Toward Improving the Robustness of Deep Learning Models via
Model Transformation

Yingyi Zhang
State Key Laboratory of
Communication Content Cognition,
People’s Daily Online, Beijing, China
100733; College of Intelligence and
Computing, Tianjin University
yingyizhang@tju.edu.cn

Hanmo You
College of Intelligence and
Computing, Tianjin University
Tianjin, China
youhanmo@tju.edu.cn

ABSTRACT

Deep learning (DL) techniques have attracted much attention in
recent years, and have been applied to many application scenarios,
including those that are safety-critical. Improving the universal
robustness of DL models is vital and many approaches have been
proposed in the last decades aiming at such a purpose. Among
existing approaches, adversarial training is the most representa-
tive. It advocates a post model tuning process via incorporating
adversarial samples. Although successful, they still suffer from the
challenge of generalizability issues in the face of various attacks
with unsatisfactory effectiveness. Targeting this problem, in this
paper we propose a novel model training framework, which aims at
improving the universal robustness of DL models via model trans-
formation incorporated with a data augmentation strategy in a
delta debugging fashion. We have implemented our approach in a
tool, called DARE, and conducted an extensive evaluation on 9 DL
models. The results show that our approach significantly outper-
forms existing adversarial training techniques. Specifically, DARE
has achieved the highest Empirical Robustness in 29 of 45 testing
scenarios under various attacks, while the number drops to 5 of 45
for the best baseline approach.

CCS CONCEPTS

« Computing methodologies — Neural networks; - Software
and its engineering — Software testing and debugging.

*Jiajun Jiang is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ASE °22, October 1014, 2022, Rochester, MI, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9475-8/22/10...$15.00
https://doi.org/10.1145/3551349.3556920

Zan Wang
State Key Laboratory of
Communication Content Cognition,
People’s Daily Online, Beijing, China
100733; College of Intelligence and
Computing, Tianjin University
wangzan@tju.edu.cn

Jiajun Jiang”

College of Intelligence and
Computing, Tianjin University
Tianjin, China
jlangjiajun@tju.edu.cn

Junjie Chen
College of Intelligence and
Computing, Tianjin University
Tianjin, China
junjiechen@tju.edu.cn

KEYWORDS
Deep Neural Network, Delta Debugging, Model Robustness

ACM Reference Format:

Yingyi Zhang, Zan Wang, Jiajun Jiang, Hanmo You, and Junjie Chen. 2022.
Toward Improving the Robustness of Deep Learning Models via Model
Transformation. In 37th IEEE/ACM International Conference on Automated
Software Engineering (ASE °22), October 10-14, 2022, Rochester, MI, USA. ACM,
New York, NY, USA, 13 pages. https://doi.org/10.1145/3551349.3556920

1 INTRODUCTION

In recent years, deep learning (DL) techniques have attracted much
attention from researchers, and have been prevalently used in both
industrial practice and academic research, such as image process-
ing [83, 85], machine translation [32, 49] and software engineer-
ing [5, 42, 65, 76], etc. Particularly, some application scenarios are
safety-critical, such as autonomous driving [4, 43, 84, 92] and air-
craft collision avoidance [31]. However, as reported by existing
studies [9, 58, 63] DL models, in practice, are fragile when facing
perturbations and thus easy to be attacked by hackers. For example,
researchers from Tencent Keen Security Lab successfully tricked
the lane detection system of Tesla Model S with three small adver-
sarial sticker images, making it swerve into the wrong lane without
any warnings or precautions [1]. Therefore, it is vital to ensure the
safety and enhance the adversarial robustness of DL models in the
face of potential adversarial attacks.

Unlike traditional handcrafted programs that are deterministic
with a fixed code logic defined by a set of executable machine in-
structions, deep learning models are built based on a set of input
examples. That is, when providing a set of training examples, a
model with a set of parameters will be learned according to a pre-
defined neural network structure, which is expected to meet the
functionality requirement, such as image classification. However,
since the number of input examples is limited and the complete
input space is usually enormous or infinite in practice, also known
as the incomplete specification issue in traditional software engi-
neering tasks like programming by examples [14-18, 24, 33, 35],
the learned model may not work well on unseen inputs, especially
those samples that are decorated with crafted attacking features.

https://doi.org/10.1145/3551349.3556920
https://doi.org/10.1145/3551349.3556920

ASE 22, October 10-14, 2022, Rochester, MI, USA

In order to improve the robustness of DL models in the face of
adversarial inputs, many defensive approaches have been proposed
in the last decade. Existing approaches typically can be divided into
two categories. The first category aims at enhancing the robustness
of the learned model itself with an offline training process, such
as defensive distillation [53], feature squeezing [75], adversarial
training [12, 46, 57], and so on. While the other category aims at
designing a detection method that can distinguish adversarial inputs
from benign ones [90], then each time a new input is provided, an
online detection process will be required. In this work, we target the
first category that improves the universal robustness of models in
an offline fashion.

Among existing approaches, adversarial training is the most
representative method in the first category and proved to be effec-
tive for strengthening model robustness against adversarial attacks.
These kinds of methods take a set of adversarial examples as aug-
mented inputs and proceed with a post-training process with exist-
ing models, during which the model architecture keeps unchanged
but the parameters are tuned according to the provided examples.
The difference of various approaches falls into the generation al-
gorithms of adversarial samples, which takes the responsibility to
seed perturbations into legitimate examples. For example, FGSM
(Fast Gradient Sign Method) [12] generates adversarial examples
directly for given inputs via leveraging the corresponding train-
ing gradients, while C&W (Carlini&Wagner) [3] transforms this
process to an optimization problem, i.e., adversarial examples are
generated via optimizing a set of handcrafted constraints that make
the examples close to original inputs but easy to be misclassified.
The underlying purpose behind these kinds of approaches is to
combat attacks by enlarging the coverage of input features through
incorporating adversarial samples in model training.

However, existing adversarial training techniques suffer from
the following two major limitations: 1) The training effect is limited
as they do not have enough understanding of the model but simply
augment the training data, where the crucial input features may be
not well captured and strengthened. As a consequence, the robust-
ness improvement of the model is limited. 2) The improvements
gained from a particular set of adversarial examples cannot gener-
alize to inputs generated by a different adversarial algorithm, i.e.,
weak universal adversarial robustness [46] to defend against diverse
attacking methods. As mentioned above, the different algorithms
seed attacking features into inputs from different perspectives, and
thus the adversarial examples generated by one algorithm cannot
reflect the features from other ones.

With the aim of effectively improving the universal adversarial
robustness of DL models combating different attacking methods,
in this work we propose a novel model training framework
that constitutes a model transformation method with a cus-
tomized data augmentation strategy. Particularly, in order to
overcome the first limitation of adversarial training (or rather post-
training approaches with data augmentation), we first transform the
original classification model into an isomorphic regression model,
which extends the underlying network structure of the classifica-
tion model but incorporates a finer-grained loss function that is
more sensitive to small perturbations. In this way, the crucial input
features can be better captured and strengthened by suppressing

Yingyi Zhang, Zan Wang, Jiajun Jiang, Hanmo You, and Junjie Chen

irrelevant input features. On the other hand, to overcome the sec-
ond limitation, we put forward a novel data augmentation strategy
conforming to the transformed regression model, which is inspired
by traditional delta debugging techniques [7, 80, 81]. Specifically,
this strategy leverages the training historical data for reference
to guide the model tuning. It forces the model to strengthen the
memory of critical input features and ignore perturbations.

Based on the above process, we designed and implemented our
approach into a tool, called DARE. We have conducted an extensive
study with DARE on 9 DL models and compared it with 5 represen-
tative adversarial training approaches. The results indicate DARE
can significantly improve the universal robustness of learned models.
Specifically, DARE has achieved the highest Empirical Robustness in
29 of 45 testing scenarios under different kinds of attacks, while the
best baseline approach perform best merely in 5 testing scenarios.

In summary, we make the following major contributions:

e We propose a novel training framework that improves the
universal adversarial robustness of models via model trans-
formation and data augmentation.

e We present a model transformation technique that can trans-
form a classification model into an isomorphic regression
model, which preserves the effectiveness of the original
model. Especially, the transformed model is more sensitive
to small perturbations and suitable for model robustness
improvement.

e We propose a novel data augmentation strategy inspired by
traditional delta debugging, which conforms to our trans-
formed model without requiring the generation of new sam-
ples.

e We have implemented our approach in a tool and conducted
an extensive evaluation to demonstrate the effectiveness of
the proposed approach.

2 BACKGROUND AND MOTIVATION

2.1 Model Robustness Improvement

As introduced, unlike traditional programs that constitute a se-
quence of deterministic machine instructions, deep learning models
are built over a set of training examples and can be typically viewed
as probabilistic decision processes according to the feature distri-
bution among fed training examples. However, since the training
data are usually limited and not complete, the learned models may
also produce unexpected outputs, especially when facing inputs
decorated by unseen features, which makes the learned model easy
to be attacked by hackers. We adopt the definition of Empirical
Robustness from a previous study [68] as the Model Robustness in
this paper, which denotes the capability of the model to defend
against attacking inputs. It has been proved to be practical.

For examples, Figure 1(a) presents a testing image of “dog” from
CIFAR10 dataset [36] in our experiment, which can be correctly
classified by a well-trained VGG16[61] model M. Particularly, we
use the Gradient-weighted Class Activation Map [56] (heatmap for
short) to visualize the features that dominate the prediction (i.e.,
Figure 1(b)). However, when it comes to the inputs decorated by
small attacking perturbations (Figure 1(e) and Figure 1(i)), M easily
produces incorrect outputs. To improve the model robustness and

Toward Improving the Robustness of Deep Learning Models via Model Transformation

F
() M

(a) original (c) Mcew (d) Mpare

(e) C&W " M

(&) Mcaw (h) Mpars

]

(i) BIM G M k) Mcaw () Mpaxe

Figure 1: An example image from CIFAR10. (a) is the original
image, (e) and (i) are two corresponding adversarial images
generated by C&W and BIM, respectively. The heatmaps
visualize the prediction results of different models on the
three images. M denotes the original model, while Mcgw
and Mp g respectively denote the models fine-tuned by ad-
versarial training method C&W and our approach DARE.

to defend against potential attacks, many approaches have been pro-
posed, among which adversarial training methods stand out due to
their high effectiveness. The underlying process is performing post
model tuning over a set of samples generated by specially-designed
algorithms, such as C&W [3] and BIM [39]. By incorporating new
training samples with particular types of unseen attacking features,
the model can then identify and ideally become immune to them.
As a consequence, the upcoming inputs with similar attacking fea-
tures will be correctly discriminated and the model will produce
the desired results. For instance, Mcgy can correctly classify the
input image shown in Figure 1(e).

