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Abstract—Defective chips may cause huge losses (even disasters),
and thus ensuring the reliability of chips is fundamentally
important. To ensure the functional correctness of chips, adequate
testing is essential on the chip design implementation (CDI),
which is the software implementation of the chip under design
in hardware description languages, before putting on fabrication.
Over the years, while some techniques targeting CDI functional
testing have been proposed, there are still a number of hard-to-
cover functionality points due to huge input space and complex
constraints among variables in a test input. We call the coverage
of these points last-mile functional coverage.

Here, we propose the first technique targeting the significant
challenge of improving last-mile functional coverage in CDI
functional testing, called LMT, which does not rely on domain
knowledge and CDI internal information. LMT first identifies
the relevant variables in test inputs to the coverage of last-mile
functionality points inspired by the idea of feature selection in
machine learning, so as to largely reduce the search space. It then
incorporates Generative Adversarial Network (GAN) to learn to
generate valid test inputs (that satisfy complex constraints among
variables) with a larger possibility. We conducted a practical
study on two industrial CDIs in Huawei to evaluate LMT. The
results show that LMT achieves at least 49.27% and 75.09%
higher last-mile functional coverage than the state-of-the-art CDI
test input generation techniques under the same number of test
inputs, and saves at least 94.24% and 84.45% testing time to
achieve the same functional coverage.

Index Terms—Chip Design Testing, Test Generation, Functional
Coverage, Machine Learning

I. INTRODUCTION

In the present age, chips are one of the most important
infrastructures, which enable the rapid development of new
technology, e.g., artificial intelligence [1] and 5G connectiv-
ity [2]. Undoubtedly, reliable chips are very crucial; otherwise
grave losses of life and property may be caused [3]–[5]. For
example, a bug in Intel’s Pentium processors made the computer
miscalculate long division and thus cost Intel hundreds of
millions of dollars in recalling defective chips [3]. To ensure
the quality of chips, one of the most critical tasks is to ensure
that the design of a chip conforms to the specification before
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expensive fabrication in industry. Specifically, developers first
implement the chip design into a software program in a hard-
ware description language, called chip design implementation
(abbreviated as CDI in this paper). Then, testers conduct CDI
functional testing to check whether all functionalities are as
expected according to the specification [6]–[9]. That is, CDI
functional testing is quite critical for chip quality assurance.

In CDI functional testing, a test input aims to simulate
a user request during the chip use and can trigger some
functionalities (e.g., the switch of 5G connectivity is turned on)
of the CDI under test. A test input requires to set the values
for a set of variables that are responsible to control simulated
user requests. In this task, functional coverage is the most
concerned metric in practice, as it is essential to test all the
functionalities of a CDI before fabrication [8], [10]–[12]. Here,
we call the functionalities to be covered functionality points,
a group of functionality points sharing common properties
functionality group, and the percentage of covered functionality
points over all functionality points functional coverage. Both
functionality points and functionality groups are declared in
CDIs by developers [8]. That is, the core goal of CDI functional
testing is to achieve high (ideally full) functional coverage.
However, with the rapid increase of CDI complexity, achieving
high functional coverage becomes much harder. As shown in
the existing study [13], over 70% of time and resources in
chip design are spent on CDI functional testing. Therefore,
achieving high functional coverage efficiently can shorten the
process of CDI functional testing and reduce the cost of chip
design significantly.

Over the years, many test input generation techniques tar-
geting CDI functional testing have been proposed, e.g., search-
based [14]–[18] and deep-learning (DL) based techniques [19]–
[22] (introduced in Section VI). Although they can achieve
relatively high functional coverage within acceptable time,
there are still a number of hard-to-cover functionality points
(called last-mile functionality points). As demonstrated by our
motivating study in Section II-C, the first 90% functional
coverage of an industrial CDI can be achieved by running
less than 1,000 randomly generated test inputs, but the last



10% functional coverage requires to continue running more than
49,000 test inputs. Achieving the last-mile functionality points
often requires experts to manually design test inputs, which
usually takes a very long time, even more than half of the entire
chip-design time [13]. The reasons for the significant challenge
of covering last-mile functionality points are threefold:

• There are a large number of variables to be set in a test
input, many of which have a wide value range, leading to
enormous input space. For example, the input of a CDI
used in our study contains 575 variables, constituting the
input space with over 101025 settings.

• There are vast and complex constraints among vari-
ables [23], especially covering last-mile functionality
points involves much more strict constraints. For example,
the constraints of a CDI used in our study are defined by
more than 10K lines of source code and each constraint
often involves dozens of variables (with dependency).

• CDI functional testing prefers nearly black-box methods
in practice [7]. This is because CDI development teams
and functional testing teams are often independent of each
other, whose reasons include: (1) CDIs often have high
security levels in industry; (2) it can facilitate to test CDIs
as required rather than as programmed; (3) it can improve
the generality of testing methods and avoid high cost.

Overall, identifying test inputs satisfying those strict con-
straints from the huge input space in a nearly black-box
way is definitely difficult. Although there are some test input
generation techniques proposed for traditional software, they
are not applicable to CDI functional testing due to the following
reasons: (1) the scale of CDI input space is significantly
large (in industrial grade), which hinders the application of
many techniques (such as combinatorial testing [24]–[27]); (2)
many testing techniques are white-box (depending on program
internal information), e.g., symbolic execution [28]–[31] and
source-code-based fuzzing techniques [32]–[34]; (3) there are
few tools supporting the analysis of code written in hardware
description languages, which hinders the application of testing
techniques proposed/implemented for the software programmed
in high-level programming languages. More discussions on
traditional software testing techniques will be presented in
Section VI. Hence, achieving last-mile functional coverage is
still an open challenge in CDI functional testing.

