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Abstract—To ensure compilers’ quality, compiler testing has
received more and more attention, and test-program generation
is the core task. In recent years, some approaches have been pro-
posed to explore test configurations for generating more effective
test programs, but they either are restricted by historical bugs
or suffer from the cost-effectiveness issue. Here, we propose a
novel test-program generation approach (called MCS) to further
improving the performance of compiler testing. MCS conducts
memoized search via multi-agent reinforcement learning (RL)
for guiding the construction of effective test configurations based
on the memoization for the explored test configurations during
the on-the-fly compiler-testing process. During the process, the
elaborate coordination among configuration options can be also
well learned by multi-agent RL, which is required for generating
bug-triggering test programs. Specifically, MCS considers the
diversity among test configurations to efficiently explore the input
space and the testing results under each explored configuration
to learn which portions of space are more bug-triggering. Our
extensive experiments on GCC and LLVM demonstrate the
performance of MCS, significantly outperforming the state-of-
the-art test-program generation approaches in bug detection.
Also, MCS detects 16 new bugs on the latest trunk revisions of
GCC and LLVM, and all of them have been confirmed or fixed
by developers. MCS has been deployed by a global IT company
(i.e., Huawei) for testing their in-house compiler, and detects 10
new bugs (covering all the 5 bugs detected by the compared
approaches), all of which have been confirmed.

Index Terms—Compiler Testing, Test Program Generation,
Reinforcement Learning, Configuration

I. INTRODUCTION

Compilers are one of the most fundamental software, be-
cause almost all the software are required to be processed by
compilers before using them. However, like other software [1],
[2], compilers also contain bugs and meanwhile compiler bugs
are very harmful due to their fundamental role [3]. On one
hand, compiler bugs could cause any software built on them
to produce unexpected behaviors; on the other hand, compiler
bugs could aggravate the debugging difficulty as it is hard for

†Corresponding author.

developers to distinguish whether a software failure is caused
by the software they are developing or the compiler they are
using. Hence, it is important to ensure the quality of compilers.

Compiler testing is the most widely-used way of ensuring
compilers’ quality and many compiler testing techniques have
been proposed [3]–[10], in which automated test-program
generation is the core task. Over the years, some test-program
generators have been developed (e.g., Csmith [11] and CL-
smith [12]). They generate a large number of test programs
by depending on a test configuration to control what program
features are likely to be included. A test configuration consists
of a set of options, each of which controls how likely a
program feature can be included in a generated test program.
For example, a test configuration of Csmith [11] (one of
the most widely-used test-program generators) consists of 71
options, reflecting the probabilities of these program features
(e.g., the goto statement) to be included.

In general, a test-program generator provides a default test
configuration, which is determined by developers according
to their experience, for the practical use [11], [13], [14].
However, as the input space is enormous (including all syn-
tactically correct programs), relying on only one configuration
is scarcely possible to sufficiently explore the entire input
space within a limited testing period, causing that only a
limited number of compiler bugs can be detected [13], [14]. To
relieve this limitation, some approaches have been proposed
to explore test configurations so that as many compiler bugs
can be detected as possible [13]–[16]. However, they still
suffer from the effectiveness issue. Besides the enormous input
space, another reason is that the triggering of a compiler bug
tends to involve the specific combination of some program
features [17], indicating that the options in a test configuration
require elaborate coordination for generating bug-triggering
test programs. Specifically, some approach randomly con-
structs a test configuration before generating a test program
during the online testing process [14], but random search can



hardly capture useful information for elaborate coordination
among options and compiler bugs are not evenly distributed
across input space [13], [18], leading to less effective. More
advanced approaches infer a set of test configurations by
mining historical bugs in an offline way [13], [16], but their
effectiveness is limited by the mined history information, i.e.,
missing to detect unseen bugs due to lack of consideration
of the characteristics of the current version under test. Hence,
faced with the goal of detecting as many compiler bugs as
possible, more effective approaches are desirable.

In this work, we propose a novel test-program generation
approach, called MCS (Memoized Configuration Search). It
aims to improve the performance of compiler testing by
incorporating the explored test configurations during the on-
the-fly compiler-testing process for guiding the construction
of the next configuration and intelligently capturing elaborate
coordination among options. Specifically, instead of offline
inferring a set of test configurations by mining historical bugs,
MCS interleaves the process of searching for test configura-
tions and the online testing process. To more efficiently explore
the input space, MCS considers the diversity between the next
configuration and the explored ones. Also, it considers the
testing results (i.e., triggering bugs or not) under each explored
configuration to learn which portions of space are more bug-
triggering, and then can pay more attention to exploiting those
portions of space. That is, MCS conducts memoized search to
construct the next diverse and bug-triggering test configuration
based on the memoization for the explored ones along with
the on-the-fly testing process.

To continuously incorporate the knowledge from explored
test configurations and effectively capture coordination among
options, MCS innovatively adopts the multi-agent reinforce-
ment learning (RL) method (i.e., multi-agent A2C [19]) to
achieve our search goal. Indeed, the existing study has demon-
strated that RL is effective for memoized search [20] and
multi-agent RL can effectively seize mutual effects among
options by treating each option as an individual agent. Under
the framework of RL, MCS incorporates both diversity among
configurations and bug-triggering results as the reward to mea-
sure the quality of each configuration. Also, MCS empirically
investigates options’ negative effect on compiler testing via a
preliminary study and also considers it in the reward function,
so as to avoid generating test programs that negatively affect
compiler testing. Overall, MCS could make each constructed
configuration as effective as possible by gradually learning
from the memoization for the explored configurations along
with the on-the-fly testing process, so that a wider range of
bugs can be detected within the given testing period.

To evaluate the performance of MCS, we conducted an
extensive study on two popular C compilers (i.e., GCC and
LLVM) and the most widely-used test-program generator (i.e.,
Csmith [11]) following the existing studies [11], [17], [21]–
[23]. Our results show that MCS significantly outperforms two
state-of-the-art compiler test-program generation approaches,
i.e., HiCOND (that offline infers a set of test configurations
based on historical bugs) and Swarm Testing (that randomly

constructs test configurations for test-program generation dur-
ing the online testing process). For example, MCS detects
105.56% and 311.11% more bugs than them respectively, and
59.46% of bugs detected by MCS are unique. We also applied
MCS to test the latest revisions of GCC and LLVM, and
then it detected 16 new bugs during three-month testing. After
reporting them, all of these bugs have been confirmed/fixed by
developers. In particular, MCS has been deployed by a global
IT company (i.e., Huawei) to test their in-house compiler,
which is a high-performance and easy-to-expand compiler for
general-purpose processor architectures (we hide the compiler
name due to the company policy). During 10-day testing, MCS
detects 10 new bugs and all of them have been confirmed by
developers, but the state-of-the-art compared approaches just
detect at most 5 bugs and all of them are covered by MCS.
The results further confirm the practical value of MCS.