However, since different attacking algorithms may vary greatly,
the improvement of model robustness is actually limited. Specifi-
cally, models fine-tuned by a particular adversarial training method
hardly generalize to other attacking methods. For example, Mcgw
still misclassifies the input image shown in Figure 1(i). From the
figures, we can see that though the attacking features of C&W and
BIM are different, they are in fact small and negligible from the
perspective of human beings. In other words, the learned model
failed to capture the crucial features leading to the desired pre-
diction of the input image, making it easy to be attacked. Actu-
ally, it is not a special case, as it will be shown in our evaluation
(Section 4.5), model robustness trained by adversarial training ap-
proaches will dramatically drop when facing unknown attacks. It is
also a common limitation of existing post-training-based model ro-
bustness improvement techniques. In this paper, we propose a new
method (called DARE) aiming at improving the universal robustness
of learned models via model transformation which devotes to bet-
ter suppressing irrelevant perturbations and strengthening crucial
input features. In this way, the model will have a larger possibil-
ity to produce the desired prediction when facing different kinds
of attacking methods. The last three images in Figure 1 show the

ASE ’22, October 10-14, 2022, Rochester, MI, USA

heatmaps of Mpuge leading to the prediction results. We can see
that DARE can effectively defend against different attacks and pro-
duce the correct results. As it will be shown in our evaluation (see
Section 4), DARE can significantly improve the universal robustness
of learned models combating various adversarial methods.

2.2 Delta Debugging

Delta debugging was originally proposed by Zeller et al. [7, 80, 81].
It aims at finding the root causes of bugs in traditional programs via
isolation of potential error-prone states during program running.
Specifically, when given two similar test inputs, where one of them
passes while the other fails, a typical delta debugging algorithm
inspects and compares the program states (e.g., values of variables)
during the running of the tests at some particular checkpoints,
different states will be reported as latent root causes for subsequent
manual inspection. In this procedure, the passing test performs
like a tutor that provides the gold standard to guide the process of
finding and finally fixing the bug.

Inspired by this, we borrow the idea of delta debugging for
model robustness improvement. Specifically, we will find the desired
program states (i.e., neuron outputs in the neural network scenario)
for each training input and guide the model tuning process by
taking them as the reference. A typical training process of models
is iterative and the same training samples are usually used more
than once (constructed as different training “epochs”). The target of
the training process is to search for a group of parameters that best
fit the training data. However, since different training inputs may be
contradictory, e.g., some inputs make parameter w; increase while
some decrease wj, the final trained model may not well fit a certain
category of inputs. In other words, the learned model, though well
balanced for all inputs, may be insufficiently optimized for a certain
category of inputs and thus does not have adequate robustness to
combat attacks. This is especially true when the training data is
limited. Based on this, it is possibly feasible to search the reference
program states for different inputs from training histories as they
may appear at some point. As it will be introduced in Section 3.2, we
assume that those better prediction results in the training history
of the model can be leveraged as the “tutor” and provide a gold
standard as the reference for model tuning and improving model
robustness.

However, how to use those training histories is still challeng-
ing. First, the outputs of a typical classification model are discrete
category labels, which are too coarse-grained to reflect the differ-
ence of model robustness, i.e., an insufficiently trained model can
still produce correct classification outputs. Second, the fine-tuning
processes of different categories on the original model largely af-
fect each other like the typical training procedure. To overcome
the above challenges, we propose a novel model transformation
method. It employs model slicing to identify a set of crucial neurons
per category for tuning and thus can reduce the training effects to
irrelevant categories, and employs a novel loss function to better
discriminate the difference of outputs and guide model tuning.

3 FRAMEWORK

With the aim of improving the universal robustness of deep learn-
ing models and thus protecting against unknown attacks, we put

ASE 22, October 10-14, 2022, Rochester, MI, USA

forward a novel model training framework, called DARE. Figure 2
presents the overview of DARE. From a high-level perspective, DARE
consists of three stages, i.e., model transformation, data augmen-
tation, and model tuning and synchronization. Model transfor-
mation takes the responsibility to construct an isomorphic regres-
sion model to the original classification model via extending its
underlying structure. Particularly, we design a finer-grained loss
function to perceive small input perturbations. Empowered by this,
the transformed regression model can be more sensitive to the
difference in inputs and can be more targeted to strengthen the
crucial features leading to the correct prediction. In this way, the
model robustness can be improved. However, since the labels of
the newly constructed model (continuous regression values) are
different from the original ones (discrete category labels), the origi-
nal training data cannot be directly used for new model training.
In order to conform to the transformed model, the second stage,
data augmentation, performs a novel data collection and trans-
formation strategy via mining model training history inspired by
traditional delta debugging. Finally, the transformed model will be
trained over the collected training data and then the fine-tuned
model weights will be synchronized to the original classification
model by simple weight replacement to obtain a more robust model.

3.1 Model Transformation

In order to improve the universal robustness of deep learning mod-
els, the memory of crucial input features should be tremendously
strengthened so as to produce the correct prediction regardless
of whatever attacking features are seeded as long as the crucial
features exist. This requires the model to capture small input per-
turbations and suppress their impact on the final prediction. To
accomplish this, DARE transforms the original classification model
into an isomorphic regression model. The reason is that the finer-
grained loss function in the regression model (based on continuous
values) is naturally more sensitive to input features compared with
the coarse-grained loss function in the classification model (based
on category labels), which dominates the optimization direction of
the model during training (i.e., gradients are calculated according to
the loss). More concretely, the model transformation stage consists
of two steps, i.e., model slicing and loss function design.

3.1.1 Model Slicing. As explained in Section 2.2, the optimization
direction based on different input examples may contradict each
other, making it hard to improve the model robustness for certain
classes. To reduce the training effect over different classes, the
model slicing process aims at identifying a set of crucial neurons
and synapses (i.e., connections between neurons) per each class,
which are responsible for reflecting the pivotal input features and
determining the prediction, and thus may largely affect model ro-
bustness on that class. Therefore, tuning these crucial neurons and
synapses is desirable. Compared with tuning all the neurons and
synapses, it confines the impact of the post-training on a smaller
scale and reduces the performance risk for irrelevant classes.
Specifically, we employed NNSlicer [89], a state-of-the-art dy-
namic model slicing method. When given a set of interested neurons
N and a set of input samples, it computes a subset of neurons and
synapses that may significantly affect the outputs of those neurons
in N. In the following, we briefly introduce the process of NNSlicer

Yingyi Zhang, Zan Wang, Jiajun Jiang, Hanmo You, and Junjie Chen

to make the paper self-contained. It consists of three phases, i.e,
profiling, forward analysis and backward analysis.

In the profiling phase, NNSlicer feeds the whole training set D
into the model and calculates the mean activation value per neuron.
Specifically, suppose o € D is an input sample, by feeding o into the
model, an output value y" (o) of neuron n can be observed. Formally,
y" (o) = mean] y7 (o), where y7' (o) is the ith activation value and
m is the total number of activations of n. Particularly, when n is a
neuron in a fully connected layer, m equals to 1. On the contrary,
m is the number of convolution operations performed by the filter
if n is in a convolutional layer. Then, the average activation value
of neuron n over the complete training set will be computed by
y"(D) = Zyepy™(0)/|D|, which is viewed as the baseline output
of neuron n over the training set.

Then, in the forward analysis phase, when given a set of inter-
ested input samples D’, NNSlicer computes the reaction difference
of each neuron n over the whole training set O by Formula 1, which
is regarded as the relative activation value of neuron n.

Ay" = y(D’) - y™(D) (1)

Therefore, Ay” reflects the sensitivity of neuron n to the particular
inputs O’ Finally, in the backward analysis phase, NNSlicer takes a
set of interested neurons N as the target and recursively calculates
the contributions of preceding neurons and synapses backward.
Specifically, suppose CONTRIB,, is the cumulative contribution
of neuron n, the contribution of neuron h can be computed by
Formula 2, where Ay™ and Ayh are the relative activation values
of neurons n and h respectively calculated by Formula 1. Besides,
we use s to denote the synapse connecting neurons h and n, and
use wp,, to denote the connection weight.

contrib, = CONCTRIB,, X Ay"™ X wp,Ay")

As a consequence, the cumulative contribution of neuron h can be
updated by CONTRIBy,+ = sign(contriby), while the cumulative
contribution of synapse s can be calculated by CONTRIBs+ =
sign(contriby). Therefore, when given a model M trained over
dataset D, and the interested input samples D’ as well as the
output neurons N as slicing criterion, the cumulative contribution
reflecting the importance of each neuron and each synapse to N
can be calculated.

DAaRE utilizes NNSlicer to identify key neurons. Specifically, in
order to obtain the most accurate model slicing for model updating
(will be presented in Section 3.3), DARE first takes the g% synapses
with the largest cumulative contributions as the key synapses, and
then the neurons they are connecting will be regarded as the key
neurons. This process is determined by the following two observa-
tions. First, synapses are more fine-grained than neurons since one
neuron usually associates with a large number of synapses, while
on the contrary, one synapse merely connects two neurons. Second,
the larger the cumulative contribution is, the more important the
synapse is. Particularly, in order to identify the actual responsible
neurons and synapses of particular classes for robustness improve-
ment and reduce the training effects over different classes, DARE
identifies key neurons and synapses for different classes separately.
Regarding the slicing criterion, DARE simply picks the one neuron
corresponding to the desired class in the last classification layer as

Toward Improving the Robustness of Deep Learning Models via Model Transformation

ASE ’22, October 10-14, 2022, Rochester, MI, USA

[Model Transformation] [Data Augmentation] [Tuning & Synchronization]
Classification Regression O Regression Classification| Ro
Model A Model —> Model Model bust
e
. °Lo [[El “
Transforming Samples ..
(New Regression Data E—— witlimh?g}e;st Synchronizing
Loss Function 1storica odels eplace Weights
Set classification B Q/é En'rjllcsp\x;/dirilgl‘y
Sllcmg confidence on Sampl
.\.<: — historical model amples
Trgier;iré%alz:ta Classification Model Model Training

Key Neurons/Synapses per Class

for Improvement

Figure 2: An Overview of DARE Framework.

the interested one, which is targeted and contains comprehensive
information to dominate the prediction results.