In this work, we target the bottleneck problem in CDI
functional testing, i.e., achieving last-mile functional coverage,
so as to save experts’ efforts and speed up the whole CDI
functional testing process. Specifically, we propose the first
technique targeting last-mile functional coverage, called LMT
(Last-Mile Test generation), which does not rely on domain
knowledge and CDI internal information. Its key insight is
to reduce the search space for test inputs, and then identify
desirable test inputs (that have to satisfy complex constraints) in
the reduced space for efficiently covering last-mile functionality
points. Specifically, LMT identifies a small portion of most
relevant variables for each last-mile functionality group by
formulating this problem as the problem of feature selection

in machine learning (ML) [35]–[37]. It is more likely to
cover the functionality points in the functionality group by
sufficiently exploring the settings of these relevant variables.
To overcome the challenge of satisfying complex constraints
among variables, LMT incorporates Generative Adversarial
Network (GAN) [38] to learn constraints so as to construct
valid test inputs corresponding to the given settings of relevant
variables and thus make them indeed take effect. In this way,
LMT can generate effective and valid test inputs targeting
the last-mile functionality points efficiently, and thus largely
improve last-mile functional coverage.

To evaluate the effectiveness of LMT, we conducted a
practical study based on two industrial CDIs in an international
company (i.e., Huawei) that develops and designs a series
of widely-known chips. Due to the confidentiality policy of
Huawei, we hide the names of both CDIs. The experimental
results demonstrate the superiority of LMT over the state-
of-the-art test input generation techniques in terms of last-
mile functional coverage. Specifically, LMT covers at least
49.27% and 75.09% more last-mile functionality points than
the state-of-the-art techniques under the same number of test
inputs on the two CDIs, respectively. Also, LMT saves at least
94.24% and 84.45% testing time to achieve the same functional
coverage as the state-of-the-art techniques on the two CDIs,
respectively. In particular, the effectiveness of LMT has been
largely appreciated by Huawei and LMT has been deployed on
six CDIs in Huawei as the standard testing technique (replacing
the previous practice).

This work makes the following major contributions:
• We propose the first technique targeting last-mile func-

tional coverage in CDI functional testing, called LMT,
which does not rely on domain knowledge and CDI
internal information.

• We model the relevance between variables and a targeted
last-mile functionality group from the view of feature
selection, in order to identify the relevant variables for
covering the last-mile functionality points in this group.

• We adopt GAN to learn constraints among variables
involved in a test input, in order to have a larger possibility
to generate valid test inputs.

• We conducted a practical study on two industrial CDIs,
demonstrating the effectiveness of LMT. In particular,
LMT has been deployed in Huawei for practical use.

Note: The targeted problem of this work is a critical problem
in chip companies and definitely a software-engineering task
(as CDIs are also a kind of software). In fact, we are the
first to bring it to the software-engineering community, and
formulate this problem and its unique challenges from the
software-engineering view. We hope to attract more attention
and wisdom from this creative community to further solve this
challenging problem.

II. BACKGROUND AND MOTIVATION

A. Chip Design Implementation
Unlike traditional software that can be continuously devel-

oped and improved even though being deployed, the develop-
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Fig. 1: The general process of chip development

ment of chips is a one-off activity. Once designed chips are put
on fabrication, they cannot be further modified. The fabrication
is expensive, and thus defective chips can cause huge economic
losses. Hence, to ensure the reliability of chips, the testing of
designed chips before fabrication is very critical. Figure 1 shows
the general process of chip development. When providing the
chip requirements, chip developers first construct the formal
specification and then implement it into a software program in
a hardware description language (e.g., SystemVerilog), called
chip design implementation (CDI). Please note that CDI realizes
the same functionalities as the hardware chip under design
according to the given specification.

As the CDI is a program, it can be run and tested like tradi-
tional software. The difference is that it runs in a particularly
designed environment that simulates the usage conditions of
the hardware chip in practice (to be presented in Section II-B).
After sufficient testing, a CDI is synthesized into Netlist, a
machine-readable representation that contains corresponding
electronic components and their connections. Finally, the
physical layout of components is generated according to the
Netlist, which is ready for hardware production.

B. CDI Testing

As shown in Figure 1, the general CDI testing process mainly
contains three steps: test input generation, test execution by
a simulator, and test result analysis. When providing a valid
test input, the simulator can execute the CDI and report the
execution results. Note that functionality points are declared in
the CDI by developers and thus the simulator (e.g., Synopsys
VCS) can check which functionality points are covered by a
test input. Due to the complex chip functionalities, there are
vast and complex constraints among variables. The test inputs
violating the constraints are regarded as invalid. To make the
test inputs safe and meaningful, a builtin constraint checker of
the simulator is responsible to check the validity of test inputs
and can change invalid inputs to be valid via simple rule-based
modifications.

Figure 2 shows a simplified code snippet of constraints
from an industrial CDI used in our study, which is described
in SystemVerilog (which is a popular hardware description
language). We simplified the constraint for ease of illustration,
but in fact the constraints often involve dozens of variables
(with dependency). Here, mode and flag are two variables in
the test input. The constraints require that when flag equals

if (flag==0)\
mode inside {4,5,6}; \

else \
mode inside {1,2,3};

1
2
3
4

Fig. 2: An example of variable constraints in CDI
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Fig. 3: Functional coverage by random test generation

to 0, mode should be set in {4, 5, 6}; otherwise, in {1, 2, 3}.
Given t=(flag, mode) as the simplified input format of the
CDI, the input t0=(1, 3) is regarded as valid while t1=(0, 1)
as invalid. Then, the constraint checker modifies t1 to a valid
input t′1=(0, 4) according to the embedded rules before feeding
to the CDI for execution. Note that even though the embedded
rules can help make an invalid test input to be valid, they can
also limit the modified inputs to cover a fixed and limited set
of functionality points and thus negatively affect their testing
capability in improving functional coverage.

As CDI testing is responsible for the reliability of chips,
ensuring the adequacy of CDI testing is vitally important.
In traditional software testing, code coverage (e.g., statement
coverage) is widely adopted to measure test adequacy from
the perspective of code structure. However, due to the complex
chip functionalities, even though all statements have been
covered by test inputs, some functionalities (corresponding to
particular input settings) may be still untested, and possibly
perform improperly. For example, if a certain functionality is
missed to implement in the CDI, structural coverage cannot
discover it while functional coverage (that actually measures
the coverage of design intent from the perspective of functional
requirements) can. For CDI testing, it is essential to test all chip
functionalities [39]. Hence, functional coverage is widely-used
in practice [8], [10]–[12]. Here, we call the CDI testing that
aims to improve functional coverage CDI functional testing.
The key concepts (e.g., functionality points and functionality
groups) in CDI functional testing have been introduced in
Section I. Our work also focuses on CDI functional testing.