Our work makes the following major contributions:
• We propose the first RL-based test-program generation

approach, which conducts an online memoized search for
bug-triggering and diverse test configurations by learning
from explored ones during the on-the-fly testing process.

• We conducted an extensive study on GCC and LLVM,
demonstrating the superiority of MCS over the state-of-
the-art compared approaches. In particular, MCS detected
16 new bugs on the latest revisions of GCC and LLVM,
all of which have been confirmed/fixed by developers.

• We have deployed MCS to a global IT company (i.e.,
Huawei) for testing their in-house high-performance com-
piler. To further promote its practical use and future
research, we have released our tool at https://github.com/
tju-chenyaosuo/MCS.

II. BACKGROUND

A. Test Programs and Test Configurations
Test-program generation is the initial step in various com-

piler testing techniques. After generating a test program,
various test oracle mechanisms (e.g., differential testing [24]
or metamorphic testing [25]) can be adopted to determine
whether it triggers a compiler bug. That is, the generated test
programs could largely affect the overall performance of com-
piler testing. Due to its important role, plenty of efforts have
been devoted to developing various test-program generators,
such as Csmith [11], CLsmith [12], and DeepSmith [26].

Different from the test inputs of other software (e.g., num-
bers or strings), test programs involve various program fea-
tures (e.g., different kinds of statements) [11]. Typically, test-
program generators depend on test configurations to generate a
large number of test programs [13]–[15]. A test configuration
controls what program features are likely to be included in a
generated test program. A test configuration consists of a set of
options and each option reflects the probability of the program
feature to be included. For example, one of the most widely-
used test-program generators, i.e., Csmith [11], provides a test
configuration containing 71 options to control the generation
of test programs, e.g., the probability determining whether a
type (e.g., int or struct types) is generated.
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Fig. 1. Interaction between agent and environment.

Instead of the default test configuration provided by the
developers of a test-program generator, some approaches have
been proposed to explore test configurations so as to explore
the input space more effectively, which can be divided into
two categories:

• Offline approach, produces a set of test configurations in
an offline way, instead of the default one, for compiler
testing. They utilize historical bugs to infer a set of test
configurations [13], [16].

• Online approach, constructs test configurations during
online testing. The current approach randomly constructs
a configuration when generating a test program [14]. That
is, it conducts random search in the input space.

As presented in Section I, they still suffer from the effective-
ness issue. Please note that our approach belongs to the second
category by conducting memoized search for the next diverse
and bug-triggering configuration based on the memoization for
the explored ones during the on-the-fly testing process. It can
help explore the input space more efficiently.

B. Reinforcement Learning

As MCS adopts multi-agent RL to guide the search process,
in this section we first introduce some background of RL, and
then explain why we choose RL (i.e., multi-agent RL).
Background of RL. RL aims to learn an optimal control
policy for agents that interact with an unknown environment.
The target is to choose a sequence of actions that maximize the
cumulative reward for agents in a long run [27]–[29]. Formally,
this process is represented as a Markov Decision Process
(shown in Figure 1) that is defined by a tuple (S, A, P , R, γ),
where S is a set of states that an agent can attain in a specific
environment, while A is a set of actions the agent can perform.
During the RL process, at each time step t, an agent takes an
action at ∈A based on the observation of a state st ∈S and
moves to the next state st+1 with a transition probability of
Pa
ss′ : Pa

ss′ = Pr{st+1 = s′|st = s, at = a}. Then, a feedback
reward rt for the taken action will be received via a predefined
reward function R(st, at, st+1). The above process proceeds
until the agent reaches the terminal, e.g., exceeding a given
time budget. Suppose that the duration of an episode is from
time t to T , and the cumulative reward obtained by the agent
in this episode can be obtained by: Rt=ΣT

t′=tγ
t′−trt where

γ is a discount factor that determines the importance of the
current and future rewards, ranging [0, 1].
Why choose RL? A typical search scenario is to first adopt
some search algorithm to find the optimal solution with regard
to the defined fitness function, and then apply the solution
to obtain the optimal result, e.g., (search-based) compiler

autotuning [30]–[34]. That is, the typical scenario consists of
two stages: solution search and solution use, which have a
clear precedence relationship.

Different from the typical search scenario, our task focuses
on on-the-fly compiler testing and thus interleaves the solution
search process (i.e., constructing the next test configuration
based on the memoization for the explored ones) and the
solution use process (i.e., applying the test configuration to
generate test programs for compiler testing). That is, during the
search process, when generating a test configuration, its quality
is immediately measured by using it to generate test programs
for compiler testing and then it will be memoized for guiding
follow-up configuration construction. When the search process
terminates, the on-the-fly testing process also terminates and
then the detected bugs during the process are outputted. Hence,
to explore the input space more efficiently for better compiler
testing, we should ensure that each constructed test configu-
ration during the search process is as effective as possible in
our scenario.

Please note that our task does not match the above typical
search scenario. Under the typical scenario, it has to await the
costly search process before starting the on-the-fly compiler-
testing process. It can delay the testing process and thus
negatively affect the performance of compiler testing [22],
compared with our scenario of interleaving both processes.

To complete our task, we adopt RL as (1) it is suitable to our
scenario by taking test configurations as states, designing the
ways of updating option settings as actions, and considering
the quality of explored configurations in the reward function.
In this way, RL can help construct the next effective test
configuration by predicting actions in the current state based
on the memoization for explored ones during the on-the-fly
testing process; (2) it has been demonstrated to be effective
for memoized search [20]. In particular, we conducted an
experiment to confirm the contribution of RL in MCS by com-
paring it with conventional search algorithms (Section VII-A).
Please note that there is a slight difference between the original
purpose of RL and our purpose for using RL. The former is
to learn the control policy, while the latter is to construct as
effective a test configuration as possible at each time step by
using the gradually-learned policy.