3.1.2 Loss Function Design. Loss function is the key to measuring
the goodness of predictions during model training. A well-designed
loss function can greatly improve the performance of learned mod-
els. Typically, different loss functions are appropriate for particular
types of models. For example, Cross-Entropy (CE) is usually used in
classification models, while Mean Square Error (MSE) is widely em-
ployed by regression models. Compared with classification models,
regression models are naturally more sensitive to small perturba-
tions, and more suitable for fine-grained model tuning. Therefore,
to better perceive small attacking perturbations for suppression
and strengthen the memory of crucial input features, DARE extends
the underlying structure of the original classification model and
transforms it into an isomorphic regression model with a specially-
designed novel loss function.

Specifically, when given a classification model M comprising
r (convolutional or dense) layers, denoted as M := (l1,l2, -+ , 1),
DARE transforms it into a new model Mt by removing the last
p layers in M, i.e, Mr := (ll,lz,~-- ,lr_p>, where 0 < p < r.
Then, DARE leverages the outputs of model slicing for loss function
building, which are a set of crucial neurons that are responsible for
model robustness improvement per each class. We use N ¢ to denote
the crucial neurons from layer I; for class ¢, then the regressmn
loss function of transformed model M7 is defined by Formula 3,
where yomc 10(0) denotes the corresponding gold standard activa-
tion value of neuron n under input o. Particularly, y" Yo rac Ie(O') is
collected from the training history, and we will introduce the details
in the data augmentation procedure of DARE (Section 3.2).

™(0) = 7, o1 @)
NS

Lp

ZnENIC
r—p

Loss(o) = (3)

From the formula, we can find that the loss function is deter-
mined by two arguments, the crucial neurons extracted from model
slicing and the layer chosen for observation. It is intuitive that the
neuron is closer to the output layer, its output value embeds more
comprehensive information of input features, which will dominate
the classification result. Therefore, with the aim of strengthening
the memory of input features, DARE makes M7 preserve as many

layers in the original model as possible. As a consequence, DARE
takes the penultimate layer in M as the output layer (i.e., [y—p) of
the transformed model Mr, i.e., we set the default value of p as
1. Particularly, if the layer taken has no trainable parameters, e.g.,
a dropout layer, DARE will take its preceding one until reaching a
layer associated with a set of trainable parameters. Actually, it can
be flexibly configured on demand.

Therefore, when providing the gold standard outputs, model
M can be tuned according to the calculated loss. Particularly,
compared with the original classification model, the transformed
mode M will largely benefit from the newly designed loss function
in two aspects. First, M is more sensitive to small perturbations
under the aid of a regression loss, and thus can be more effectively
tuned. Second, the new loss function discriminatively calculates
loss values for different classes, which not only is more targeted but
also potentially reduces the training effects over different classes.

3.2 Data Augmentation

As a result of the model transformation, model M has been trans-
formed to model Mt and the training data for M is no longer
usable for Mr. To provide meaningful and suitable training data
for M, we propose a novel data augmentation strategy via min-
ing the training history. Specifically, inspired by traditional delta
debugging, the basis of our data augmentation strategy is, given an
input sample, different historical models possibly produce diverse
outputs, and the model producing the correct classification with
the highest confidence can be viewed as the “tutor” for others, and
thus its output can be taken as the gold standard for model tuning.

Formally, suppose the historical models during the training of
model M are recorded as M = { My, My, -+, M;}, where M;
represents the historical model in the i*# training iteration (e.g.,
epoch), and t is the total number of training iterations, i.e., M = M;.
Specifically, to ensure the reliability of the collected gold standard
and avoid randomness due to the instability of pre-mature models,
DARE adopts the latest ¢/2 historical models in M, which can already
make relatively stable predictions (i.e., the accuracy and the loss
nearly converges). Particularly, we use M;.predict(c) to denote
the output of model M; when fed with input sample o. The output
is a pair (label, conf), representing the predicted label label with
confidence conf. According to these definitions, we present the
detailed data augmentation process of DARE in Algorithm 1. When

ASE 22, October 10-14, 2022, Rochester, MI, USA

Algorithm 1 Data Collection and Transformation

Require: M: a set of historical models, M: the model for robustness im-
provement, D: a set of input samples [: targeted layer (a.k.a. the output
layer of the transformed regression model Mr).

Ensure: T: training data for M7

1: for each input o in D do

2: Mpest < None > Model with best prediction result

3: gt « ground truth label of o

4 ngt «— key neurons at layer 1 for class gt

5 (label, conf) «— M.predict(o)

6: if not gt.equals(label) then

7: conf « 0 > Minimal confidence if incorrect
8: end if

9: for each history model M; in M do

10: (label;, conf;) — M;.predict(o)

11: if gt.equals(label;) && conf; > conf) then

12: Mpest — M; > Update model and confidence
13: conf « conf;

14: end if

15: end for

16: if Mpes; is not None then

17: Yi(o) « {y™(o)|n € ngt} > Neuron outputs of Mpeg;
18: T—TU <O', Yl(a)> > Add into training set
19: end if

20: end for

21: return T

providing an input sample o, DARE compares the prediction results
of different historical models, and records the historical model if it
can produce the desired result with the highest confidence (lines
9-15). If such a best model My, exists (line 16), a profiling process
will be performed and the outputs of crucial neurons in the targeted
layer I will be extracted for input o (line 17). Finally, the input
sample o and corresponding neuron outputs will be collected (line
18) and returned (line 21). Specifically, Y!(0) denotes the outputs
of neurons in layer when fed with o, they will play as the gold
standard outputs (i.e., ygmcle(a)) used in Formula 3.

In this way, when providing a set of input samples D for the orig-
inal classification model M, they will be automatically transformed
into a set of training data T by DARE for the transformed regression
model Mr. Since the gold standard outputs for training samples in
T can make some historical model M; produce the correct result
with higher confidence, they are reasonably regarded as a better
representation of input features, and thus tend to provide good
guidance during model tuning for its isomorphic regression model
Mr.

Besides, the specially-designed loss function enables a more fine-
grained optimization target of feature extraction and promotes the
consolidation of key feature memories.

3.3 Model Tuning and Synchronization

In the first two stages of DARE, an isomorphic regression model
Mt to M and its corresponding training set T are obtained. The
last stage of DARE is fine-tuning model Mt over T, and finally syn-
chronizing the optimized model M7 back to M. As the optimized
model M can better capture the input features, the model M after

Yingyi Zhang, Zan Wang, Jiajun Jiang, Hanmo You, and Junjie Chen

synchronization is expected to extend this superiority and have
better robustness intrinsically to defend against diverse attacks.
In fact, fine-tuning of well-trained models is widely used in
many research areas, such as Natural Language Processing (NLP)
and Computer Vision (CV). It has been proved effective in further
improving model performance with high efficiency [26, 59]. How-
ever, compared with the traditional fine-tuning, we would like to
highlight two major differences in DARE. First, as introduced in
Section 3.1.2, the loss calculation of different classes of inputs can
be different due to the discrepancy of the key neuron set N IC_P in

Formula 3. Second, during the fine-tuning process of DARE, not
all synapse (or connection) weights in the model Mt will be up-
dated in back-propagation. Instead, only a subset of synapses that
are chosen in the model slicing is considered. These two optimiza-
tions will largely benefit the effectiveness of DARE. On the one
hand, they restrain the model tuning to a smaller scale, restraining
the negative effects on the original model. On the other hand, the
tuning process will be more targeted, satisfying our requirement
of strengthening the memory of key input features for universal
robustness improvement. As it will be shown in our empirical eval-
uation, these strategies are indeed effective and yield much better
performance.

After model tuning, some connection weights in model M will
be optimized. To make the original model M extend the superi-
ority from this process, DARE will synchronize those optimized
weights to M via simple value replacement. Since model Mr is an
isomorphism to M, this process is clear and straightforward.

4 EVALUATION
In our evaluation, we focus on the following research questions.

e RQ1: How effective is DARE to improve model robustness?

e RQ2: How much does model transformation (comprising model
slicing and loss function) in DARE contribute to its effectiveness?

e RQ3: How effective is the data augmentation strategy?

e RQ4: How does DARE perform in terms of efficiency?

4.1 Dataset and Models

To evaluate the performance of DARE, we have conducted an ex-
tensive empirical study. Specifically, we employed 3 widely used
datasets from prior studies [6, 19, 23, 55, 69], i.e., CIFAR10 [36],
SVHN [51] and Fashion-MNIST [73].

Furthermore, to validate the generality of DARE, we employed
3 different neural network architectures in the experiment. They
are Alexnet [37], VGG16 [61] and VGG19 [61], all of which are
commonly used in previous studies [2, 64]. Particularly, in our
experiment, each network will be trained over the above three
datasets, and thus we finally obtain 9 different models for the sub-
sequent study. More concretely, for each dataset, we evenly divide
the training data into two parts, one of which is used for model
training (actual training data), while the other one is used for model
selection (validation data), then a grid search will be performed
to obtain the best models, which are the subjects for robustness
improvement. We have listed the details of those learned models
in Table 1, where we present the size of learned models, the total
number of parameters, as well as the testing accuracy over the
provided testing data associated with the corresponding dataset.

Toward Improving the Robustness of Deep Learning Models via Model Transformation

Table 1: Basic information of subjects

Model VGG16 VGG19 Alexnet

Dataset CIFAR10 SVHN FM CIFAR10 SVHN FM CIFAR10 SVHN FM
Size (MB) 256.9 256.9 2458 297.7 2974 256.7 73.6 73.6 63.0
Parameters 33.6M 33.6M 26.6M 39.0M 39.0M 33.6M 9.6M 9.6M 8.1M
Accuracy(%) 88.7 94.3 91.1 90.6 93.9 90.2 83 93.3 90.0

4.2 Baseline Approaches

As explained in the introduction, DARE targets to improve the
robustness of DL models via an offline training process, which
is orthogonal to the online detection techniques. Therefore, we take
five widely-used adversarial training methods as the baselines, i.e.,
BIM (Basic Iterative Methods) [39], C&W (Carlini&Wagner) [3],
FGSM (Fast Gradient Sign Method) [12], JSMA (Jacobian-based
Saliency Map Attack) [52] and PGD (Project Gradient Descent) [47],
which are state-of-the-art for improving adversarial robustness of
DL models [63] through offline training on adversarial examples.
In addition, as explained in Section 3, DARE incorporates the
superiority of two major components. The first one is program
transformation that constitutes model slicing and a specially de-
signed loss function, while the second one is the data augmentation
strategy. To evaluate the effectiveness of each component, we also
compare the results with a set of variants of DARE through an
ablation study. The details of the variants are listed as follows.

DARE_; removes the model slicing process from DARE and updates
all the connection (synapse) weights between any neurons in
the transformed model M. In this way, the loss function in
Formula 3 will degenerate to the traditional MSE loss because
N, lC,,P will include all neurons in the layer [;_,.