Note that chip developers manually construct a reference
model for checking the output correctness of each test input
on the CDI. It is also important to improve the test checking
process, but it is out of the scope of our work. Similar to
most of CDI functional testing work [10], [22], [40], our work
aims to improve functional coverage of the CDI under test, but
different from them, our work targets the open challenge of
improving last-mile functional coverage (Section II-C).

C. Last-Mile Functional Coverage

Due to the huge input space and complex constraints among
input variables, there are usually a number of functionality



points that are hard to be covered, even with the state-of-
the-art test input generation techniques (also confirmed in
Section IV). To clearly understand this challenging problem,
we conducted an experiment on an industrial CDI that includes
over 7,000 functionality points (called MA to be introduced
in Section IV). Specifically, we adopted the random test input
generation technique that is widely used in industry, to generate
test inputs, and then analyzed the achieved functional coverage.

Figure 3 shows the results, where the x-axis represents the
number of generated test inputs and the y-axis represents the
achieved functional coverage. From this figure, the first 1,000
test inputs have achieved 90.64% functional coverage, while
the subsequent 49,000 test inputs increase only 8.92% and
still cannot achieve full functional coverage in the end. That
is, during CDI functional testing, most of the time is spent
on achieving the last 10% functional coverage. We call those
hard-to-cover functionality points last-mile functionality points.
In practice, last-mile functionality points could be determined
by observing the growth curve of functionality points under
randomly generated test inputs. When the curve becomes
closely flat, the uncovered functionality points can be regarded
as last-mile functionality points.

As shown in our study (Section IV), even the most advanced
DL-based test input generation technique still suffers from the
unsatisfactory performance facing the last-mile functionality
points. In industry, extensive experts’ manual efforts have
to be devoted to designing effective test inputs for covering
them, which is labor-intensive and time-consuming. Hence, an
effective and efficient test input generation technique targeting
the last-mile functionality points is urgently desired.

III. APPROACH

We propose the first technique targeting last-mile functional
coverage in CDI functional testing, called LMT (Last-Mile
Test generation), which aims to efficiently achieve last-mile
functional coverage for saving experts’ manual efforts.

To overcome the enormous search space of test inputs, LMT
learns the relevance between input variables and each targeted
functionality group so as to identify the most relevant variables
to the group. In this way, testing can be more targeted by
focusing on exploring the settings for a small set of relevant
variables rather than all the variables, and thus the last-mile
functionality points in the group can be covered more efficiently.
In particular, we transform the problem of relevant variable
identification as the problem of feature selection in ML, and
solve it by building a ML model (i.e., Random Forest [41] in
LMT). To make the explored settings take effect to cover the
targeted functionality points, LMT needs to set the remaining
less relevant variables to make the generated input as valid as
possible. Here, LMT adopts a Generative Adversarial Network
(GAN) model to learn constraints among variables to complete
the task. Finally, we design a heuristic-based strategy to
combine the two components and guide the whole test input
generation process, so as to achieve the last-mile functional
coverage efficiently. Figure 4 shows the overview of LMT.
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Fig. 4: Overview of LMT

Please note that our work targets the coverage of last-mile
functionality points, and thus we first leverage the lightweight
random test input generation technique to generate a set
of test inputs for covering those easy-to-cover functionality
points, which is effective and efficient as shown in our study
(Section II-C) and also widely used in industry. Then, LMT
dedicates to those hard-to-cover functionality points (i.e., last-
mile functionality points), and takes these randomly generated
inputs as training data for building the ML and GAN models.

A. Relevant Variable Identification

As explained above, to overcome the enormous input space
and make the generated test inputs more targeted, i.e., covering
particular functionality points, LMT identifies the most relevant
variables for each last-mile functionality group (i.e., the group
containing the last-mile functionality points). The intention of
relevant variable identification is actually aligned with the idea
of feature selection in ML, which aims to identify the features
that make significant contributions to a given prediction task.
Here, we adopt the Random Forest (RF) method to model the
relevance due to the following reasons: 1) High interpretability.
Input features in the RF model are used to build branch
conditions in decision trees, where the importance of features
can be well explained as the ability of discrimination; 2) Great
performance. It has been widely used in feature selection tasks
due to its well-recognized effectiveness and high efficiency [42]–
[45], and it is also scalable to the large number of input
variables in our task. Please note that LMT is not specific to
RF and can be integrated with other feature selection methods.
In particular, we have conducted a preliminary experiment
to evaluate LMT under some other typical feature selection
methods (i.e., XGBoost [46] and Low Variance Filter [47]),
and the results confirm the superiority of RF in our scenario.
In the future, we will evaluate LMT under more advanced
feature selection methods (such as LASSO [37]). Next, we
introduce the relevance model building and relevant variable
identification process in detail.

Formally, we define G = {g1, g2, . . . , gn} as the set of
last-mile functionality groups of the CDI under test, where
gi = {p1i , p2i , . . . , p

mi
i } denotes the ith functionality group

that consists of mi functionality points. Different functionality
groups may include different number of functionality points,
and gi∩gj = ∅ if i ̸= j. Besides, we use V = {v1, v2, . . . , vd}



to represent the set of input variables of the CDI, and d is
the input length. Therefore, the target of the relevant variable
identification process in LMT is to pinpoint a subset of variables
Vgi ⊊ V for each gi ∈ G.

To build the relevance model via RF, LMT requires training
data. As mentioned before, it uses the randomly generated
inputs for covering easy-to-cover functionality points, denoted
as T = {t1, t2, . . . , tu} (each ti is composed by a set of
values corresponding to the variables in V), to construct
training data, and the functional coverage for the target
functionality group (denoted as gi) achieved by each test
input as the corresponding label. The functional coverage
can be automatically obtained by feeding the test input to
the simulator for execution. As our work targets last-mile
functional coverage, it is essential to execute these randomly
generated inputs for the entire CDI functional testing process.
Thus, obtaining the training data for our relevance model is
natural without extra cost (especially manual effort). As more
than one functionality points in gi may be covered by a single
test input, the functional coverage for ti may be a set of
functionality points Pti ⊆ gi. Specifically, we denoted the
collected training set as D = {(t1, lt1), (t2, lt2), . . . , (tu, ltu)},
where lti =

〈
l1ti , l

2
ti , . . . , l

mi
ti

〉
is a vector of 0 and 1 s.t.