We employ the A2C algorithm [19] in MCS as it is
effective by combining the strengths of both value-based RL
algorithms [35] and policy-based RL algorithms [36], and
is suitable for our task under a single-thread running envi-
ronment. A2C has a separate memory structure to explicitly
represent the policy independent of the value function and
incorporates knowledge from all possible actions to reduce
variances of neural networks. The policy structure is known
as the actor, which is used to select actions via an actor neural
network (ANN), and the estimated value function is known as
the critic, which criticizes the actions made by the actor via
a critic neural network (CNN).
Why choose multi-agent RL? As presented by the existing
work [17], the triggering of a compiler bug tends to involve
the specific combination of several program features, and thus



elaborate coordination among options in a test configuration
is required for effectively generating test programs. Hence,
we adopt the multi-agent framework of A2C to seize mutual
effects among options by treating each option as an individual
agent, which maintains independent ANN and CNN but shares
the same environment for coordination. Specifically, when
given an initial test configuration (i.e., st), the learned multi-
agent RL model can generate a set of actions to update the
option settings respectively and produce a new configuration
(i.e., st+1), which is expected to be more effective for test-
program generation. Although the coordination in multi-agent
RL could incur extra cost, the time cost is significantly less
than that spent on compiling and executing test programs.
Therefore, it may not shadow the ultimate optimization goal
obviously. Besides, as presented by the existing work [37],
multi-agent RL outperforms single-agent RL especially when
the state-action space of single-agent RL is large (like our
scenario), as the large state-action space can cause both ANN
and CNN hard-to-converge, leading to inaccurate prediction.
In the future, we can empirically compare multi-agent RL with
single-agent RL in our scenario.

Although the theory of multi-agent A2C is mature, it is
non-trivial to formulate our task under the RL framework
and design an effective reward function to address our task
well. Also, we are the first to address the task of exploring
test configurations for better compiler testing based on guided
search in an online process, showing the novelty of our work.

III. APPROACH

Although existing test-program generation approaches have
made attempts to explore test configurations to improve com-
piler testing performance, they either are limited by historical
bugs or suffer from the cost-effectiveness issue due to aimless
search. Also, it is hard for them to effectively capture elaborate
coordination among options for generating bug-triggering test
programs. To achieve better compiler testing, we propose
a novel test-program generation approach, called MCS, to
conducting memoized search for effective test configurations
based on the memoization for the explored ones during the on-
the-fly compiler-testing process. Specifically, it adopts multi-
agent RL for memoized configuration search, which also
intelligently seizes mutual effects among options, so as to
more efficiently explore the input space (especially the space
involving bug-triggering test programs). It considers both
diversity among configurations and testing results under each
explored configuration as the reward to measure the quality
of each configuration, thus guiding the construction of better
test configurations in the follow-up process. Note that MCS
does not use test coverage as the guidance since collecting
coverage can incur more extra costs and the existing work has
demonstrated that the test programs detecting more bugs do
not improve line, branch, function coverage significantly [11].

In addition, there are a number of options in a test con-
figuration and an option has a large value range. The huge
configuration space and complex mutual effects among options
can promote the generation of bug-triggering test programs,

but it may also lead to the generation of negative-effect test
programs for compiler testing. For example, it may generate
the test program running for an extremely long time, which
has negative effect on the performance of compiler testing as
demonstrated in the existing study [22]. Hence, we carefully
investigate options’ negative effect via a preliminary study,
and then incorporate it into our designed reward function.

Figure 2(a) shows the overview of MCS. Next, we introduce
the diversity measurement used in MCS in Section III-A.
Then, we present our investigation of options’ negative effect
in Section III-B. Finally, we describe the whole process of
memoized configuration search via multi-agent RL by utilizing
the above two components in Section III-C.

A. Diversity Measurement

Measuring diversity among test configurations aims to guide
the search process for test configurations with different testing
capabilities. The testing capability of a test configuration is
actually embodied by the generated test programs under the
configuration. Hence, following the existing work [13], MCS
measures diversity among test configurations by measuring the
diversity among test programs generated under different con-
figurations. Specifically, MCS extracts the program features
controlled by a test configuration from each test program,
and represents them as a feature vector, each element in
which is the number of occurrence times of the corresponding
program feature in the program (e.g., the number of goto
statements). There may be a portion of dead code in the
program, but MCS does not distinguish them as dead code has
been demonstrated to be also useful for compiler testing [21].
Then, MCS calculates diversity based on the feature vectors.

As a test configuration controls test-program generation in
a probabilistic way, only one generated test program under
the configuration cannot represent the testing capability of the
configuration. Hence, by adopting the practice in the existing
work [13], MCS uses a set of generated test programs under a
configuration to statistically represent the testing capability of
the configuration. As the generated test programs under a con-
figuration tend to concentrate on an area of input space, MCS
calculates the average feature vector of the set of test programs
to represent the testing capability of the test configuration, and
then measures the diversity based on those average feature
vectors. In particular, to reduce the influence of different
scales for different features, MCS processes the set of feature
vectors for the generated test programs under a configuration
via the widely-used standardization [38]. Then, MCS adopts
cosine similarity to measure the distance between two test
configurations (denoted as cx and cy), i.e., Dist(cx, cy) =
1 − cosine(Vx, Vy) (Vx and Vy are corresponding average
feature vectors for cx and cy). Please note that in the remaining
of this paper, the distance/diversity between test configurations
refers to that between corresponding average feature vectors.

B. Investigation on Options’ Negative Effect

Regarding options’ negative effect, we consider the genera-
tion of the test programs running for an extremely long time.
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Fig. 2. An illustration of the framework and key component of MCS.

This is because as demonstrated in the existing study [22],
such test programs have negative effect in the efficiency of
compiler testing, which is the most important factor on the
overall performance of compiler testing. Hence, effectively
reducing the generation of such test programs is important.
Here, we assume that the generation of such test programs
is relevant to the extreme values of options. When setting an
option to its extreme value, its controlled program feature has
a quite large probability to be accepted at each decision point
during the generation process. If there are a large number of
options that are set to their extreme values, it is very likely to
cause the combinatorial explosion of program features, leading
to the lengthy generation time and the generation of very large-
scale test programs that tend to run for an extremely long time.
That is, the above negative effect could be aggravated as the
number of options set to extreme values increases.