DARE_g; further replaces the loss function in M with the original
loss in M on the basis of DARE_;. Actually, DARE_g; removes
the model transformation component completely from DARE,
i.e., Mr is the same as M, but merely employs the same training
data for model tuning.

DARE, ;,,4 is the variant for evaluating the effectiveness of the
data augmentation strategy in DARE. It fully extends the model
transformation process in DARE, and then fine-tunes the trans-
formed model over a set of randomly selected input samples.
Specifically, the process of lines 9-15 in Algorithm 1 will be
replaced by a random selection.

4.3 Procedure and Measurement

Following previous studies [30, 64], we apply the five adversarial
training (attacking) algorithms explained in Section 4.2 to generate
a set of input samples according to the original model to mimic the
unknown attacking inputs, and then the performance of fine-tuned
models will be evaluated on them. Specifically, each algorithm
will generate 5000 input samples per model listed in Table 1 (9
models in total) as the corresponding testing data, and we use the
Empirical Robustness proposed by Wang et al. [68] to measure
model robustness, which is defined as the testing accuracy over the
attacking inputs. The existing study [72] also proposed the metric
of CLEVER score for robustness measurement. However, due to its
heavy computation cost (taking thousands of seconds to calculate
a CIFAR10 example [90]), it is not suitable for such a large-scale

ASE ’22, October 10-14, 2022, Rochester, MI, USA

study. Particularly, to exhibit the universal robustness of DL models,
every fine-tuned model will be finally tested on all the attacking
inputs generated by the five algorithms.

4.4 Implementation and Configuration

We have implemented our approach atop the widely-used deep
learning framework Keras 2.3.1 and Tensorflow 1.1.1 in Python. We
conduced our experiment on a server with Ubuntu 18.04, equipped
with 128GB RAM and a processor of Intel(R) Xeon(R) E5-2640 that
has 10 cores of 2.40GHz.

Regarding the configuration of DARE, we set the default value
of q% as 95% for model slicing via a small pilot study. That is DARE
will ignore 5% synapses (corresponding to the parameters of con-
nections) in the original model during parameter updating per each
class. Please note that though it is a small percentage, the num-
bers of parameters involved are relatively large. According to the
model details shown in Table 1 the number of parameters ignored
by DARE ranges from 0.4M to 1.95M. We will investigate the effect
of g% on the performance of DARE in our evaluation. Besides, DARE
collects data for model tuning from the validation set of the original
model (i.e., D in Algorithm 1), while the competitors will gener-
ate adversarial samples by corresponding algorithms. Specifically,
each adversarial training method will generate the same number
of samples as the original training set, 10,000 of which are used
for validation and testing (5,000 for each), while the remaining are
left for model tuning. DARE will correspondingly collect the same
number of samples (if possible) for model tuning and validation.
Finally, we have conducted an extensive model tuning process for
each baseline approach by grid search and take their best configu-
rations for the subsequent experiment. Exceptionally, during the
model tuning process, the model accuracy over the original testing
data may dramatically drop, to make the robustness improvement
meaningful, we confine the decline of this accuracy to no more
than 10%, which is a reasonable constraint for practical use.

To ease the replication and promote future research in this field,
we have published our implementation and all experimental data at
https://doi.org/10.5281/zenodo.7018397. More detailed configu-
rations in our experiment, e.g., confidence of C&W for adversarial
sample generation, can be found in our repository.

4.5 Result Analysis

4.5.1 RQI: Overall Effectiveness of DARE. As introduced, we eval-
uated the overall effectiveness of DARE over 9 different models
by comparing it with five state-of-the-art adversarial training ap-
proaches. The results are presented in Table 2. In the table, the
first two columns list the architectures of models and datasets for
model training, while the subsequent columns are divided into five
blocks, each of which represents the testing results corresponding
to a certain adversarial testing method for different model tuning
approaches. For example, the first block lists the testing accura-
cies for DARE and the five comparing adversarial training methods
respectively (i.e., BIM, C&W, FGSM, JSMA, PGD) over the testing
samples generated by BIM. In particular, to ease the presentation,
we use M3 to represent the learned model of architecture A over

P VGGI16 « . P
training set D, such as M5, and call a “Testing Scenario” (TS

for short) as testing a certain model (e.g., MZ5GS1) over a set of

https://doi.org/10.5281/zenodo.7018397

ASE 22, October 10-14, 2022, Rochester, MI, USA

Yingyi Zhang, Zan Wang, Jiajun Jiang, Hanmo You, and Junjie Chen

Table 2: Performance comparison regarding Empirical Robustness (i.e., test accuracy/%) when attacking by different methods.

Model | Dataset BIM CcwW FGSM ‘ JSMA PGD
Dare BIM CW FGSM JSMA PGD |Dare BIM CW FGSM JSMA PGD |Dare BIM CW FGSM JSMA PGD |Dare BIM CW FGSM JSMA PGD |Dare BIM CW FGSM JSMA PGD
CIFAR10 |82.1 70.6 66.7 558 66.5 73.6 [92.3 664 755 552 750 709 74.6 509 59.7 548 568 525 |84.9 627 738 51.1 809 70.1 |83.7 757 649 549 746 80.6
VGG16 | SVHN 88.3 69.8 67.1 765 679 77.6 |95.6 79.1 80.5 839 782 849 818 641 604 735 60.8 684 [85.0 675 663 727 671 742 |86.9 737 69.1 789 746 80.6
M 620 668 659 614 608 688 818 713 83.1 684 812 758 ‘66.8 73.3 668 78.5 678 77.6 |71.8 772 70.2 754 86.6 84.4 |63.7 67.1 646 62.1 643 69.9
CIFAR10(90.0 733 726 66.6 714 79.7 [426 545 67.9 459 572 61.0 73.0 603 604 624 575 635 |71.6 688 727 840 738 735 |89.8 748 70.1 685 722 813
VGG19 | SVHN 91.5 710 69.0 755 705 78.4 |83.9 559 62.5 57.7 565 60.2 86.3 650 633 717 641 67.7 |88.5 686 69.2 703 687 713 |90.8 754 68.1 784 746 803
M 66.1 69.5 668 66.6 69.6 72.1|79.6 675 86.9 669 67.2 765 ‘73.8 747 714 773 748 761 (779 758 84.8 785 756 77.1 |725 703 729 69.7 75.1 747
CIFAR10 |79.8 609 588 61.8 624 645 [46.6 381 349 40.2 377 377 68.7 519 528 565 555 542 |620 624 56.2 56.6 646 64.8|82.1 658 614 639 675 69.4
Alexnet | SVHN 784 724 620 683 730 742 [69.0 578 583 50.6 69.6 623 713 61.8 57.8 662 684 699 [805 695 68.0 71.0 819 769 |79.3 749 689 70.2 731 781
™M 834 649 788 529 673 713 |77.1 841 546 814 861 87.0 72.1 633 663 63.0 625 658 |86.2 67.3 80.7 559 80.2 81.6 |84.4 764 80.1 548 69.7 80.2

Table 3: Model accuracy (%) over the original testing data
before and after fine-tuning for each method.

Original Fine-tuning Methods
Model | Dataset lic Dare BIM CW FgGSM JSMA PGD
CIFAR10| 887 | 88.9 87.6 888 874 885 883
VGG16 | SVHN 943 | 937 951 948 952 950 95.3
M 911 | 90.8 863 851 865 819 87.1
CIFARIO| 906 | 90.4 845 774 840 829 856
VGG19 | SVHN 93.9 | 93.8 94.9 948 947 912 9438
M 90.2 | 914 89.7 811 90.5 892 89.5
CIFARIO| 830 | 83.6 810 811 813 824 812
Alexnet | SVHN 933 | 94.5 926 858 940 935 933
EM 90.0 | 917 867 90.2 881 90.0 88.7

testing inputs generated by a particular attacking algorithm (e.g.,
BIM). As a result, in total there are 45 TSs (9 models X 5 attacking
algorithms). We also highlighted the best result per each TS. From
the table we can see that DARE significantly outperforms all the
baseline competitors. Specifically, DARE has achieved the highest
accuracy in 29/45 TSs, and the improvements range from 1.0% to
67.3%. While the second optimal, i.e., PGD, only achieves the high-
est accuracy in 5/45 TSs. The results indicate the effectiveness of
DARE.

However, some approaches may also produce better results than
DARE in some particular TSs. For example, the model M} ¢ af-
ter fine-tuning by the adversarial approach BIM achieved a higher
accuracy than DARE (66.8% vs 62.0%) over the attacking inputs gen-
erated by BIM. However, it is not hard to find that most of them are
cases where the fine-tuning method shares the same algorithm with
the attacking method, such as the aforementioned case (both fine-
tuning and testing with BIM. Please also note that PGD is essentially
the same as BIM but with a different initialization strategy [57]).
The results partially confirm the effectiveness of adversarial train-
ing methods for model robustness improvement. While on the other
hand, the results also demonstrate their unsatisfactory universal
robustness since they tend to achieve much worse robustness when
coming up with unknown attacking inputs (i.e., generated by a
different attacking algorithm). On the contrary, DARE performs
stably well in the face of different attacking algorithms.

Regarding the performance of DARE in different TSs, DARE is not
sensitive to different model architectures as it stably performs well
on VGG16, VGG19, and Alexnet. However, DARE performs slightly
worse with the training data of FM compared with the other datasets.
The reasons are mainly due to the simplicity of input samples from
FM, where all samples are grayscale article images, while both the

other two datasets include color images of complex objects, e.g.,
animals or street-view numbers. Consequently, the key features
are much easier to learn by the model. Under these circumstances,
additional seeded noises may have a higher potential to improve the
robustness of the model. Nevertheless, the performance achieved by
adversarial training approaches on FM is still limited since usually
the best performance is achieved when the attacking algorithm is
the same as the one used for training data generation, i.e., existing
approaches still suffer from weak universal robustness. In other
words, DARE complements existing adversarial training methods.

Moreover, improving the robustness of DL models should not
largely sacrifice the overall performance of the original models, we
further compare the model performance over the original testing
data without seeding attacking features. Table 3 shows the results of
different approaches. According to the results, DARE still preserves
the performance of the original well-trained models. Specifically,
DARE slightly improves the accuracy of 5/9 models after fine-tuning,
while slightly decreases the accuracy of the others. Compared with
the competitors, DARE also achieves the highest accuracy in most
circumstances. The reason is DARE aims at improving the universal
model robustness by enhancing the memory of crucial features
without breaking the normal distribution of input features. On the
contrary, traditional adversarial training methods in theory suffer
from a higher risk of affecting the feature distribution. This again
explains the superiority of DARE against the baseline approaches
in another perspective, and demonstrates the effectiveness of DARE
for practical use.

