
Boosting Redundancy-based Automated Program
Repair by Fine-grained Pattern Mining

Jiajun Jiang∗, Fengjie Li∗, Zijie Zhao†∗∗, Zhirui Ye‡∗∗, Mengjiao Liu∗, Bo Wang§,
Hongyu Zhang¶, Junjie Chen∗∥

∗College of Intelligence and Computing, Tianjin University, Tianjin, China
†Computer and Information Science Department, University of Pennsylvania, Philadelphia, USA

‡School of Engineering, Westlake University, Zhejiang, China
§School of Computer and Information Technology, Beijing Jiaotong University, Beijing, China
¶School of Big Data and Software Engineering, Chongqing University, Chongqing, China

{jiangjiajun, fengjie, mengjiaoliu, junjiechen}@tju.edu.cn, bytez@cis.upenn.edu, yezhirui@westlake.edu.cn
wangbo cs@bjtu.edu.cn, hyzhang@cqu.edu.cn

Abstract—Redundancy-based automated program repair
(APR), which generates patches by referencing existing source
code, has gained much attention since they are effective in
repairing real-world bugs with good interpretability. However,
since existing approaches either demand the existence of multi-
line similar code or randomly reference existing code, they
can only repair a small number of bugs with many incorrect
patches, hindering their wide application in practice. In this
work, we aim to improve the effectiveness of redundancy-based
APRs by exploring more effective source code reuse methods for
improving the number of correct patches and reducing incorrect
patches. Specifically, we have proposed a new repair technique
named REPATT, which incorporates a two-level pattern mining
process for guiding effective patch generation (i.e., token and
expression levels). We have conducted an extensive experiment
on the widely-used Defects4J benchmark and compared REPATT
with ten state-of-the-art APR approaches. The results show that
it complements existing approaches by repairing 9 unique bugs
compared with the latest Large Language Model (LLM)-based
and deep learning-based methods and 19 unique bugs compared
with traditional repair methods when providing the perfect fault
localization. In addition, when the perfect fault localization is
unknown in real practice, REPATT significantly outperforms the
baseline approaches by achieving much higher patch precision,
i.e., 83.8%, although it repairs fewer bugs. Moreover, we further
proposed an effective patch ranking strategy for combining the
strength of REPATT and the baseline methods. The result shows
that it repairs 124 bugs when only considering the Top-1 patches
and improves the best-performing repair method by repairing
39 more bugs. The results demonstrate the effectiveness of our
approach for practical use.

Index Terms—Automated program repair, Pattern mining,
Program debugging

I. INTRODUCTION

Automated program repair (APR) techniques have the po-
tential to significantly reduce the debugging overhead of
human developers and thus have been widely studied in the
last decades. To date, a large number of APR approaches
have been proposed and developed [1]–[11]. A typical APR
approach takes a faulty program and a set of test cases, where

∗∗At the time of submission, Zijie Zhao and Zhirui Ye were undergraduate
student at Tianjin University, Tianjin, China
∥Junjie Chen is the corresponding author for this work.

at least one triggers the bug in the program, as inputs, and
produces one or more (if possible) plausible patches that
can make all the test cases pass. The repair process can be
typically viewed as a search problem, where the search space
is all possible programs. Therefore, the core challenge for
APR techniques is how to effectively and efficiently locate
the desired patches within limited computing resources and
time budget. To facilitate this process, existing techniques have
employed multiple data sources, e.g., similar code [8], [9],
historical patches [12], [13], repair templates [4], [14], [15],
etc., and leveraged diverse search algorithms, e.g., random
search [16], genetic programming [6], [17], and advanced
Large Language Model (LLM) and deep learning [18]–[24],
aiming to effectively refine the search space and thus improve
the repair ability and efficiency.