∀1 ≤ j ≤ mi, l
j
ti = 1 iff pji ∈ Pti (mi is the size of gi).

Then, a relevance model can be trained via RF over D by
taking ti as the feature vector and lti as the label. Please note
that since mi tends to be larger than 1, the built model is
usually a multi-label classification model.

After building the relevance model for a targeted group gi,
LMT then measures the most relevant variables to gi. Inspired
by the feature selection process, we adopt the Gini importance
to measure the relevance of each variable to gi, which is
widely-used and has been demonstrated to be effective [44],
[45]. Specifically, each internal node τ in a decision tree splits
a set of data Dτ into different classes by a certain condition
over some input feature. The Gini importance of the node
reflects the total reduction of Gini impurity, which measures
the likelihood of misclassifying a randomly chosen data from
Dτ . That is, Gini importance can be viewed as the ability
of features taken by the node to correctly identify different
classes. In our scenario, it represents the ability of a variable
for discriminating different functionality points in the group.
More details on the calculation of Gini importance can refer
to the original theory [41], [43].

Then, all the variables can be ranked in the descending
order based on their relevance scores, and Top-K variables
are identified by LMT as the most relevant ones to gi. In
this way, LMT can identify the K most relevant variables
with regard to each last-mile functionality group. Subsequently,
to achieve the last-mile functional coverage, LMT focuses
on exploring the settings of the K variables relevant to each
last-mile functionality group, instead of the settings of all the
variables in a test input, which can be more targeted and largely
reduce the search space.

B. Constraint Learning

A valid test input has to meet complex constraints as
presented in Section II, to make the settings of the K variables
actually take effect, the settings of the remaining variables are
also critical and thus should be carefully determined. Facing
this challenge, LMT adopts GAN to learn to generate test
inputs satisfying complex constraints among variables with a
larger possibility. GAN has been well-recognized and widely
adopted with the goal of generating new data that satisfy the
given distribution [48], [49], which is aligned with our purpose
that makes generated inputs as valid as possible by learning
from known valid inputs.

A typical GAN model consists of a generator and a
discriminator. The former aims to learn the statistical dis-
tribution information from the given training data and takes
the responsibility for data generation, whereas the latter aims
to correctly distinguish the newly generated data from the
training data. Both the generator and the discriminator are
neural networks composed of several fully-connected or/and
convolutional layers. We use Mg and Md to denote the
generator and discriminator models, respectively. During the
training process, the two models combat with each other until
reaching a relatively balanced state according to the given
target, i.e., the loss function. Then, the built generator Mg can
be used to generate new data that have a larger possibility to
share the same distribution with training data.

In our scenario, the GAN model is trained by feeding a set
of valid test inputs. Similar to the training set for building
the RF model, we also take the test inputs that are randomly
generated but modified by the constraint checker (if invalid) as
the training data D. In this way, the generator is expected to
learn what a valid input looks like by implicitly learning the
complex constraints among variables based on D. Specifically,
during the training process, the model Mg in LMT generates a
set of candidate test inputs Mg(z) for the CDI when taking z
as input, where z is randomly generated according to the given
prior distribution pz(z). Then, newly generated inputs are fed
to Md along with a set of samples x from the training data
D (i.e., x ∼ pD(x)). Finally, the model is updated according
to the loss function in Formula 1 via back-propagation.

min
Mg

max
Md

L(Md,Mg) = Ex∼pD(x)[logMd(x)]

+Ez∼pz(z)[log(1−Md(Mg(z)))]
(1)

where Md(·) and Mg(·) denote the outputs of corresponding
models, while pD and pz represent the distribution of training
data D (i.e., known valid test inputs) and the prior distribution
for Mg (i.e., the normal distribution [50]) respectively. Specif-
ically, the loss function means that when given Mg, we first
train the model Md via maximizing the value of L(·) to make it
correctly discriminate generated data from training data. Then,
given Md, we train the model Mg by minimizing the value
of L(·), which makes Mg have the ability to generate test
inputs under the distribution close to D. That is, the generated
test inputs are more likely to be valid. Note that the GAN



Algorithm 1: Heuristic-based Test Input Generation
Input : M : The number of settings for the K relevant variables

N : The number of test inputs generated by GAN
Φ: Pre-defined maximum number of generated test inputs
G: The list of last-mile functionality groups
RV: The dictionary recording relevant variables.

Output : TS: The generated test inputs by LMT.
1 G ← sort(G) /* Descending order of uncovered

functionality points. */
2 TS ← emptySet()
3 i ← 1
4 while Size(TS) < Φ do
5 VG[i] ← RV[G[i]]/* Get K most relevant variables */
6 R ← rvSampling(VG[i], M ) /* Produce M settings for

VG[i] */
7 S0 ← candidateGeneration(gan, N ) /* Generate N candidate

test inputs through the GAN model gan */
8 S1 ← candidateSelection(R, S0) /* Select the most similar

test input with S0 for each setting in R */
9 S ← testInputsComposition(S1, R) /* Combine S1 and R */

10 TS ← TS ∪ S
11 Cov ← simulation(S, CDI)/* Simulate S and collect

coverage */
12 updateCoverage(Cov) /* Update coverage groups in G */
13 if achieveFullCoverage() then
14 break /* Covering all functionality points */
15 end
16 i ← i + 1
17 if i > Size(G) then
18 G ← removeCoveredGroup(G) /* Remove the

functionality groups without uncovered
functionality points from G */

19 G ← sort(G)
20 i ← 1
21 end
22 end
23 return TS

model does not output specific constraints, but implicitly learns
constraints to generate valid inputs with a large possibility.

Overall, when providing the settings of the K relevant
variables (identified by the RF model), the remaining variables
can be properly set with the guide of the GAN model. To
increase the possibility of producing a valid and effective test
input, we design a novel heuristic-based strategy in LMT to
guide the process of test input generation by combining the
superiority of both RF and GAN models (in Section III-C).