4.5.2 RQ2: Contribution of Model Transformation. In this research
question, we explore the contribution of model transformation
in DARE. Specifically, we conducted an ablation study with two
variants of DARE, i.e.,, DARE_g and DARE_;, which have been in-
troduced in Section 4.2. The results are shown in Figure 3. In the
figure, we present the relative improvements of the variants com-
pared with the original DARE in terms of Empirical Robustness.
We separately present the results for different attacking methods.
According to the figure, without the aid of model transformation
(model slicing & loss function), the overall performance of DARE
would dramatically drop. More concretely, after removing model
slicing, the testing accuracy of DARE_¢ on average drops 2.0%, and
the largest decline is about 17.1% over DARE. By further removing
the loss function in DARE_g, the decline of testing accuracy over
DARE ranges from 3.7% to 63.9%, where the average value is 26.9%.
The result indicates that the model transformation component in
DARE significantly contributed to its effectiveness.

Toward Improving the Robustness of Deep Learning Models via Model Transformation

ASE ’22, October 10-14, 2022, Rochester, MI, USA

Table 4: Result comparison when employing different data augmentation strategies (Accuracy/%).
BIM C&W FGSM JSMA PGD Model Acc After Tuning
Model | Dataset
DARE DARE,;,q | DARE DARE,;,q | DARE DARE,;,q | DARE DARE,;,q | DARE DARE,;,q || DARE DARE, gna
CIFAR10 | 82.1 73.7 92.3 84.6 74.6 69.0 84.9 76.0 83.7 76.6 88.9 85.4
VGG16 | SVHN 88.3 75.6 95.6 92.0 81.8 70.3 85.0 74.8 86.9 71.4 93.7 75.0
FM 62.0 36.3 81.8 28.1 66.8 34.1 71.8 31.1 63.7 37.5 90.8 90.1
CIFAR10 | 90.0 - 42.6 - 73.0 - 71.6 - 89.8 - 90.4 -
VGG19 | SVHN 91.5 91.2 83.9 83.8 86.3 83.4 88.5 87.3 90.8 89.5 93.8 73.6
FM 66.1 28.3 79.6 25.2 73.8 25.0 77.9 27.5 72.5 26.7 91.4 88.2
CIFAR10 | 79.8 55.2 46.6 311 68.7 46.7 61.9 44.3 82.1 53.7 83.6 82.0
Alexnet | SVHN 78.4 37.1 69.0 18.2 713 25.4 80.5 33.4 79.3 38.4 94.5 89.7
™M 83.4 75.1 77.1 26.3 72.1 56.5 86.2 64.6 84.4 76.1 91.7 89.8
VGGI6 VGGI9 Alexnet VGG16 VGGI9 Alexnet VGG16 VGG19 Alexnet VGGI6 VGGI9 Alexnet VGG16 VGG19 Alexnet GG16 VGG19 Alexnet VGG16 VGG19 Alexnet VGG16 VGG19 Alexnet VGGI6 VGGI9 Alexnet VGG16 VGGI9 Alexnet
‘ Y =% e T % % ‘ T T - ‘ R ‘ T T T . % . % ‘)
. EIEETEETEETEE L FY f8; Efgffsifsf RITHIEHIFHIEL I EL I P L EE LT E PP
0 e M ey 0 m-—_ - 0 _._ 0 oy — = 0 ——
. " . || . . | n
-10 ’ -10 1o -10
o5 20 -15 -15
-15
-20 -30 -20 -20
=20
25 40 25 25
-30 -30 -30 »
35 = 35 35 -30
40 -60 40 40 -35
-45 -70 -45 -45 -40
[T s T SO T s T S e T s T S ey T s T SO T s T)
DARE_¢ DARE_g DARE ¢ DARE_g DARE ¢ DARE_g; DARE_¢ DARE_g DARE_ DARE_g
(a) BIM (b) C&W (c) FGSM (d) JSMA (e) PGD

Figure 3: Relative improvements of variants DARE_s and DARE_g; on Empirical Robustness compared with DARE.

~100 ~ CIFARI10 ~100 ~ CIFARI0 ~100 ~ CIFARI0 ~100 ~ CIFARI0 ~ 100 =~ CIFARI0
® - FM S - M & - FM S - M & - M
‘é’ - SVHN ; ~ SVHN ‘5 = SVHN Z = SVHN E = SVHN
fo0 — —— RS £w Esos I =
< 60 S 60 S 60 = S 60— —— S 60
& 2 & & o] <
3 3 3 3 3
£ 40 £ 40 £ 40 £ 40 £ 40
2 2 = = 2
E] E £ g
=20 =20 =20 = 20 =2 20
100 95 90 85 80 75 q% 100 95 90 85 80 75 q% 100 95 90 85 80 75 q% 100 95 90 85 80 75 q% 100 95 90 85 80 75 q%
(a) BIM (b) C&W (c) FGSM (d) JISMA (e) PGD

Figure 4: Performance of DARE with different configurations of g for model slicing.

By further investigating the impact of each process in model
transformation, we can find that the loss function contributes much
more than the model slicing process. The reason is due to the design
targets. The model slicing process identifies the crucial neurons that
take the most responsibility for reflecting the key input features, and
also reduces the training effects over different classes. In this way,
the well-trained model performance will not be degraded. However,
it provides limited information boosting robustness improvement.
On the contrary, the loss function is dedicated to perceiving small
perturbations for better compression and consolidating the memory
of key input features. In other words, the loss function is expected
to be more effective for model robustness improvement.

As explained above, the target of the model slicing is to preserve
the superiority of the originally well-trained model, we addition-
ally studied its impact on the performance of DARE with different
configurations of q% (q € [75, 100] with the interval of 5). Figure 4
visualizes the trend of model robustness over different datasets per
each attacking method for Alexnet (due to the experiment cost, we

take Alexnet as the representation). From the figure, we can see
that the configuration of ¢ may slightly affect the performance of
DARE, but the effect is relatively small when q € [90, 100], where
DARE always outperforms the baseline approaches (i.e., achieving
the highest Empirical Robustness in the most TSs). However, when
q < 90, the model will suffer a relatively larger performance drop,
the major reason is that too many crucial neurons and synapses
are eliminated and the model cannot be sufficiently fine-tuned.

4.5.3 RQ3: Contribution of Data Augmentation. This research ques-
tion investigates the performance of our data augmentation strategy.
Specifically, we compare with the variant DARE, ;4 of DARE, which
shares the same model transformation component but performs a
random sampling of training data for model tuning (see Section 4.2).
Table 4 shows the detailed results for DARE and DARE, 4, includ-
ing the corresponding Empirical Robustness as well as the model
accuracy over the original testing inputs. By randomly sampling

training data, the accuracy on the original testing set of MY%GSP

ASE 22, October 10-14, 2022, Rochester, MI, USA

Table 5: Time cost for each method (in minutes)

FGSM
Gen Trn

JSMA
Gen Trn

PGD
Gen Trn

DARE

Model Aug Slice Trn

BIM C&W
Dataset

Gen Trn| Gen Trn

CIFAR10 | 747 603,439 51| 103 42| 489 54 (1978 52| 160 140 40
VGG16 | SVHN 863 154,109 22| 63 12| 402 19|2,060 18| 176 165 60
FM 689 7 (3,165 5| 135 8| 572 51,856 8| 188 45 15
CIFAR10 | 898 685928 20| 64 28| 425 682,676 65| 160 170 60
VGG19 | SVHN 1,083 315206 20| 65 3| 481 312,589 3| 241 190 80
FM 1,040 95,062 4| 171 10| 730 912,313 10| 205 50 35
CIFAR10 87 4| 918 <1| 13 5 42 4| 956 4| 43 40 20
Alexnet | SVHN 339 201,997 4| 54 20| 239 20| 89 20| 42 45 25
FM 32 211,033 <1| 33 1| 117 3| 451 2| 40 20 20

after fine-tuning will dramatically drop, and no model satisfies our
constraint regarding the model accuracy (no more than 10% drop).
We use “-” to represent the missing data in the table.

According to the table, DARE always outperforms DARE, ;4
regardless of the attacking algorithms. More specifically, the data
augmentation strategy in DARE contributes on average 72.9% higher
Empirical Robustness by comparing with DARE, ,,,4, and the high-
est improvement is as high as 279.1%. Besides, the model accuracy
can also be better preserved when employing our data augmenta-
tion strategy, indicating the effectiveness of it.

4.5.4 RQ4: Efficiency of DARE. Table 5 presents the time cost for
each method. Specifically, for adversarial training methods, we re-
port the time spent on training data generation (Gen) and model
tuning (Trn), while for DARE we report the time for data augmen-
tation (Aug), model slicing (Slice), and tuning. Please note that
compared with the baseline approaches, DARE requires to record
the historical models during the training process of the original
model. However, the model saving process is so efficient (i.e., in
seconds) that can be ignored in the comparison. According to the
table we can see that DARE generally performs efficiently. DARE
spent much less time on almost every model compared with all the
baselines except for FGSM. However, since the whole process is
performed offline, the time costs of all approaches can be acceptable.
Furthermore, we can also observe that the time cost of slicing is
closely related with the parameter number in the models, where
smaller models tend to spend less time (refer to Table 1). Particu-
larly, from the table we can find that DARE tends to spend more
time on the model tuning process (Trn), the reason is clear as it
depends on a finer-grained loss function that can perceive small
perturbations and thus requires more time to converge. That also
explains the effectiveness of DARE from a different perspective — It
performs a more comprehensive model tuning. In general, DARE is
not only effective but also efficient.

5 RELATED WORK

5.1 Model Repair

Like traditional software [27-29, 41, 70, 71, 74], deep learning (DL)
programs also have bugs. Particularly, besides those bugs that are
caused by vulnerable source code [21, 22, 25, 45, 50, 62, 86—-88].
DL systems have a special type of bugs, called model bugs [44],
which cause the learned model to produce unsatisfactory results
on certain test inputs, e.g., misclassifying a car as a cat, thus reduc-
ing the accuracy of learned models and thus their usability [82].

Yingyi Zhang, Zan Wang, Jiajun Jiang, Hanmo You, and Junjie Chen

In order to repair model bugs, many approaches have been pro-
posed [13, 34, 40, 67] and the typical method is optimizing the
training data, such as performing data selection [11] or data aug-
mentation [44]. For example, Fahmy et al. [10] proposed to leverage
heatmaps to capture the relevance of neurons, and then retained
the model for accuracy improvement. Similarly, Ma et al. [44] em-
ployed an analogical heatmap to aid the selection of retraining data
and proposed MODE. Analogously, Yu et al. [78] proposed a style-
guided data augmentation method for repairing DL models in the
operational environment, which employed clustering techniques
to guide the generation of failure data for model training.
However, as studied by Pham et al. [54] models may have large
overall accuracy differences even among identical training. There-
fore, it is still a big challenge to ensure the performance of DL mod-
els theoretically. Our work aims at improving the model robustness
in face of adversarial attacks but not their original performance,
which is similar but orthogonal to the aforementioned approaches.