Among existing APR techniques, redundancy-based [25]–
[28] techniques have attracted much attention and achieved
considerable success. These techniques are on the basis of
the plastic surgery hypothesis that “changes to a codebase
contain snippets that already exist in the codebase at the time
of the change, and these snippets can be efficiently found and
exploited [29]”. In other words, the code snippets for patch
generation can be found within the buggy projects themselves.
Therefore, redundancy-based APR approaches leverage the
plastic surgery hypothesis to generate patches by searching
and referencing existing code. For example, GenProg [6], [17],
the pioneer of modern APR techniques, generates patches by
directly reusing existing code under the guidance of genetic
programming algorithms. Although the recent advance of
LLMs has shown the promise to repair more bugs [20],
[22]–[24], they still suffer from the interpretability issue due
to the complexity and the random nature of deep neural
networks as they are typically used in a black-box fashion. As
reported by previous studies [30]–[32], the patches generated
by SimFix, a representative redundancy-based APR approach,
are of high quality under various testing scenarios. In addition,
redundancy-based techniques also complement those learning-
based techniques [18]–[20] (our evaluation results in Section V
further prove it). Additionally, redundancy-based techniques

tend to have better interpretability as they are on the basis of
the plastic surgery hypothesis, and the patches are typically
generated by referring human-written code snippets. In partic-
ular, they can repair a portion of relatively complex bugs [8],
[9], [33].

Although existing redundancy-based techniques are demon-
strated to be effective for repairing real-world bugs, they
still face two major challenges: (1) How to effectively and
efficiently locate the reference code elements among a large-
scale codebase? Existing approaches identify similar snippets
using structural [8], [33] or token-based [9] features, assuming
similarity implies functional equivalence. However, as shown
in our preliminary study (Section II-A), coarse-grained similar
snippets are rare in practice, limiting their usability. (2) How
to reuse existing code for constructing new patches? Existing
approaches reuse code by comparing the difference between
faulty and reference code via abstract syntax trees [8], [9]
or program dependency graphs [33]. However, code elements
under different contexts tend to vary greatly in structures [34],
limiting the effectiveness of existing techniques, i.e., repair-
ing a small number of real-world bugs with many incorrect
patches.

As explained above, existing redundancy-based approaches
reuse code either completely randomly (e.g., RSRepair [16]
and GenProg [6]) or depending on the existence of similar
code snippets of multiple lines (e.g., HDRepair [35], Sim-
Fix [8] and TransplantFix [33]). However, our preliminary
study reveals that most reusable elements appear at a finer-
grained level—e.g., 89.3% contain fewer than three tokens
(Section II-A). This suggests that finer-grained code reuse
is crucial. In this paper, we investigate the possibility of
improving redundancy-based APR techniques by reusing code
elements at a finer-grained level. Specifically, the basic idea
of our approach is that fine-grained code elements related
to similar code semantics tend to co-appear nearby in
the program, which has been well-studied by existing re-
search [36]–[39]. This phenomenon, which we refer to as the
locality property of source code, suggests that semantically
related code components—such as variables, functions, or ex-
pressions—are often found in close proximity within the same
code block or module. Based on this property, we proposed a
new APR approach that effectively guides patch generation by
identifying the usage patterns of fine-grained code elements
for confining the patch space and thus overcomes the first
challenge of redundancy-based APR. To overcome the second
challenge, i.e., reusing existing code under different contexts,
we designed a new code representation method, i.e., S-TAC,
which decomposes complex code expressions and statements
into a unified form by ignoring context-specific features (e.g.,
code structures and operators). It can reduce the negative
impact of code structures on code matching during patch
generation but still preserve the locality property of source
code.

To evaluate the performance of our approach, we have
implemented it as an APR tool named REPATT and conducted
an extensive study by comparing it with ten state-of-the-art

0

15

30

45

1 4 7 10 13 16 19 22

Defects4J v1.2 & v2.0

Pe
rce

nt
ag
eo

fc
od
ee

lem
en
ts
(%
)

0

15

30

45

1 4 7 10 13 16 19 22 25

Bugs.jar

0.0

0.1

0.2

25 35 45 56 73 99 493
0.0

0.1

0.2

26 37 49 63 81

Code tokens # Code tokens

Fig. 1. The length distribution of code elements that can be found in the
faulty program for repairing 564 and 609 bugs from benchmarks Defects4J
and Bugs.jar.