To investigate whether our assumption really holds, we con-
ducted a preliminary study based on GCC-4.5.0 and Csmith. In
the study, we set w% of options to the extreme values (refer-
ring to those larger than 95% and smaller than 5% of the upper
bound in MCS), where we considered w ∈ {10, 20, . . . , 100}.
For each w, we randomly selected w% of options, and for
each of them we randomly selected a value from the extreme
values as the setting of the option. Regarding the remaining
options (except the selected w% of options), we randomly set
their values (except the extreme values). After obtaining a test
configuration setting, we generated and ran 100 test programs
under the configuration, and recorded the time spent on each
test program. Following the existing work [13], we treated the
time of over 10 minutes as the long testing time, and regarded
those test programs with long testing time as negative-effect
test programs. For each w, we repeated the above process 100
times to obtain more significant results in statistics.

Figure 3 shows the result, in which the x-axis represents
the value of w and the y-axis represents the average number
of the generated test programs with long testing time across
the 100 repeated experiments. We found that, as w’s value
increases, more test programs have long testing time in gen-
eral, confirming our assumption to a large extent. The result
indicates it is very necessary to consider how many options
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Fig. 3. Option’s negative effect results.

are set to their extreme values during the search process of
MCS for test configurations. Indeed, we consider this factor
in our designed reward function (Section III-C). In current
MCS, we incorporate options’ negative effect from the view
of the number of options set to their extreme values. There
may be more advanced methods to consider the effect, and
we discuss it in Section VII-B as our future work.

C. Multi-Agent RL based Test Configuration Construction

Based on the above components, MCS adopts multi-agent
RL (i.e., multi-agent A2C) to guide the memoized-search pro-
cess of test configurations during on-the-fly compiler testing.
As it is important to learn the elaborate coordination among
options and each option can be set individually, we assign
each option an agent to separately and flexibly determine
the action that it will take on each option at each time step
during the learning process. Suppose a test configuration c is
represented as c = {o1, o2, . . . , or}, where ok (1 ≤ k ≤ r)
is the setting of the kth option in c and r is the number of
options, and the agent for option ok is denoted as agentk,
whose state is represented as skt and action that can be taken
as akt ∈ Ak at a certain time step t. Then, the learning
task is, for each agentk, to predict a sequence of actions
⟨ak1, ak2, . . . , akt, . . . , akT⟩ on option ok as correspondence,
which can produce the largest cumulative reward regarding all
the agents. As aforementioned that different options may have
mutual effect, to capture such relations among them, we make
the states of different agents shared. That is, when predicting
the next action that an agent will take, it can observe the



states of all the agents (i.e., the settings of all the options),
i.e, ∀k ∈ [1, 2, . . . , r], skt = ct = {o1t, o2t, . . . , ort}, where skt

denotes the state of agentk at time step t, while ct denotes
the whole test configuration at time step t. In this way, each
agent can make the best choice of actions from a global view.
In our scenario, different agents have the same set of actions
A, which refers to a set of operations on the current value of
an option, including +δ (adding δ to the current value), −δ
(subtracting δ from the current value), and keeping the current
value unchanged. Please note that if the option’s value exceeds
its bounds, we set it to the corresponding boundary value.

Following the framework of A2C, MCS builds ANN and
CNN for each agentk (1 ≤ k ≤ r). At a certain time step
t, ANN predicts the probability distribution of actions based
on learned knowledge from the memoization for explored
configurations and then chooses an action akt for agentk to
be performed, while CNN predicts the potential reward to
be accumulated after applying akt. Finally, according to the
predicted rewards and actual rewards obtained after applying
predicted actions to agentk for all k ∈ [1, 2, . . . , r], MCS
updates ANN and CNN for each agent based on an advantage
loss function, and then all the agents move to a new state, i.e.,
a new test configuration is constructed under the guidance of
RL for the test-program generation. With the search process
proceeding, more accurate ANN and CNN can be built based
on the memoization for more explored configurations, and thus
it can be more likely to generate an effective test configuration
for improving compiler testing at each time step.

Next, we introduce the design of actual reward measurement
and advantage loss function applied by MCS.

1) Actual Reward Measurement: A well-designed reward
function is vital for RL, as it directly drives the learning
process and guides the exploration of search space. Indeed,
designing an effective reward function in RL to solve a specific
task is challenging. In MCS, we consider three components in
its reward function, including diversity component (discussed
in Section III-A), extreme value punishment (discussed in
Section III-B), and bug-triggering award. Figure 2(b) shows
the overview of our actual reward measurement.
Diversity component. MCS considers the diversity among
test configurations to more efficiently explore the input space,
especially the space involving bug-triggering test programs.
It is the key component in our designed reward function.
The diversity of the current configuration ct at time step t
in MCS is measured by the average distance between ct and
the explored configurations. As presented in Section III-A,
the distance/diversity between test configurations refers to that
between the corresponding average program-feature vectors.
As the explored configuration space could be larger and larger,
there may be outliers that can dominate the average distance,
and thus MCS calculates the average distance between ct and
a set of closest explored ones (rather than all the explored
ones) as the approximation, which is defined as Formula 1.

divt =
1

|Ch|
∑

ci∈Ch

Dist(ci, ct) (1)

where Ch is a set of explored test configurations that are
closest to ct, i.e., assuming Ct is the set of all the explored
test configurations, ∀ci ∈ Ch, cj ∈ Ct \ Ch, Dist(ci, ct) ≤
Dist(cj , ct). Dist(·) is the distance between two test config-
urations (i.e., two corresponding average feature vectors for
the sets of generated test programs) defined in Section III-A.

To avoid the exploration of test configurations falling into
local optimum, we expect the configurations explored within
a relatively short time interval are also diverse and the search
process always proceeds towards a good direction. Hence,
MCS further calculates the average improved diversity for
ct over m configurations with the closest time (i.e., learning
steps) to ct: Rdiv

t = 1
m

∑m
i=1(divt − divt−i). The average

improved diversity is regarded as the diversity component in
the reward function of MCS, which facilitates the efficient
exploration of a wider range of test configurations.