5.2 Adversarial Robustness Improvement

As introduced in the introduction, DL models are fragile in the
face of adversarial attacks [52]. In order to improve the adversarial
robustness of DL models, many approaches have been put forward
in the last decade, which can be divided into two distinct categories:
model retraining and adversarial sample detection, where the for-
mer is more widely explored. Existing studies [12, 20] have also
shown that injecting adversarial examples into the training set
(also called adversarial training) could increase the robustness of
DL models combating adversarial examples, and many approaches
have been proposed [12, 46, 48, 57, 60]. One of the key differences
among this kind of approaches lies in the strategies adopted for data
augmentation. For example, Zantedeschi et al. [79] proposed to aug-
ment training data with examples perturbed using Gaussian noise;
Tramér et al. [66] introduced a technique that augments training
data with perturbations transferred from other models; Engstrom et
al. [8] proposed a data augmentation method by robust optimization
and test-time input aggregation; While Gao et al. [11] proposed to a
mutation-based fuzzing technique for such purpose. Besides simply
augmenting or filtering training data, Papernot et al. [53] and Xu
et al. [75] further respectively proposed to optimize the labels and
input features of training data via model distillation and feature
squeezing to improve model robustness. However, different from
these existing techniques, our approach improves the adversarial
robustness of DL models via model transformation, which intro-
duces an isomorphic neural network for parameter tuning rather
than training the original model.

Regarding the latter category, i.e., adversarial sample detection,
Zhong et al. [91] proposed two techniques (a black-box and a white-
box) via leveraging the properties of local robustness of neighbor
inputs, which help identify inputs with poor robustness, thereby
providing real-time feedback to the end-user. On the contrary, Zhao
et al. [90] proposed to detect adversarial examples based on a pre-
defined robustness difference of input examples. Zhang et al. [89]
proposed slicing deep neural networks based on data flow anal-
ysis, and identified adversarial examples by comparing the slices
calculated by benign examples and adversarial examples. These

Toward Improving the Robustness of Deep Learning Models via Model Transformation

approaches are orthogonal to ours and can be combined to further
improve the robustness of DL models.

Recent researches also have conducted various studies to inves-
tigate the performance of adversarial training in different aspects.
Kurakin et al. [38] investigated the performance of adversarial train-
ing on large models, and provided guidelines on how to successfully
scale adversarial training to large models and datasets, and Madry
et al. [46] explored the adversarial robustness of neural networks
through the lens of robust optimization, assisting the design of
reliable and universal methods for model training. Furthermore,
Yokoyama et al. [77] conducted an empirical study on the perfor-
mance of data-augmentation-based model robustness improvement
in real industrial scenarios. The results indicate data-augmentation-
based approaches can indeed help improve the robustness of DL
models, confirming the effectiveness of our approach.

6 DISCUSSION

Limitation: Though DARE was proved to be effective for improv-
ing the robustness of DL models, it still has limitations. First, DARE
targets classification models, while it does not conform to regres-
sion models due to its underlying model transformation process.
However, the data augmentation strategy and model training pro-
cess can still be applied to improving regression model robustness
as long as the model adopts CNN structures due to the limit of
NNSlicer [89]. Second, as shown in our experimental results, DARE
is more suitable for “hard-to-handle” tasks, where the model in-
puts originally involve perturbations, e.g., numbers in the natural
scene (SVHN). On the contrary, the improvement will be slightly
restrained if the crucial input features are apparently distinctive
(e.g., FM) for DL models. Nevertheless, DARE still outperforms the
baselines. Finally, since the data augmentation strategy in DARE
requires the historical models, it will incur more storage compared
with adversarial training methods.

Threats to Validity: The threats to validity mainly lie in the
model/data selection and experiment construction. To mitigate
the selection bias in our evaluation, we have employed three differ-
ent network architectures and three different datasets, all of which
are commonly used by existing studies and cover both complex
(e.g., CIFAR10 and VGG19) and simple ones (e.g., FM and Alexnet).
Specifically, the datasets adopted in our evaluation are different
from multiple aspects, such as different image sizes, different color
modes (colored and grayscale) and different scenarios (numbers and
objects), etc. Consequently, we believe the results are representative.
Regarding the experiment, in order to obtain the best performance
on baseline approaches, we have conducted an extensive model
tuning process. Finally, our experimental data is publicly accessible
for replication and promoting future research.

Future Work: In this work, we have evaluated our approach over
nine image classification models. In the future, we plan to study its
effectiveness in more application scenarios, e.g., Natural Language
Processing, since DARE does not depend on any image specific fea-
tures. Also, as presented in our experimental results shown in Ta-
ble 2, DARE can complement existing adversarial training methods
and improve the universal robustness of the model, but sometimes
the robustness improvement of DARE for certain adversarial attacks

ASE ’22, October 10-14, 2022, Rochester, MI, USA

may also be inferior to existing methods. In such cases, incorporat-
ing corresponding adversarial samples in the data augmentation
process of DARE to further improve its effectiveness can be feasible,
we leave it to our future work.

7 CONCLUSION

In this paper, we have proposed a novel model post-tuning frame-
work, called DARE, aiming at effectively improving the universal
robustness of deep learning models. Specifically, DARE first trans-
forms a classification model into an isomorphic regression model
via a novel model transformation process, which can better perceive
input perturbations for suppression and effectively consolidate the
memory of crucial input features. Then, DARE collects the training
data for the transformed model via mining historical models as
training guidance. Finally, the fine-tuned regression model can be
extended by the original model to accomplish model robustness im-
provement. We have evaluated DARE over 9 different models. Com-
pared with five state-of-the-art adversarial training approaches, the
improvements of DARE can be as large as 67.3%. In particular, DARE
performed stably well while combating different attacks, indicating
the high reliability of DARE for practical use.

ACKNOWLEDGMENTS

This work is partially supported by State Key Laboratory of Commu-
nication Content Cognition Grant No.A32001, the National Natural
Science Foundation of China Grant Nos. 61782263 and 62002256.

REFERENCES

[1] Evan Ackerman. Accessed: 2021. News. https://spectrum.ieee.org/three-small-
stickers-on-road- can- steer- tesla-autopilot-into- oncoming-lane

[2] Iveta Beckova, Stefan Pocos, and Igor Farkas. 2020. Computational Analysis of
Robustness in Neural Network Classifiers. In 29th International Conference on
Artificial Neural Networks, Bratislava, Slovakia. Springer, 65-76.

[3] Nicholas Carlini and David A. Wagner. 2017. Towards Evaluating the Robustness
of Neural Networks. 2017 IEEE Symposium on Security and Privacy, SP, 39-57.

[4] Chenyi Chen, Ari Seff, Alain L. Kornhauser, and Jianxiong Xiao. 2015. DeepDriv-
ing: Learning Affordance for Direct Perception in Autonomous Driving. In 2015
IEEE International Conference on Computer Vision, ICCV. IEEE Computer Society,
2722-2730.

[5] Junjie Chen, Xiaoting He, Qingwei Lin, Hongyu Zhang, Dan Hao, Feng Gao,
Zhangwei Xu, Yingnong Dang, and Dongmei Zhang. 2019. Continuous Incident
Triage for Large-Scale Online Service Systems. In 34th IEEE/ACM International
Conference on Automated Software Engineering, ASE 2019. IEEE, 364-375.

[6] Junjie Chen, Zhuo Wu, Zan Wang, Hanmo You, Lingming Zhang, and Ming Yan.
2020. Practical accuracy estimation for efficient deep neural network testing.
ACM Transactions on Software Engineering and Methodology 29, 4 (2020), 1-35.

[7] Holger Cleve and Andreas Zeller. 2005. Locating causes of program failures. In
Proceedings. 27th International Conference on Software Engineering, 2005. ICSE
2005. IEEE, 342-351.

[8] Logan Engstrom, Brandon Tran, Dimitris Tsipras, Ludwig Schmidt, and Alek-
sander Madry. 2019. Exploring the landscape of spatial robustness. In International
Conference on Machine Learning. PMLR, 1802-1811.

[9] Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati, Chaowei
Xiao, Atul Prakash, Tadayoshi Kohno, and Dawn Song. 2018. Robust Physical-
World Attacks on Deep Learning Visual Classification. In 2018 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2018. IEEE Computer Society,
1625-1634.

[10] Hazem Fahmy, Fabrizio Pastore, Mojtaba Bagherzadeh, and Lionel Briand. 2021.
Supporting Deep Neural Network Safety Analysis and Retraining Through
Heatmap-Based Unsupervised Learning. IEEE Transactions on Reliability (2021).

[11] Xiang Gao, Ripon K Saha, Mukul R Prasad, and Abhik Roychoudhury. 2020. Fuzz
testing based data augmentation to improve robustness of deep neural networks.
In 2020 IEEE/ACM 42nd International Conference on Software Engineering (ICSE).
IEEE, 1147-1158.

[12] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Explaining
and Harnessing Adversarial Examples. 3rd International Conference on Learning
Representations, ICLR 2015.

https://spectrum.ieee.org/three-small-stickers-on-road-can-steer-tesla-autopilot-into-oncoming-lane
https://spectrum.ieee.org/three-small-stickers-on-road-can-steer-tesla-autopilot-into-oncoming-lane

ASE

[13]

[14]

[15

[16

[17]

[18

[19]

[20

[21]

[22]

[23

[24]

[25]

[26

[
)

[28]

[29

[30]

[31]

[32

[33

[34]

[35]

[36

[37]

[38]

’22, October 10-14, 2022, Rochester, MI, USA

Divya Gopinath, Mengshi Zhang, Kaiyuan Wang, Ismet Burak Kadron, Corina S.
Pasareanu, and Sarfraz Khurshid. 2019. Symbolic Execution for Importance
Analysis and Adversarial Generation in Neural Networks. In 30th IEEE Interna-
tional Symposium on Software Reliability Engineering, ISSRE 2019, Berlin, Germany,
October 28-31, 2019. IEEE, 313-322.

Sumit Gulwani. 2011. Automating string processing in spreadsheets using input-
output examples. ACM Sigplan Notices 46, 1 (2011), 317-330.

Sumit Gulwani. 2016. Programming by Examples: Applications, Algorithms, and
Ambiguity Resolution. In IJCAR. 9-14.