C. Heuristic-based Test Input Generation
Based on the RF and GAN models, we design a heuristic-

based strategy of test input generation for CDI functional
testing, so that those last-mile functionality points can be
covered as efficiently as possible. LMT is actually an iterative
process, which first selects a targeted last-mile functionality
group and then generates test inputs based on the RF and
GAN models with the purpose of covering more uncovered
functionality points in this group in each iteration. Algorithm 1
formally illustrates the iterative test generation process in LMT.

Regarding the selection of a targeted last-mile functionality
group, LMT selects the functionality group with the largest
number of uncovered functionality points as the targeted one
iteratively (Line1 and Line19). This is because it can be
more beneficial to improve the overall last-mile functional
coverage by first generating test inputs targeting such a group.
After selecting a targeted functionality group, LMT uses the
corresponding RF model to identify the K relevant variables
to this group (Line5). Sufficiently exploring the settings of
the K relevant variables could facilitate to improve functional

coverage in this group. Here, LMT randomly explores M
settings for the K relevant variables (Line6), as randomness
has the inherent characteristic to keep diversity. Indeed, we
can incorporate other more advanced methods (than random
exploration) in this step, which will be our future work.

To make an explored setting of the K relevant variables
take effect for facilitating the functional coverage of the
targeted functionality group, it is also required to properly
set the remaining variables so as to produce a valid test input.
Here, LMT uses the GAN model to generate a set of test
inputs to guide the proper setting of remaining variables: First,
LMT generates N candidate test inputs based on the GAN
model (Line7); Then, for each explored setting of the relevant
variables, it measures the similarity between the explored
setting and the setting on those K relevant variables in each
candidate test input via the Euclidean metric as shown in
DistX,Y =

√∑
v∈Vgi

(X[v]− Y [v])2, where X denotes a
setting of the K relevant variables (i.e., Vgi) for the group
gi, whereas Y denotes a setting of all the variables in a
candidate test input generated by the GAN model. In this
way, when providing the setting X , the most similar setting Y
can be identified among those N candidates generated by the
GAN model (Line8). Then, the settings of remaining variables
(except the K relevant ones) in Y can be integrated with X
to form a complete test input (Line9), which is more likely to
be valid. After generating M test inputs in this way, they are
simulated and functional coverage results are collected (Line11).
Although the M test inputs are produced with the purpose
of covering the last-mile functionality points in the targeted
group, they may also cover some uncovered functionality points
in other groups. Therefore, the coverage of each last-mile
functionality group should be updated (Line12).

In particular, instead of existing valid test inputs in training
data, using newly generated inputs via the GAN model for the
settings of remaining variables can increase the diversity of
test inputs, which is helpful to improve the overall functional
coverage. We also conducted a small experiment to compare
the two methods and our results confirmed the conclusion.
Specifically, for a CDI (called MA introduced in Section IV),
using existing valid inputs in training data only covers 24
functionality points among 69 last-mile functionality points
after running 30,000 test inputs, while LMT covers 67 points.

If full functional coverage is achieved, the test input
generation process terminates (Line13-15); Otherwise, the
next functionality group is selected as the targeted one for
the next iteration (Line16). After all the functionality groups
have been visited once, LMT updates the set of last-mile
functionality groups (by removing the functionality groups
without uncovered functionality points from G), and re-sorts
the remaining last-mile functionality groups as the descending
order of the updated number of uncovered functionality points
in each functionality group (Line17-21). Here, we do not re-sort
the last-mile functionality groups after each iteration, as it may
lead to frequently selecting the same functionality group as
the targeted one, which could damage the cost-effectiveness of



TABLE I: Basic information of CDIs under test

CDI # Var # FP # FG # SLOC

MA 575 7,219 681 40K+
MB 672 81,563 353 40K+

LMT from the perspective of improving the overall functional
coverage. Besides achieving full functional coverage, the test
input generation process also terminates when the pre-defined
maximum number of generated test inputs is reached (Line4).

IV. EVALUATION

In our study, we aim to address three research questions:
• RQ1: How does LMT perform in achieving last-mile func-

tional coverage compared with state-of-the-art techniques?
• RQ2: Does each main component in LMT contribute to the

overall effectiveness of LMT?
• RQ3: What is the influence of the number of identified

relevant variables on the effectiveness of LMT?

A. Experimental Study Design

Subjects. We conducted our study on two industrial CDIs
(named MA and MB) in Huawei, which designs and develops
a series of widely-known chips. Due to the company policy,
we hide the CDI names. Both MA and MB are designed for
network devices, which perform time-domain and frequency-
domain processing (e.g., time and frequency offset estimation)
in digital communication systems. Since they need to support
various network protocols, the constraints among input variables
in them are very complicated.

Table I shows the basic information of both CDIs, where
the last four columns present the number of variables in the
test input, the number of functionality points, the number of
functionality groups, and the number of source lines of code
of the CDI, respectively. Due to the company policy, we just
provide the rough SLOC for the two CDIs. Indeed, both of them
are large-scale. As suggested by the developers, we regard the
remaining uncovered functionality points after running 10,000
(for MA) and 15,000 (for MB) test inputs via random test
input generation, as the last-mile functionality points. This
is because the functional coverage can hardly increase after
running those test inputs (also confirmed in Figures 5a and 5b).
As a result, there are 69 and 25,907 functionality points left for
MA and MB respectively, which are regarded as the last-mile
functionality points and thus the target of our technique.

Implementation and Configurations. We implemented the
component of relevant variable identification based on the
RF algorithm provided by scikit-learn [51]. We adopted the
state-of-the-art GAN (i.e., WGAN-GP [52]) to implement the
component of constraint learning, which is implemented based
on PyTorch 1.4.0. Following the existing work [53], [54], the
generator of GAN consists of four linear layers, whose input
dimension is 100 and output dimension is the same as the
number of variables for the CDI. The discriminator consists
of five linear layers, whose input dimension is the same as the
number of variables for the CDI and output dimension is 1.

Regarding parameters in RF and GAN, we set them via grid
search on a small dataset, e.g., setting the number of epochs to
20 in GAN and the number of trees to 50 in RF. All the settings
are the same on both MA and MB and recommended as the
default settings in LMT. The complete parameter settings can
be found on our project homepage [55].