Extreme value punishment. Although larger diversity helps
explore diverse test configurations and leads to more bug-
triggering test programs, it may increase the risk of producing
unexpected ones, which could generate negative-effect test
programs (i.e., those running for an extremely long time) for
compiler testing. As explained in Section III-B, the number of
options set to extreme values has correlations to the generation
of negative-effect test programs. To avoid the generation of
such test programs, we should give a punishment for the
test configurations, in which many options are set to extreme
values. Specifically, when there are more than q% options that
are set to their extreme values in a test configuration, MCS
gives a punishment λ to it, i.e., Rneg

t = λ, otherwise 0.

Bug-triggering award. Our goal is to generate bug-triggering
test programs during the memoized search process for effective
test configurations. The bug-triggering test programs also re-
veal the bug-triggering coordination among options, indicating
that the corresponding portion of space is more likely to be
bug-triggering and thus deserves more exploitation. Hence,
if there are bug-triggering test programs generated under a
configuration, we should give an award to it. We define the
bug-triggering award in MCS as Rtrg

t = ω ∗ nf , where ω is
a constant coefficient and nf is the number of bug-triggering
test programs generated under the configuration ct.

With the above three components, we obtain the reward
function in MCS: Rewardt = Rdiv

t +Rneg
t +Rtrg

t .
2) Advantage Loss Function: At a certain time step t, the

actual reward can be measured as above after applying the
current test configuration ct to generate a set of test programs.
The corresponding estimated reward can be predicted by CNN.
According to the actual and predicted rewards, we design our
advantage loss functions for ANN and CNN, respectively.
As ANN and CNN are independently maintained for each
agent, to reduce computational overhead and boost the learning
procedure, we adopt a d-step updating strategy, which has
been demonstrated to be efficient and effective by the existing
study [19]. That is, ANN and CNN will be updated each
time after d consecutive actions are predicted for all agents.
Formulae 3 and 4 define the advantage loss functions for ANN



and CNN after each round of action prediction for agentk
respectively, where 1 ≤ k ≤ r and r is the number of agents.

Rk(t) = Rewardt + γRk(t+ 1) (2)

LANN
k (t) = logPθk (sk(t+1)|skt, akt)(Rk(t)− Vφk (skt)) (3)

LCNN
k (t) = (Rk(t)− Vφk (skt))

2 (4)

In these formulae, Pθk(sk(t+1)|skt, akt) denotes the transi-
tion probability of choosing action akt under state skt, which is
predicted by ANN under parameter θk, while Vφk

(st) denotes
the predicted reward by CNN under parameter φk. γ is a global
discount factor for incorporating current and future rewards.
Hence, at each time step t0 per d-step (i.e., t0 = d∗n, n ∈ N),
the network parameters of all agents will be updated by the
accumulated gradients accordingly based on Formulae 5 and
6, where η is the learning rate. Here, Rk(t0+d) = Vφk

(st0+d)
for each t0 for the computation of Formula 2.

θk = θk + η

t0+d∑
t=t0

∂LANN
k (t)

∂θk
(5)

φk = φk + η

t0+d∑
t=t0

∂LCNN
k (t)

∂φk
(6)

IV. EXPERIMENTAL STUDY DESIGN

In the study, we address the following research questions:
• RQ1: How does MCS perform in detecting compiler bugs

compared with state-of-the-art approaches?
• RQ2: How does MCS perform under different configu-

rations?

A. Subjects

In our study, we used two popular C compilers as subjects,
i.e., GCC and LLVM, following the existing studies [11], [17],
[21], [22], [39]. Specifically, we adopted the widely-studied
versions in existing compiler-testing studies, including three
versions of GCC (i.e., GCC-4.4.0, GCC-4.5.0, and GCC-4.6.0)
and two versions of LLVM (i.e., LLVM-2.8 and LLVM-4.0)
for the x86 64-Linux platform. Here, we used these historical
versions as they usually contain more bugs and can provide
more significant results in statistics. To investigate whether
MCS still works on newer versions, we also applied it and
compared approaches to test the latest trunk revisions of both
GCC and LLVM1 following the existing studies [21], [40].

B. Tools and Configurations

In our study, we used the most widely-used test-program
generator, i.e., Csmith [11], as the studied one. Its test config-
uration contains 71 options. It takes a configuration file that
provides the value of each option as input and produces a
C program according to the configuration as output. Csmith
has some heuristics and safety checks to avoid undefined
behaviors. Its generated test program does not require external

1The IDs of trunk revisions under test are from 1afa4fa to bb6194e for
GCC and from a048ce1 to ae0e037 for LLVM.

inputs and its output is a checksum of the non-pointer global
variables at the end of program execution.

We implemented MCS atop PyTorch [41]. We set the default
settings of MCS’s parameters based on a small experiment: the
sizes of test configurations considered for diversity measure-
ment are |Ch|=10 and m=10; the step for model updating is
d-step=10; the threshold and punishment of extreme options
are q%=30% and λ=-2; the coefficient in bug-triggering award
is ω=4; and the action of δ is 5, the discount factor γ is
0.9, the learning rate is 0.01. Also, Csmith generates 100 test
programs under each configuration for testing. We investigated
the influence of main parameters on the performance of MCS
in Section V-B.

To determine whether a test program triggers a compiler
bug, we adopted differential testing [24] as the test oracle.
If a test program produces different outputs after execution
under different optimizations of a compiler (e.g., -O0, -O1,
-O2, -O3, and -Os in GCC), it means it triggers a bug in
the compiler. Here, we left out non-terminating test programs
by setting a timeout (i.e., 60 seconds).

All the experiments were conducted on a workstation with
a 72-core CPU, 126G memory, and CentOS Linux release 7.8
operating system. In particular, it took us over eight months
to run our experiments.

C. Compared Approaches

MCS is a test-program generation approach via memoized
configuration search, and thus we compared it with the existing
approaches that also explore test configurations for better
test-program generation. As presented in Section II-A, there
are two categories of approaches, and thus we chose the
state-of-the-art approach in each category for comparison,
i.e., HiCOND and swarm testing (abbreviated as Swarm in
this paper). HiCOND is an offline approach, which infers a
set of test configurations by mining historical bugs [13]. As
the implementation of HiCOND is open-source, we directly
adopted their implementation. Swarm is an online approach,
which randomly generates a test configuration before the
generation of each test program [14]. Specifically, it randomly
assigns a valid value to each option in a test configuration.