Sumit Gulwani and Prateek Jain. 2017. Programming by Examples: PL meets ML.
In APLAS.

Sumit Gulwani, Oleksandr Polozov, and Rishabh Singh. 2017. Program Synthesis.
Foundations and Trends in Programming Languages 4, 1-2 (2017), 1-119.

Daniel Conrad Halbert. 1984. Programming by example. Ph.D. Dissertation.
University of California, Berkeley.

Hossein Hosseini, Sreeram Kannan, and Radha Poovendran. 2019. Dropping
Pixels for Adversarial Robustness. In IEEE Conference on Computer Vision and Pat-
tern Recognition Workshops, CVPR Workshops 2019. Computer Vision Foundation
/ IEEE, 91-97.

Ruitong Huang, Bing Xu, Dale Schuurmans, and Csaba Szepesvari. 2015. Learning
with a strong adversary. arXiv preprint arXiv:1511.03034 (2015).

Md Johirul Islam, Giang Nguyen, Rangeet Pan, and Hridesh Rajan. 2019. A
comprehensive study on deep learning bug characteristics. In Proceedings of the
2019 27th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. 510-520.

Md Johirul Islam, Rangeet Pan, Giang Nguyen, and Hridesh Rajan. 2020. Repair-
ing deep neural networks: Fix patterns and challenges. In 2020 IEEE/ACM 42nd
International Conference on Software Engineering (ICSE). IEEE, 1135-1146.
Adam Ivankay, Ivan Girardi, Chiara Marchiori, and Pascal Frossard. 2020. FAR: A
General Framework for Attributional Robustness. CoRR abs/2010.07393 (2020).
Ruyi Ji, Yican Sun, Yingfei Xiong, and Zhenjiang Hu. 2020. Guiding dynamic
programing via structural probability for accelerating programming by example.
Proceedings of the ACM on Programming Languages 4, OOPSLA (2020), 1-29.

Li Jia, Hao Zhong, Xiaoyin Wang, Linpeng Huang, and Xuansheng Lu. 2020.
An Empirical Study on Bugs Inside TensorFlow. In International Conference on
Database Systems for Advanced Applications. Springer, 604-620.

Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and
Tuo Zhao. 2020. SMART: Robust and Efficient Fine-Tuning for Pre-trained Natural
Language Models through Principled Regularized Optimization. In Proceedings
of the 58th Annual Meeting of the Association for Computational Linguistics. 2177
2190. https://doi.org/10.18653/v1/2020.acl-main.197

Jiajun Jiang, Luyao Ren, Yingfei Xiong, and Lingming Zhang. 2019. Inferring
Program Transformations From Singular Examples via Big Code. In 2019 34th
IEEE/ACM International Conference on Automated Software Engineering (ASE).
255-266. https://doi.org/10.1109/ASE.2019.00033

Jiajun Jiang, Yingfei Xiong, and Xin Xia. 2019. A manual inspection of Defects4]
bugs and its implications for automatic program repair. Science China Information
Sciences 62 (Sep 2019), 200102. https://doi.org/10.1007/s11432-018-1465-6
Jiajun Jiang, Yingfei Xiong, Hongyu Zhang, Qing Gao, and Xiangqun Chen. 2018.
Shaping Program Repair Space with Existing Patches and Similar Code. In ISSTA.
Wei Jiang, Zhiyuan He, Jinyu Zhan, and Weijia Pan. 2021. Attack-Aware Detection
and Defense to Resist Adversarial Examples. IEEE Trans. Comput. Aided Des.
Integr. Circuits Syst. 40, 10 (2021), 2194-2198.

Kyle D. Julian, Jessica Lopez, Jeffrey S. Brush, Michael P. Owen, and Mykel J.
Kochenderfer. 2016. Policy compression for aircraft collision avoidance systems.
In 2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC). 1-10.

Nal Kalchbrenner and Phil Blunsom. 2013. Recurrent Continuous Translation
Models. In Proceedings of the 2013 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2013, A meeting of SIGDAT, a Special Interest Group
of the ACL. ACL, 1700-1709.

Ashwin Kalyan, Abhishek Mohta, Oleksandr Polozov, Dhruv Batra, Prateek Jain,
and Sumit Gulwani. 2018. Neural-guided deductive search for real-time program
synthesis from examples. In International Conference on Learning Representations
(ICLR).

Sungmin Kang, Robert Feldt, and Shin Yoo. 2020. SINVAD: Search-based Image
Space Navigation for DNN Image Classifier Test Input Generation. In ICSE 20:
42nd International Conference on Software Engineering, Workshops, Seoul, Republic
of Korea, 27 June - 19 July, 2020. ACM, 521-528.

Emanuel Kitzelmann. 2009. Inductive programming: A survey of program syn-
thesis techniques. In International Workshop on Approaches and Applications of
Inductive Programming. Springer, 50-73.

Alex Krizhevsky. 2009. Learning multiple layers of features from tiny images.
Technical Report.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet Clas-
sification with Deep Convolutional Neural Networks. In Advances in Neural
Information Processing Systems 25: 26th Annual Conference on Neural Information

Processing Systems. 1106-1114.
Alexey Kurakin, Ian Goodfellow, and Samy Bengio. 2017. Adversarial machine

learning at scale. In International Conference on Learning Representations.

Yingyi Zhang, Zan Wang, Jiajun Jiang, Hanmo You, and Junjie Chen

Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. 2017. Adversarial examples
in the physical world. 5th International Conference on Learning Representations,
ICLR 2017.

Seokhyun Lee, Sooyoung Cha, Dain Lee, and Hakjoo Oh. 2020. Effective white-
box testing of deep neural networks with adaptive neuron-selection strategy.
In ISSTA °20: 29th ACM SIGSOFT International Symposium on Software Testing
and Analysis, Virtual Event, USA, July 18-22, 2020, Sarfraz Khurshid and Corina S.
Pasareanu (Eds.). ACM, 165-176.

Xia Li, Jiajun Jiang, Samuel Benton, Yingfei Xiong, and Lingming Zhang. 2021.
A Large-scale Study on API Misuses in the Wild. In 2021 14th IEEE Conference on
Software Testing, Verification and Validation (ICST). 241-252. https://doi.org/10.
1109/ICST49551.2021.00034

Xia Li, Wei Li, Yuqun Zhang, and Lingming Zhang. 2019. DeepFL: integrating
multiple fault diagnosis dimensions for deep fault localization. In Proceedings of
the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis,
ISSTA 2019. ACM, 169-180.

Yixing Luo, Xiao-Yi Zhang, Paolo Arcaini, Zhi Jin, Haiyan Zhao, Fuyuki Ishikawa,
Rongxin Wu, and Tao Xie. 2021. Targeting Requirements Violations of Au-
tonomous Driving Systems by Dynamic Evolutionary Search. In 36th IEEE/ACM
International Conference on Automated Software Engineering, ASE 2021. IEEE,
279-291. https://doi.org/10.1109/ASE51524.2021.9678883

Shiging Ma, Yingqi Liu, Wen-Chuan Lee, Xiangyu Zhang, and Ananth Grama.
2018. MODE: automated neural network model debugging via state differential
analysis and input selection. In Proceedings of the 2018 26th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering. 175-186.

Yixuan Ma, Shuang Liu, Jiajun Jiang, Guanhong Chen, and Keqiu Li. 2021. A com-
prehensive study on learning-based PE malware family classification methods. In
Proceedings of the 29th ACM Joint Meeting on European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering. 1314-1325.
Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. 2018. Towards Deep Learning Models Resistant to Adversarial
Attacks. In 6th International Conference on Learning Representations, ICLR 2018.
OpenReview.net.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. 2018. Towards Deep Learning Models Resistant to Adversarial
Attacks. 6th International Conference on Learning Representations, ICLR 2018,
Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings.
Ravi Mangal, Kartik Sarangmath, Aditya V. Nori, and Alessandro Orso. 2020.
Probabilistic Lipschitz Analysis of Neural Networks. In Static Analysis - 27th In-
ternational Symposium, SAS 2020, Virtual Event, November 18-20, 2020, Proceedings
(Lecture Notes in Computer Science, Vol. 12389). Springer, 274-309.

Haitao Mi, Zhiguo Wang, and Abe Ittycheriah. 2016. Supervised Attentions for
Neural Machine Translation. In Proceedings of the 2016 Conference on Empiri-
cal Methods in Natural Language Processing, EMINLP 2016. The Association for
Computational Linguistics, 2283-2288.

Mahdi Nejadgholi and Jinqiu Yang. 2019. A study of oracle approximations in
testing deep learning libraries. In 2019 34th IEEE/ACM International Conference
on Automated Software Engineering (ASE). IEEE, 785-796.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and An-
drew Y Ng. 2011. Reading digits in natural images with unsupervised feature
learning. In NIPS Workshop on Deep Learning and Unsupervised Feature Learning
2011.

Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Celik,
and Ananthram Swami. 2016. The limitations of deep learning in adversarial
settings. In 2016 IEEE European symposium on security and privacy (EuroS&P).
IEEE, 372-387.

Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, and Ananthram Swami.
2016. Distillation as a defense to adversarial perturbations against deep neural
networks. In 2016 IEEE symposium on security and privacy (SP). IEEE, 582-597.
Hung Viet Pham, Shangshu Qian, Jiannan Wang, Thibaud Lutellier, Jonathan
Rosenthal, Lin Tan, Yaoliang Yu, and Nachiappan Nagappan. 2020. Problems and
opportunities in training deep learning software systems: an analysis of vari-
ance. In Proceedings of the 35th IEEE/ACM International Conference on Automated
Software Engineering. 771-783.

Sukrut Rao, David Stutz, and Bernt Schiele. 2020. Adversarial Training Against
Location-Optimized Adversarial Patches. In Computer Vision - ECCV 2020 Work-
shops (Lecture Notes in Computer Science, Vol. 12539). Springer, 429-448.
Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedan-
tam, Devi Parikh, and Dhruv Batra. 2017. Grad-CAM: Visual Explanations from
Deep Networks via Gradient-Based Localization. IEEE International Conference
on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017 (2017), 618-626.
Ali Shafahi, Mahyar Najibi, Amin Ghiasi, Zheng Xu, John Dickerson, Christoph
Studer, Larry S Davis, Gavin Taylor, and Tom Goldstein. 2019. Adversarial
training for free!. In Advances in Neural Information Processing Systems, Vol. 32.
Qingchao Shen, Junjie Chen, Jie Zhang, Haoyu Wang, Shuang Liu, and Menghan
Tian. 2022. Natural Test Generation for Precise Testing of Question Answering

https://doi.org/10.18653/v1/2020.acl-main.197
https://doi.org/10.1109/ASE.2019.00033
https://doi.org/10.1007/s11432-018-1465-6
https://doi.org/10.1109/ICST49551.2021.00034
https://doi.org/10.1109/ICST49551.2021.00034
https://doi.org/10.1109/ASE51524.2021.9678883

Toward Improving the Robustness of Deep Learning Models via Model Transformation

[59]

[60]

[61]

[62

[63]

(64

(65

[66

[67]

[68]

[69]

[70

[71]

[72

[73

[74

[75]

Software. In 37th IEEE/ACM International Conference on Automated Software
Engineering. to appear.