By balancing the efficiency and effectiveness, we set the
default setting of K (the number of identified relevant variables
to a targeted functionality group) to 50 in LMT. Also, we
investigated the influence of K on the effectiveness of LMT
in RQ3 by setting K to 10, 30, 50, and 100, respectively.
Moreover, we set M (the number of explored settings for
identified relevant variables) to 1,000 and N (the number of
candidate test inputs generated by the GAN model) to 5,000.
Measurements: LMT aims to achieve higher last-mile func-
tional coverage more efficiently, which is indeed the critical
goal of CDI functional testing in practice. Hence, we used
two metrics to measure the effectiveness of LMT compared
with the state-of-the-art test input generation techniques: 1) the
improvement on last-mile functional coverage under the same
number of test inputs, and 2) the reduction on CDI functional
testing time when reaching the same functional coverage. Each
studied technique generates 30,000 test inputs on the basis of
the set of test inputs generated randomly for covering easy-to-
cover functionality points, so as to sufficiently investigate its
ability of achieving last-mile functional coverage. To reduce
the influence of randomness, we repeated all the experiments
5 times, and reported the average results in the study. Our
experiments were conducted on an Intel Xeon Gold 6278C
machine with 512GB RAM, Centos 7.9.2009.

Please note that we include the time spent on training RF
and GAN models into the testing time with LMT. The process
of training data collection is exactly the process of executing
randomly generated inputs for covering easy-to-cover points,
and thus it does not incur extra cost.

B. RQ1: Overall Effectiveness of LMT

1) Setup: To evaluate the effectiveness of LMT, we com-
pared LMT with three existing techniques, including one
baseline and two adapted state-of-the-art techniques. The
baseline is random test input generation, which randomly
sets the value of each variable in a test input. The other
two techniques are GA-based (Genetic-Algorithm-based) and
DL-based test input generation techniques. As there is no
existing technique specialized for achieving last-mile functional
coverage, we adapted the widely-studied GA-based and DL-
based test input generation techniques in our study to fit our
scenario for sufficient comparison.

GA has been widely used in test input generation, including
both CDI functional testing [14]–[18] and general software
testing [56]–[59]. All these GA-based test input generation
techniques share the common components, including a fitness
function for guiding the test input generation process, and
selection, crossover, and mutation operators for producing
test inputs in each iteration. Inspired by existing GA-based
techniques [14]–[18], the adapted GA-based technique in our



scenario takes a test input as an individual and the number of
covered last-mile functionality points as the fitness function,
which is aligned with our goal of improving last-mile functional
coverage. The GA-based technique is implemented based on
the public artifact [60]. We empirically set the ratio of mutation
and crossover to 0.4 and 0.8 respectively (which is the best
setting in our study based on a small dataset), while using the
default settings for the other parameters.

Also, we adapted the state-of-the-art DL-based CDI test
input generation technique [22] in our scenario by modeling
the relationship between test inputs and functionality points.
It takes the test inputs randomly generated for covering easy-
to-cover points as training data and the functional coverage
of a test input on each functionality point as the label of
the input. The output of the model is the probability of each
functionality point being covered by a generated test input. If
all the functionality points with large predicted probabilities
(over 0.6 in our study) for a generated test input have been
covered before, it filters out this input as it is less likely to
improve functional coverage. The newly generated inputs are
also used to fine-tune the model for 10 epochs and the weights
with the best performance are saved for subsequent iterations.

Intuitively, combinatorial testing (widely used in traditional
software testing) may also fit our scenario, but we did not study
it as the number of input variables in a CDI is very large and
most of them have a large value range, leading to extremely
huge space for combinatorial testing. Such huge space can lead
to unaffordable time cost for combinatorial testing. Here, we
conducted a small experiment by applying a widely-studied
combinatorial testing tool (i.e., PICT [61]) to the first 25 input
variables in MA. This tool spent more than 11 hours for
achieving the 2-way combinatorial coverage. Obviously, if we
apply it to all the input variables in our studied CDIs (over
500), the time cost is unaffordable.

2) Results and Analysis: Figure 5 shows the comparison
results between LMT and the three compared techniques, where
the x-axis represents the number of generated test inputs and the
y-axis represents the number of achieved last-mile functionality
points. From this figure, for the widely-used random test
input generation in practice, after running all the 30,000 test
inputs, there are still a large number of uncovered last-mile
functionality points on both CDIs. Specifically, 55.07% (38 out
of 69) last-mile functionality points are still uncovered on MA
while 86.32% (22,362 out of 25,907) last-mile functionality
points are still uncovered on MB, further confirming the
significant challenge of achieving last-mile functional coverage.

In Figure 5, LMT largely improves last-mile functional
coverage on both MA and MB. The line representing LMT
is significantly higher than those representing the compared
techniques in this figure. After running only 2,000 test
inputs generated by LMT, 72.46% (50 out of 69) last-mile
functionality points have been achieved on MA. When running
all the generated 30,000 test inputs, only 2.90% (2 out of 69)
last-mile points are uncovered on MA. On MB (a larger CDI
with much more last-mile functionality points), after running
all the generated 30,000 test inputs, 88.77% (22,998 out of
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Fig. 5: Comparison between LMT and the existing techniques

25,907) last-mile functionality points are achieved.
In contrast, on MA, the most effective compared technique

is the DL-based technique, but it still largely performs worse
than LMT and achieves only 47.83% last-mile functional
coverage after running all the 30,000 test inputs. On MB,
all the three compared techniques have similar effectiveness,
but largely perform worse than LMT, e.g., achieving at
most 13.68% last-mile functional coverage after running all
the 30,000 test inputs. When running 30,000 generated
test inputs, LMT achieves at least 49.27% and 75.09%
higher last-mile functional coverage than all the compared
techniques on MA and MB, respectively.