In RQ2, we first investigated whether extreme value pun-
ishment and bug-triggering award in our reward function are
helpful for compiler testing. To answer it, we constructed two
variants for comparison, i.e., MCS− removing the item of
Rneg

t from the reward function in MCS and MCS+ removing
the item of Rtrg

t . We did not construct the variant removing
the diversity component as it is the key component in MCS.
Then, we investigated the influence of two main parameters in
MCS, i.e., |Ch| and m for diversity measurement, by studying
|Ch| ∈ {5, 10, 15, 20} and m ∈ {5, 10, 15, 20}, respectively.
In this RQ, we keep the default settings for other parameters.

D. Measurements

Following the existing work [13], [17], we used the number
of detected bugs within the same testing period to measure
the performance of test-program generation approaches. Same



TABLE I
NUMBER OF DETECTED BUGS

Approach GCC LLVM Total4.4.0 4.5.0 4.6.0 2.8 4.0

MCS 38 17 4 13 2 74
HiCOND 16 8 3 8 1 36

Swarm 13 0 0 5 0 18

as the existing study [13], we tested each subject using each
approach for 10 days, and adopted Correcting Commit [22] for
de-duplication to identify the number of detected bugs from
a set of bug-triggering test programs. Specifically, for each
bug-triggering test program, it searches for the first commit
making the program pass. If the same correcting commit is
found for two bug-triggering test programs, we regard that the
two programs trigger the same bug. This method may be a
threat to our study. However, it is the only automatic method
to measure the number of detected bugs and its accuracy has
been demonstrated by the existing study [22], and thus this
threat may be not serious.

In addition, we applied these approaches to test the latest
trunk revisions of both GCC and LLVM. All the bugs detected
in this experiment are new bugs, and thus Correcting Commit
is not applicable. For these bugs, we submitted bug reports to
developers, and then determine the number of detected new
bugs according to the developers’ feedback.

E. Process

To answer RQ1, we applied MCS, HiCOND, Swarm to
test each subject for 10 days, respectively. During the testing
process, we recorded the testing result for each test program.

To answer RQ2, we applied MCS− and MCS+, as well
as MCS with different configurations of |Ch| and m to test
each subject, respectively. As the testing process lasts 10 days
each time, leading to huge time cost on running them for all
the subjects, in this RQ we used GCC-4.5.0 and LLVM-2.8
as the representative. Similarly, we recorded the testing result
for each test program.

V. RESULTS AND ANALYSIS

A. RQ1: Performance of MCS

1) Number of Detected Bugs: Table I shows the number
of detected bugs by each studied test-program generation
approach during the same testing period (i.e., 10 days). We
found that MCS detects the largest number of bugs among
the three approaches on each subject. In total, MCS detects
74 bugs while HiCOND and Swarm detect 36 and 18 bugs
respectively. The improvements of the former over the latter
two are 105.56% and 311.11% respectively, demonstrating the
superiority of MCS in detecting compiler bugs.

We further analyzed various relations among the bugs
detected by the three approaches. We used Venn diagrams as
shown in Figure 4 to illustrate the relations. For example, in
Figure 4(a) the number of unique bugs (which refer to the

TABLE II
DETAILS OF DETECTED NEW BUGS

Subject ID Symptom Component Status

GCC 97980 wrong code tree-optimization Confirmed
GCC 99296 crash tree-optimization Fixed
GCC 101080 wrong code tree-optimization Fixed
GCC 101062 wrong code middle-end Fixed
GCC 101009 wrong code tree-optimization Fixed
GCC 101249 crash tree-optimization Fixed
GCC 101594 crash rtl-optimization Confirmed
GCC 102565 crash tree-optimization Fixed
GCC 102627 wrong code rtl-optimization Fixed
LLVM 48778 wrong code — Fixed
LLVM 48812 crash loop-optimization Fixed
LLVM 48871 crash — Confirmed
LLVM 49105 wrong code — Fixed
LLVM 51903 crash back-end Fixed
LLVM 51907 wrong code — Fixed
LLVM 52023 crash — Fixed

bugs that can be detected by only one approach) detected by
MCS, HiCOND, and Swarm on GCC-4.4.0 is 22, 4 and 3,
respectively. In particular, Figure 4(f) shows the overall results
for all the subjects. We found that MCS detects the largest
number of unique bugs, i.e., 44, while HiCOND and Swarm
detect 10 and 3 unique bugs, respectively. In particular, among
the bugs detected by MCS, 59.46% (44 out of 74) of them are
unique. The results demonstrate the significant unique value
of MCS in detecting compiler bugs.

HiCOND and Swarm can detect some unique bugs, indi-
cating these approaches can complement each other to some
degree. The reason why HiCOND detects unique bugs may
be that it uses a fixed set of configurations inferred offline for
compiler testing, which makes it focus on a certain portion of
input space. During the given testing period, it can exploit the
portion of space more sufficiently, while MCS explores larger
input space in an online way and thus may not sufficiently
exploit the space focused by HiCOND, resulting in the missing
of some bugs. Regarding the unique bugs detected by Swarm,
the reason mainly lies in it can explore a certain portion of
input space missed by MCS due to no guidance during the
search process of Swarm. As only 4 bugs detected by Swarm
are missing to be detected by MCS, it indicates our guided
search process is relatively sufficient for compiler testing.
Overall, MCS reaches a good balance between exploration and
exploitation of the input space during a given testing period.

Besides, we found that all the approaches have the same
phenomenon (i.e., effectiveness drops on GCC-4.6.0), and the
reason may be this version has been immune to the underlying
Csmith to some degree. The similar phenomenon was also
observed in the existing work [40]. Nevertheless, MCS still
outperforms the compared approaches and detects many new
bugs in the latest revisions of GCC and LLVM (presented in
Section V-A2), demonstrating that MCS could further activate
the bug-triggering capability of the underlying tool.

2) Number of New Bugs Detected by MCS: Following
the existing studies [21], [40], we applied MCS to test the



(a) GCC-4.4.0 (b) GCC-4.5.0 (c) GCC-4.6.0 (d) LLVM-2.8 (e) LLVM-4.0.0 (f) Total

Fig. 4. Number of unique bugs.

