 7
(2005).

ISSTA 23, July 17-21, 2023, Seattle, WA, USA

[56] Andreas Zeller. 1999. Yesterday, my program worked. Today, it does not. Why?

ACM SIGSOFT Software engineering notes 24, 6 (1999), 253-267.

Andreas Zeller and Ralf Hildebrandt. 2002. Simplifying and isolating failure-

inducing input. IEEE Transactions on Software Engineering 28, 2 (2002), 183-200.

[58] Qirun Zhang, Chengnian Sun, and Zhendong Su. 2017. Skeletal program enu-
meration for rigorous compiler testing. In Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation. 347-361.

[59] Jie Zou, Ling Xu, Mengning Yang, Xiaohong Zhang, Jun Zeng, and Sachio Hi-
rokawa. 2016. Automated duplicate bug report detection using multi-factor
analysis. IEICE TRANSACTIONS on Information and Systems 99, 7 (2016), 1762~
1775.

[57

	Abstract
	1 Introduction
	2 motivation
	3 Approach
	3.1 Test Program Dimension
	3.2 Optimization Dimension
	3.3 Test Execution Dimension
	3.4 Test Failure Prioritization

	4 evaluation
	4.1 Datasets
	4.2 Implementation and Environment
	4.3 Compared Techniques
	4.4 Measurements
	4.5 Results and Analysis

	5 Threats to Validity
	6 Discussion
	6.1 Case Study
	6.2 Limitation

	7 related work
	8 conclusion
	Acknowledgments
	References