Besides, on MA, the best compared technique (DL-based
test input generation) spent 11.79 hours on running all the
30,000 test inputs for achieving 47.83% last-mile functional
coverage, but LMT spent only 0.68 hours (that has included the
time spent on building RF and GAN models, i.e., 0.35 hours)
on achieving the same coverage. Similarly, on MB, the best
compared technique spent 12.51 hours on running 30,000 test
inputs for achieving 13.68% last-mile functional coverage, but
LMT spent only 1.95 hours (including 1.75 hours on building
RF and GAN models) on achieving the same coverage. Overall,
LMT saves 94.24% and 84.45% CDI testing time compared
with the most effective compared technique among the three
on MA and MB, respectively, demonstrating the significant
superiority of LMT. In particular, according to the results,
even though LMT spends extra time cost on building RF and
GAN models, it still outperforms the compared techniques in
achieving last-mile functional coverage. This is because that
its extra time cost is acceptable and significantly smaller than



TABLE II: Percentage of valid cases

CDI Random DL GA LMTnoGAN LMTnoRF LMT

MA 33.72% 35.19% 39.40% 33.71% 63.58% 65.05%
MB 51.94% 52.16% 53.39% 51.98% 84.45% 86.30%

the time cost spent on running test inputs.
In particular, LMT achieves full functional coverage on MA

at two (out of five) times, while the compared techniques do
not at all the five times. Due to the complexity of MB, LMT
does not achieve full functional coverage on it during the same
testing time as MA. Nevertheless, LMT is more promising to
achieve this goal than the compared techniques when extending
the testing time.

We further analyzed the reason why LMT significantly
outperforms the compared techniques. One major reason is that
LMT has a larger chance to generate valid test inputs than the
others, which can promote our elaborately generated test inputs
with the purpose of improving last-mile functional coverage
to take effect. As presented in Section II, the embedded rules
inside the constraint checker of the simulator can modify
invalid test inputs to be valid for enabling the simulation
process, but also limit the ability of improving functional
coverage by making the modified inputs cover a fixed and
limited set of functionality points. Hence, for each technique,
we measured the percentage of valid cases (those do not have
to be modified to be valid) among the 30,000 test inputs. The
results are shown in Table II. From this table, the percentage
of valid cases generated by LMT is 65.05% and 86.30% for
MA and MB respectively, while those by random test input
generation, DL-based and GA-based techniques are 33.72%,
35.19%, 39.40% on MA and 51.94%, 52.16%, 53.39% on
MB. This is because all the three compared techniques do
not include the mechanism to learn complex constraints like
the GAN model in LMT. In particular, GA-based test input
generation performs even slightly worse than random test input
generation in terms of last-mile functional coverage. This is
because the former generating new test inputs highly depends
on existing ones, while the latter does not. Hence, under the
scenario with such complex constraints, the random test input
generation technique can possibly explore a wider search space
by generating more diverse test inputs.

Note: During the period of writing this paper, LMT has
been deployed on six CDIs in Huawei as the standard
testing technique (replacing the previous practice, i.e., random
test input generation). According to the feedback from the
CDI testing team, on the six CDIs, LMT saves 28.67% ∼
83.79% testing time than the previous practice to achieve the
same (high) functional coverage. This further confirms the
effectiveness and generality of LMT.

C. RQ2: Contributions of LMT Components

1) Setup: LMT has two main components: 1) the RF model
for identifying relevant variables to a targeted functionality
group, which can significantly reduce the search space, and
2) the GAN model for learning to generate valid test inputs
(satisfying complex constraints) as much as possible. To study

0 5 10 15 20 25 30
Number of test inputs(k)

0

10

20

30

40

50

60

70

Nu
m

be
r o

f a
ch

ie
ve

d 
la

st
-m

ile
 

 fu
nc

tio
na

lit
y 

po
in

ts

MA

Random LMTnoRF LMTnoGAN LMT

0 5 10 15 20 25 30
Number of test inputs(k)

0

5000

10000

15000

20000

25000

MB

Random LMTnoRF LMTnoGAN LMT

Fig. 6: Comparison between LMT, LMTnoRF and LMTnoGAN

the contribution of each of them to the overall effectiveness of
LMT, we constructed two variants of LMT in this experiment:
LMTnoRF (which removes the RF model from LMT and
then randomly selects K relevant variables for a targeted
functionality group) and LMTnoGAN (which removes the GAN
model from LMT and randomly sets the remaining variables
except the identified relevant variables by the RF model).

2) Results and Analysis: Figure 6 shows the comparison
results between LMT and its two variants in terms of last-
mile functional coverage, and Table II shows their comparison
results in terms of the percentage of valid cases among the
generated test inputs. We found that LMT always achieves
much higher last-mile functional coverage than both LMTnoRF

and LMTnoGAN on both CDIs regardless of the number of
generated test inputs, demonstrating that both components
make large contributions to the effectiveness of LMT.
After running all the 30,000 test inputs, LMT achieves 97.10%
and 88.77% last-mile functional coverage on MA and MB
respectively, while LMTnoRF achieves 89.86% and 47.03% and
LMTnoGAN achieves 46.38% and 13.66%.

Besides, on MA, LMTnoRF spent 12.54 hours (including
0.32 hours on building the GAN model) on running all the
30,000 generated test inputs for achieving 89.86% last-mile
functional coverage, while LMT spent only 5.9 hours (including
0.35 hours on building RF and GAN models) on achieving the
same coverage. Also, LMTnoGAN spent 11.83 hours (including
0.03 hours on building the RF model) for achieving 46.38%
last-mile functional coverage, while LMT spent only 0.67 hours
(including 0.35 hours on building RF and GAN models) on
achieving the same coverage. Overall, LMT saves 52.95%
and 94.35% CDI testing time compared with LMTnoRF and
LMTnoGAN on MA, respectively. Similarly, on MB, LMT
saves 78.09% and 85.63% CDI testing time compared with
LMTnoRF and LMTnoGAN, respectively. The results further
demonstrate the significant value of both components in LMT.

In particular, the GAN model contributes more than the
RF model on both CDIs. The major reason also lies in that
LMTnoRF makes a larger chance to produce valid test inputs
due to the existence of the GAN model, while LMTnoGAN

cannot. From Table II, the percentage of valid cases among
the generated test inputs by LMTnoRF is 63.58% while that by
LMTnoGAN is only 33.71% on MA. Similarly, on MB, the
percentage of valid cases by LMTnoRF is 84.45% while that by
LMTnoGAN is only 51.98%. The results indicate that the GAN
model has indeed learned the constraints among input variables
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Fig. 7: Effectiveness of LMT under different K settings

and significantly improved the possibility of generating valid
inputs. We also found that LMTnoGAN performs very similarly
with random test generation. This is as expected, since the
number of identified relevant variables is much smaller than the
number of the remaining variables and the remaining variables
are randomly set in LMTnoGAN. That is, the variables that are
set randomly dominate the testing capability of a generated
test input by LMTnoGAN, which is very likely to violate the
complex constraints like random test input generation.