1 struct {
2 signed a : 1;
3 } b, c;
4 void d() {
5 b.a|=c.a|=0!=2; }
6 int main() {}

(a) GCC bug (ID: 99296)

1 static int a = -1L;
2 int b;
3 int main() {
4 b=a>0&&(-214748364

-1)/a?0:a;
5 }

(b) LLVM bug (ID: 48778)

Fig. 5. Example test programs that trigger new bugs.

latest trunk revisions of GCC and LLVM for three months,
to investigate whether MCS works on the latest compiler
versions. Table II shows the details of detected new bugs by
MCS, including bug ID, bug symptom, bug-occurring compiler
component labeled by developers, and bug status. In total,
MCS successfully detected 9 new bugs from GCC and 7 new
bugs from LLVM, all of which have been confirmed or fixed
by developers. These bugs involve both crash and wrong code
(producing unexpected outputs without crash) symptoms in
several different compiler components, confirming that MCS
can detect diverse bugs. Although most existing studies do
not run compared approaches on the latest compiler revisions
for comparison due to the very long running time [21], [40],
we still applied HiCOND and Swarm to the same revisions
for sufficient comparison. As this experiment is too costly,
we ran each compared approach for one month, and we found
both Swarm and HiCOND cannot detect any bugs on the same
revisions, but MCS detects 5 bugs (all of them have been fixed)
during one-month testing. The possible reason for HiCOND
is that its inferred configurations based on historical bugs are
limited on the latest revisions, while that for Swarm lies in its
low efficiency for exploring the huge space.

To better understand the detected bugs, we present two
example bugs detected by MCS in Figure 5 (we simplified
the bug-triggering test programs and conditions to facilitate
developers’ understanding). In the first case (Figure 5(a)),
the latest GCC-11.0.1 compiler failed to compile it with the
options of “-fno-tree-bit-ccp -Os” due to signed 1-
bit precision by the code of “a:1”. This bug is critical
with the severity of “P1” (the highest severity in GCC), and
is regarded as “nightmare to deal with” by the developer.
Similarly, the second test program (Figure 5(b)) crashed the
compiling process with LLVM-12.0.0, which is caused by an
incorrect if condition for checking if a denominator is “-1”.
The results further demonstrate the performance of MCS.

(a) w/o extreme value punishment. (b) w/o bug-triggering award.

Fig. 6. Comparison between MCS and its variants.
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Fig. 7. Results of MCS under different configurations.

B. RQ2: Performance of Different MCS’s Configurations

We first investigated the contribution of extreme value
punishment in MCS by comparing it with MCS−. Figure 6(a)
shows the results. From this figure, 16 bugs detected by
MCS cannot be found by MCS−, indicating the necessity
of considering extreme value punishment. Then, we explored
the contribution of the bug-triggering award by comparing
MCS with MCS+. The result is shown in Figure 6(b). From
Figure 6(b), the bug-triggering award contributes to 18 more
unique bugs detected by MCS, demonstrating its significant
contribution. However, MCS− and MCS+ detected additional
4 and 7 bugs that MCS fails to detect, respectively. The
results reflect the effectiveness of the diversity measurement
in MCS, which can still guide the search process and lead
to a suboptimal result even without incorporating extreme
value punishment and bug-triggering award. In summary, both
components largely contribute to the performance of MCS.

Finally, we explored the influence of |Ch| and m, which
affect the diversity measurement, one key component in MCS.
We conducted a series of controlled experiments for each
setting of |Ch| ∈ {5, 10, 15, 20} and m ∈ {5, 10, 15, 20}.
Figure 7 shows the total number of bugs detected on the
studied compilers (i.e., GCC-4.5.0 and LLVM-2.8). From the
figure, although the results vary under different configurations,
MCS almost always outperforms the compared approaches as
shown in Table I (HiCOND detected 8 and Swarm detected 5
bugs on GCC-4.5.0 and LLVM-2.8), except for the case where
m = 5. The results further demonstrate MCS is more effective



for exploring diverse test configurations that lead to bug-
triggering test programs than existing approaches. Regarding
the performance drop when m = 5, the major reason is that too
small m can make MCS fall into local optimal as only limited
number of local configurations considered can be insufficient.
In summary, MCS stably outperforms existing approaches
under different configurations, and our default settings for
the parameters are indeed proper, making MCS promising for
practical use with little effort on determining its parameters.

VI. INDUSTRY APPLICATION

MCS has been successfully deployed by a global IT com-
pany (i.e., Huawei) to test their in-house compiler, which is a
high-performance and easy-to-expand C compiler for general-
purpose processor architectures. Due to the company policy,
we hide the compiler name. For ease of presentation, we call
the compiler C. C has been developed for over two years and
six versions have been released in Huawei. The scale of C
is more than 6 million SLOC (source lines of code). Many
of their products are built on top of this compiler, and thus
guaranteeing its quality is an urgent demand for them.

We reported the results of the industry evaluation by deploy-
ing MCS to test the latest version of C for ten days. In total,
MCS detects 10 bugs and all of them have been confirmed
by developers. These bugs include 1 crash bug that makes
the compiler crash when compiling the test program, 9 wrong
code bugs that produce inconsistent outputs when compiling
and executing the test programs under different optimizations.
We also applied the compared approaches (i.e., HiCOND and
Swarm) to test C for ten days. HiCOND detects 5 bugs and
Swarm detects 4 bugs, and all of these bugs are detected by
MCS. However, 5 bugs detected by MCS cannot be detected
by both HiCOND and Swarm during the same testing time.
The results confirm the practical value of MCS.

VII. DISCUSSION

A. RL vs Conventional Search Algorithms

MCS adopts the state-of-the-art multi-agent RL to cap-
ture implicit and complex coordination among options for
guiding the effective generation of test programs. Actually,
there are some conventional search algorithms (e.g., Genetic
Algorithm [42] and PSO [43]) that can be also adopted to fit
our task. Hence, we investigated whether using such simple
algorithms is enough or adopting advanced RL is necessary.