Hoo-Chang Shin, Le Lu, Lauren Kim, Ari Seff, Jianhua Yao, and Ronald M. Sum-
mers. 2016. Interleaved Text/Image Deep Mining on a Large-Scale Radiology
Database for Automated Image Interpretation. J. Mach. Learn. Res. 17, 1 (2016),
3729-3759.

David Shriver, Sebastian G. Elbaum, and Matthew B. Dwyer. 2021. Reducing DNN
Properties to Enable Falsification with Adversarial Attacks. In 43rd IEEE/ACM
International Conference on Software Engineering, ICSE 2021, Madrid, Spain, 22-30
May 2021. IEEE, 275-287.

Karen Simonyan and Andrew Zisserman. 2015. Very Deep Convolutional Net-
works for Large-Scale Image Recognition. In 3rd International Conference on
Learning Representations, ICLR 2015.

Xiaobing Sun, Tianchi Zhou, Gengjie Li, Jiajun Hu, Hui Yang, and Bin Li. 2017.
An empirical study on real bugs for machine learning programs. In 2017 24th
Asia-Pacific Software Engineering Conference (APSEC). IEEE, 348-357.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Tan J. Goodfellow, and Rob Fergus. 2014. Intriguing properties of neural networks.
2nd International Conference on Learning Representations, ICLR 2014.

Rajkumar Theagarajan, Ming Chen, Bir Bhanu, and Jing Zhang. 2019. Shield-
Nets: Defending Against Adversarial Attacks Using Probabilistic Adversarial
Robustness. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2019, Long Beach, CA, USA, June 16-20, 2019. Computer Vision Foundation / IEEE,
6988-6996.

Zhao Tian, Junjie Chen, Qihao Zhu, Junjie Yang, and Lingming Zhang. 2022.
Learning to Construct Better Mutation Faults. In 37th IEEE/ACM International
Conference on Automated Software Engineering. to appear.

Florian Tramer, Alexey Kurakin, Nicolas Papernot, Ian Goodfellow, Dan Boneh,
and Patrick McDaniel. 2018. Ensemble Adversarial Training: Attacks and De-
fenses. In International Conference on Learning Representations.

Muhammad Usman, Divya Gopinath, Youcheng Sun, Yannic Noller, and Corina S.
Pasareanu. 2021. NNrepair: Constraint-Based Repair of Neural Network Classi-
fiers. In Computer Aided Verification - 33rd International Conference, CAV 2021,
Virtual Event, July 20-23, 2021, Proceedings, Part I (Lecture Notes in Computer
Science, Vol. 12759). Springer, 3-25.

Jingyi Wang, Jialuo Chen, Youcheng Sun, Xingjun Ma, Dongxia Wang, Jun Sun,
and Peng Cheng. 2021. RobOT: Robustness-Oriented Testing for Deep Learning
Systems. 43rd IEEE/ACM International Conference on Software Engineering, ICSE
2021, Madrid, Spain, 22-30 May 2021 (2021), 300-311.

Zan Wang, Hanmo You, Junjie Chen, Yingyi Zhang, Xuyuan Dong, and Wenbin
Zhang. 2021. Prioritizing test inputs for deep neural networks via mutation
analysis. In 2021 IEEE/ACM 43rd International Conference on Software Engineering.
IEEE, 397-409.

Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie Forrest. 2009.
Automatically finding patches using genetic programming. In ICSE. 364-374.
https://doi.org/10.1109/ICSE.2009.5070536

Ming Wen, Junjie Chen, Rongxin Wu, Dan Hao, and Shing-Chi Cheung. 2018.
Context-Aware Patch Generation for Better Automated Program Repair. In ICSE.

Tsui-Wei Weng, Huan Zhang, Pin-Yu Chen, Jinfeng Yi, Dong Su, Yupeng Gao,
Cho-Jui Hsieh, and Luca Daniel. 2018. Evaluating the Robustness of Neural
Networks: An Extreme Value Theory Approach. The 6th International Conference
on Learning Representations, ICLR 2018 (2018).

Han Xiao, Kashif Rasul, and Roland Vollgraf. 2017. Fashion-MNIST: a Novel Image
Dataset for Benchmarking Machine Learning Algorithms. CoRR abs/1708.07747
(2017).

Yingfei Xiong, Jie Wang, Runfa Yan, Jiachen Zhang, Shi Han, Gang Huang,
and Lu Zhang. 2017. Precise Condition Synthesis for Program Repair. In ICSE.
https://doi.org/10.1109/ICSE.2017.45

Weilin Xu, David Evans, and Yanjun Qi. 2018. Feature squeezing: Detecting
adversarial examples in deep neural networks. 2018 Network and Distributed

[76

[77

<
&

[79

[80

(81

(82]

(83

[84

oo
2

[86

[87

%
&

[89

[90]

[91

[92

ASE ’22, October 10-14, 2022, Rochester, MI, USA

System Security Symposium (2018).

Lin Yang, Junjie Chen, Zan Wang, Weijing Wang, Jiajun Jiang, Xuyuan Dong,
and Wenbin Zhang. 2021. Semi-supervised log-based anomaly detection via
probabilistic label estimation. In 2021 IEEE/ACM 43rd International Conference on
Software Engineering. IEEE, 1448-1460.

Haruki Yokoyama, Satoshi Onoue, and Shinji Kikuchi. 2020. Towards building
robust DNN applications: an industrial case study of evolutionary data augmen-
tation. In 2020 35th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 1184-1188.

Bing Yu, Hua Qi, Qing Guo, Felix Juefei-Xu, Xiaofei Xie, Lei Ma, and Jianjun
Zhao. 2021. DeepRepair: Style-Guided Repairing for Deep Neural Networks in
the Real-World Operational Environment. IEEE Transactions on Reliability (2021),
1-16.

Valentina Zantedeschi, Maria-Irina Nicolae, and Ambrish Rawat. 2017. Efficient
defenses against adversarial attacks. In Proceedings of the 10th ACM Workshop on
Artificial Intelligence and Security. 39-49.

Andreas Zeller. 2002. Isolating cause-effect chains from computer programs.

ACM SIGSOFT Software E%ineering Notes 27, 6 (2002), 1-10.
Andreas Zeller and Ralf Hildebrandt. 2002. Simplifying and isolating failure-

inducing input. IEEE Transactions on Software Engineering 28, 2 (2002), 183-200.
Jie M. Zhang, Mark Harman, Lei Ma, and Yang Liu. 2022. Machine Learning Test-
ing: Survey, Landscapes and Horizons. IEEE Transactions on Software Engineering
48,1 (2022), 1-36. https://doi.org/10.1109/TSE.2019.2962027

Kai Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng, and Lei Zhang. 2017. Be-
yond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising.
IEEE Trans. Image Process. 26, 7 (2017), 3142-3155.

Mengshi Zhang, Yuqun Zhang, Lingming Zhang, Cong Liu, and Sarfraz Khur-
shid. 2018. DeepRoad: GAN-based metamorphic testing and input validation
framework for autonomous driving systems. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, ASE 2018. ACM,
132-142.

Qiao Zhang, Zhipeng Cui, Xiaoguang Niu, Shijie Geng, and Yu Qiao. 2017. Image
Segmentation with Pyramid Dilated Convolution Based on ResNet and U-Net.
In Neural Information Processing - 24th International Conference, ICONIP 2017
(Lecture Notes in Computer Science, Vol. 10635). Springer, 364-372.

Ru Zhang, Wencong Xiao, Hongyu Zhang, Yu Liu, Haoxiang Lin, and Mao Yang.
2020. An empirical study on program failures of deep learning jobs. In 2020
IEEE/ACM 42nd International Conference on Software Engineering (ICSE). IEEE,
1159-1170.

Tianyi Zhang, Cuiyun Gao, Lei Ma, Michael Lyu, and Miryung Kim. 2019. An
empirical study of common challenges in developing deep learning applications.
In 2019 IEEE 30th International Symposium on Software Reliability Engineering
(ISSRE). IEEE, 104-115.

Yuhao Zhang, Yifan Chen, Shing-Chi Cheung, Yingfei Xiong, and Lu Zhang. 2018.
An empirical study on TensorFlow program bugs. In Proceedings of the 27th ACM
SIGSOFT International Symposium on Software Testing and Analysis. 129-140.
Ziqi Zhang, Yuanchun Li, Yao Guo, Xiangqun Chen, and Yunxin Liu. 2020. Dy-
namic slicing for deep neural networks. ESEC/FSE °20: 28th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering, Virtual Event, USA, November 8-13, 2020 (2020), 838-850.

Zhe Zhao, Guangke Chen, Jingyi Wang, Yiwei Yang, Fu Song, and Jun Sun.
2021. Attack as Defense: Characterizing Adversarial Examples Using Robustness.
Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing
and Analysis (2021), 42-55.

Ziyuan Zhong, Yuchi Tian, and Baishakhi Ray. 2021. Understanding Local Robust-
ness of Deep Neural Networks under Natural Variations. Fundamental Approaches
to Software Engineering 12649 (2021), 313.

Husheng Zhou, Wei Li, Zelun Kong, Junfeng Guo, Yuqun Zhang, Bei Yu, Lingming
Zhang, and Cong Liu. 2020. DeepBillboard: systematic physical-world testing
of autonomous driving systems. In ICSE °20: 42nd International Conference on
Software Engineering. ACM, 347-358.

https://doi.org/10.1109/ICSE.2009.5070536
https://doi.org/10.1109/ICSE.2017.45
https://doi.org/10.1109/TSE.2019.2962027

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Model Robustness Improvement
	2.2 Delta Debugging

	3 Framework
	3.1 Model Transformation
	3.2 Data Augmentation
	3.3 Model Tuning and Synchronization

	4 Evaluation
	4.1 Dataset and Models
	4.2 Baseline Approaches
	4.3 Procedure and Measurement
	4.4 Implementation and Configuration
	4.5 Result Analysis

	5 Related Work
	5.1 Model Repair
	5.2 Adversarial Robustness Improvement

	6 Discussion
	7 Conclusion
	Acknowledgments
	References