D. RQ3: Influence of K

1) Setup: In LMT, the number of identified relevant vari-
ables (i.e., K) is the most important parameter, as it directly
controls the size of search space for inputs and thus affects
its effectiveness. Hence, it is important to study its influence
on the effectiveness of LMT. In this experiment, besides the
default setting in LMT (i.e., 50), we further studied three other
K values, i.e., 10, 30, and 100. For ease of presentation, we
call them LMT10, LMT30, and LMT100, respectively.

2) Results and Analysis: Figure 7 shows the comparison
results under different settings of K. First of all, regardless
of the settings of K, our proposed technique significantly
outperforms all the three compared techniques (from both
Figure 5 and this figure), demonstrating the stable effectiveness
of LMT. Then, we found that K is indeed able to affect the
effectiveness of LMT, especially on MB. From the Figure 7,
LMT100 and LMT perform better than LMT10 and LMT30 on
MA, and LMT performs slightly better than LMT100. As for
MB, LMT100 performs the best and LMT takes the second
place. That is, different CDIs have different optimal settings of
K, which is as expected as different characteristics in different
CDIs could lead to different numbers of relevant variables. For
our studied settings of K, the larger K values (i.e., 50 and
100) perform better than the smaller ones (i.e., 10 and 30),
but meanwhile the larger K values could lead to the larger
search space and thus may incur more time cost for exploring it.
Hence, we recommend K = 50 as the default setting in LMT
by balancing both effectiveness and efficiency. In particular,
our experiments have demonstrated that LMT with the default
setting indeed performs stably and well. In practice, testers
can also adjust the setting of K by themselves according to
the concerned metrics on the CDI under test.

V. THREATS TO VALIDITY

The threat to internal validity mainly lies in the implemen-
tation. To reduce this kind of threat, two authors and industrial

partners have carefully checked all the code. Also, they wrote
unit tests to test the implementation of LMT. In addition, the
intention of the RF model in LMT is to learn the relevance
between input variables and the targeted functionality group,
and thus its performance can be affected when there is no test
input covering the targeted group in training data. However,
this case is indeed rare in practice according to the feedback
from our industrial partners, and it neither exists in the two
real-world CDIs used in our study.

The threat to external validity mainly lies in the subjects used
in our study. We evaluated the effectiveness of LMT on two
CDIs from Huawei, which may not represent the CDIs in other
companies. In our study, our used CDIs are industrial-grade
and real-world, and they have very different characteristics. In
particular, LMT has been deployed in Huawei for practical use
on six CDIs. These can help reduce this kind of threat. In the
future, we will evaluate LMT on more diverse CDIs to further
reduce it.

The threat to construct validity mainly lies in the randomness
in our study. To reduce this kind of threat, we repeated the
experiments five times and calculated the average results. The
times of repeating experiments may be not enough due to the
limited computing resources. In the future, we will repeat our
experiments more times.

VI. RELATED WORK

CDI functional testing. Our work belongs to test input
generation in CDI functional testing, and thus we mainly
present the related work in this area. In the literature, the
test input generation techniques in CDI functional testing
can be divided into two main categories, i.e., search-based
techniques [14]–[18] and DL-based techniques [19]–[22].

Regarding the former category, GA is the most widely-
studied one for test input generation in CDI functional testing
(and traditional software testing) [14]–[18]. For example,
Subedha et al. [14] proposed to improve the overall coverage
based on GA, which used statement and branch coverage of the
CDI to design the fitness function. Yang et al. [18] proposed a
GA-based CDI testing platform that adopts functional coverage
as the fitness function to improve testing efficiency. In recent
years, a number of DL-based test input generation techniques
have been proposed in CDI functional testing, which mainly
learn the relationship between test inputs and functional
coverage. For example, Gogri et al. [22] used the learned
relationship to filter out the test inputs without gains in
functional coverage, in order to speed up the testing process.
Gal et al. [21] used the learned relationship and derivative
free optimization to increase the hitting frequency of the
functionality points that have been covered infrequently.

Our work belongs to the second category. Different from
them, LMT adopts RF to model the relevance between variables
and each last-mile functionality group to identify relevant
variables, and adopts GAN to learn to generate test inputs
satisfying complex constraints among variables with a larger
possibility without relying on domain knowledge and internal
information of the CDI.



Traditional software test input generation. Many test input
generation techniques have been proposed for traditional soft-
ware, e.g., symbolic execution [28]–[31], [62]and fuzzing [32]–
[34], [63]–[68]. Also, there are some testing techniques for
highly-configurable software or software product lines, which
also involve relatively large input space [69]–[73]. For example,
Qu et al. [69] proposed a technique based on combinatorial
interaction testing to generate configurations in configurable
software regression testing. Cohen et al. [70] combined combi-
natorial interaction testing with SAT to generate configurations
for highly-configurable software in the presence of constraints.
However, as presented in Section I, they are not applicable to
CDI functional testing due to 1) the scalability issue, 2) relying
on domain knowledge or program internal information, or 3)
lack of tools supporting the analysis of programs in hardware
description languages.

Moreover, the techniques without considering complex
constraints cannot perform well in CDI functional testing
according to our evaluation. For example, adaptive random
testing can also perform poorly in CDI functional testing since
it has a hypothesis where test inputs are evenly distributed
among the input space [74]. However, this hypothesis may
not hold due to the complicated constraints in CDI functional
testing. Besides, there are some invariant mining methods in
traditional software [75]–[77], but similarly, they are hard to
mine invariants from the entire black-box CDI due to the above
reasons. These invariants are also hard to guide the construction
of valid inputs in CDI functional testing, while our GAN model
can provide a generator to facilitate the test input generation
task.

VII. CONCLUSION

We propose the first test input generation technique, called
LMT, targeting the challenge of improving last-mile functional
coverage in CDI functional testing. LMT builds the RF and
GAN models for identifying relevant variables to each last-
mile functionality group, which can help largely reduce the
input space, and learning to generate test inputs satisfying
complex constraints among variables, respectively. Our study
results on two industrial CDIs show that LMT significantly
outperforms the state-of-the-art CDI test input generation
techniques, demonstrating its effectiveness and efficiency.
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