To answer it, we implemented a variant of MCS (called
MCSpso), which uses PSO to guide the online search process
instead of RL by taking our reward function as its fitness
function. The reason why we chose PSO is that it is effective
to search in a continuous space [43] and has been used in
some testing tasks [13], [44], [45]. Following the framework
of PSO, MCSpso treats a test configuration as a particle,
and guides a set of particles to fly towards the direction of
larger fitness values. For fair comparison, MCSpso keeps the
same settings as MCS except the search algorithm. Regarding
the parameters in PSO, it uses the settings provided by the
existing work [13], [44]. Then, we conducted an experiment

to compare MCS with MCSpso by taking GCC-4.5.0 and
LLVM-2.8 as the representative (same as Section V-B). During
10-day testing, MCS detects 17 and 13 bugs on GCC-4.5.0
and LLVM-2.8.0 respectively, while MCSpso detects 4 and 8
bugs, demonstrating incorporating state-of-the-art RL makes
significant contributions to the performance of MCS.

Besides, we compared RL in MCS with the conventional
machine learning algorithm by adapting the XGBoost algo-
rithm [46] to an online learning style. The results also confirm
the significant superiority of RL. Due to the space limit, we
put the comparison details at our project homepage [47].

B. Extension of MCS

First, we investigated the options’ negative effect via a
preliminary study and considered it in our reward function
according to the finding. Also, multi-agent RL can implicitly
learn mutual effects among options via interactions among
agents. In the future, we can adopt machine learning to model
mutual effects more systematically (e.g., building a model to
predict whether a configuration can mostly generate negative-
effect test programs), which may avoid low-quality configura-
tions more sufficiently and thus further improve MCS.

Second, we will extend MCS to other software with com-
plex test inputs in the future. Although MCS is proposed and
evaluated based on C compilers, there is no characteristic in
MCS specific to C compilers. That is, the idea of MCS is
general. Applying it to other software has two conditions: 1)
there are test input generators that can be controlled by a test
configuration; 2) there are features that can be extracted from
test inputs relevant to the options in the configuration. Hence,
it is easy to extend MCS to the software with complex test
inputs (e.g., the compilers for other programming languages
and browsers), as it is very likely for their test inputs to
contain various features and there are many such fuzzing
tools for them, e.g., CLsmith [12] for OpenCL compilers and
jsfunfuzz [48] for JavaScript engines.

Besides, the current implementation of MCS is based on
Csmith and it may inherit the limitations of it. For example,
it cannot generate invalid test programs and thus can miss to
detect some bugs as demonstrated by the existing work [49].
In the future, we can extend MCS on the test generator that
can generate invalid test programs, to further improve its
effectiveness.

C. Threats to Validity

The threats to internal validity mainly lie in the imple-
mentations of MCS and experimental scripts. To reduce this
kind of threat, two authors carefully checked all our code via
code review and designing test cases. In our study, we found
there are some differences on the performance of HiCOND
and Swarm between our obtained results and the results
reported by their original papers. The main reasons lie in 1)
different running environments, and 2) more strictly filtering
out undefined behaviors as suggested by compiler developers.

The threat to external validity mainly lies in the used test-
program generator. We used Csmith following the existing



work [13], [14]. Although it may not represent other tools,
this kind of threat may be not serious as 1) Csmith is the most
widely-used one in C compiler testing; 2) It is the only test-
program generator used in the existing studies [13]–[15]; 3)
Many recent tools are adapted from it, such as CLsmith [12].

The threats to construct validity mainly lie in randomness
and parameters’ settings. There exists randomness caused by
the test-program generator and the inherent characteristics
of these approaches. Following the existing studies [13],
[22], we used a long testing period to reduce this threat
instead of repeating our experiments several times. During
the long testing period, MCS generates 78,637 to 151,922
test programs for these subjects. To reduce the threat from
the parameters’ settings in MCS, we presented the specific
settings in Section IV-B and investigated their influence in
Section V-B. Based on our results, the current settings make
MCS achieve stable effectiveness across different subjects, and
thus we released them as the default settings in MCS.

VIII. RELATED WORK

Compiler Testing. Over the years, many compiler testing
research projects have been conducted [3], [12], [15], [50]–
[53]. The most related to our work is test-program genera-
tion, especially those based on test configurations. Besides
our studied Csmith [11] and our compared approaches, i.e.,
HiCOND [13] and swarm testing [14], Rabin and Alipour [16]
extracted insights from historical bug reports about error-
prone language features to produce test configurations, in order
to guide test-program generation. Also, Alipour et al. [15]
proposed directed swarm testing that uses statistics and a
variation of random testing to produce test programs focusing
on a given compiler code element. We did not compare with
it as its purpose of producing test programs is to increase the
covering frequency for a given small part of compiler code,
which is not aligned with ours, i.e., sufficiently exploring the
whole input space.

Besides, Le et al. [21] introduced equivalent modulo inputs
(EMI) for testing compilers, which produces equivalent test
programs under certain test inputs. MCS is orthogonal to
EMI-based approaches, as MCS can provide original test
programs and then EMI-based approaches can produce equiv-
alent programs based on them for compiler testing. MCS is
also orthogonal to grammar-based test-program generators (if
they rely on test configurations to generate test programs like
Csmith), as it can help them construct better configurations.
RL in Software Testing. RL has gained great success in
many scenarios [54]–[62], and researchers also applied them in
software testing tasks. For example, Kim et al. [63] presented
QTIP that uses Q-learning to generate test inputs for small C
programs. Recently, RL was used for testing some domain-
specific applications [64]–[70]. For example, Pan et al. [71]
proposed a curiosity-driven exploration strategy based on RL
to guide automated Android testing. Pan et al. [62] proposed
a delay-based hardware Trojan detection method, which uses
RL to generate tests for triggering rare switches. Different

from them, we are the first to employ RL for compiler test-
program generation. In particular, we incorporated the multi-
agent framework of A2C in MCS, different from their used
RL algorithms.

IX. CONCLUSION

We proposed a novel compiler test-program generation
approach, called MCS, which conducts memoized search via
multi-agent RL for guiding the construction of effective test
configurations by incorporating three kinds of configuration
characteristics, i.e., diversity, options’ negative effects, and the
ability to produce bug-triggering programs, for reward mea-
surement. Our results demonstrated MCS largely outperforms
the state-of-the-art compared approaches. In particular, MCS
detected 16 new GCC and LLVM bugs, all of which have
been confirmed/fixed by developers. MCS has been deployed
by Huawei for testing their in-house compiler.
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