APR approaches, including four best-performing traditional
repair techniques and six latest LLM-based and deep learning-
based techniques. The experimental results show that although
our approach did not outperform all baselines considering all
comparison aspects, it complements existing approaches by
correctly repairing many unique bugs. Specifically, REPATT
repairs 19 unique bugs that cannot be repaired by traditional
methods and 9 unique bugs that neither LLM-based nor
deep learning-based methods can repair. In particular, 5 bugs
repaired by REPATT have never been repaired by all the
baselines. Additionally, when the perfect fault localization is
unknown, which is a more realistic scenario, REPATT can
significantly outperform the baseline approaches by achieving
15.6%-51.7% higher patch precision, which is critical for
practical use of APRs. Additionally, we also made the first
attempt to combine the strength of REPATT and multiple
existing approaches by further designing a patch ranking strat-
egy. The evaluation result shows that the combined method
can effectively repair 124 bugs when only considering Top-
1 patches, 39 more bugs than the best-performing method
(i.e., TBar). Our results demonstrate that our approach is
indeed effective in improving the performance of existing APR
techniques.

In summary, we make the following major contributions.

• A new redundancy-based APR technique that can flexibly
reuse source code at a finer granularities.

• A novel code representation method, which overcomes
the diversity of code contexts, for better code search and
reuse.

• An extensive study to evaluate the performance of our ap-
proach by comparing it with state-of-the-art approaches.

• The first attempt to combine the strength of multiple APR
approaches, revealing its promise for practical use.

• We make all our experimental results and implemen-
tations publicly available to facilitate replication and
comparison [40].

II. MOTIVATION

A. Preliminary Study

As previously mentioned, no existing studies have explored
the potential of searching for and reusing finer-grained code
elements for patch generation. To investigate the feasibility and

2

necessity of this approach in APR, we conducted a preliminary
study following the idea proposed by Barr et al. [29].

Specifically, our study aims to understand the granularity
of reusable code elements for patch generation. Given a bug
and its associated patch, we first extracted newly added code
elements from the patch and searched for them in the faulty
program, starting from coarse-grained elements and gradually
decomposing them into finer-grained components based on the
syntax tree structure. That is, if a code element (e.g., “a +
f(b,c)”) was not found, we would further decompose it into
finer-grained code elements of the code (e.g., “a”, “+”, and
“f(b,c)”). This process iterated until no further decomposi-
tion was possible. Finally, we analyzed the granularity of code
elements that can be found in faulty programs. In particular,
since AST structures cannot directly reflect granularity (e.g.,
an expression in the AST can be either a variable like
“a” or a complex expression like “f(a, b)”.), we measured
granularity by the number of tokens in each code element.

We conducted our empirical study on two widely-
used datasets of real-world bugs, i.e., Defects4J [41] and
Bugs.jar [42]. In particular, we filtered out bugs whose patches
involve more than one Java file since they are still hard to
repair at present [2], [8], [18], [20], [26], [43]–[45], resulting
in 564 bugs from Defects4J and 609 bugs from Bugs.jar across
24 projects. Figure 1 presents the statistical results. The x-
axis denotes the number of tokens in a code element and the
y-axis denotes the percentages of code elements that can be
reused for patch generation. The results show on average more
than 89.3% code elements contain less than three tokens, and
42% elements only contain one token. In contrast, only a very
limited portion of code elements exist at a coarse-grained gran-
ularity (i.e., more than three tokens). In particular, this is not a
special case but holds over different programs in our study. The
result indicates that the reusable code elements indeed exist
at a fine-grained granularity, which will significantly limit the
effectiveness of existing redundancy-based APR approaches.
Moreover, it also reflects that designing APR approaches by
reusing finer-grained code elements is promising.

However, achieving accurate and fine-grained code reuse
for patch generation is challenging. The reasons are twofold:
(1) It will significantly enlarge the search space of candidate
patches, making it harder to efficiently and correctly find the
desired code elements. (2) Due to weak test suites [46]–[48],
plausible (i.e., can pass all the test cases) but incorrect patches
are more likely to be generated, increasing the manual effort
required for validation and significantly affect the practical
usability of APR approaches. To overcome these challenges,
we propose an effective APR approach that efficiently locates
the desired code elements for patch generation leveraging the
locality property of source code as its core idea. The details
will be introduced in Section III.

B. Running Example

In this section, we use real-world bug examples to illustrate
how the locality property of source code can guide patch
generation. Listing 1 presents the patch code of Codec-3 from

the Defects4J [41], where a line starting with “+” denotes
newly added code while starting with “-” denotes deleted code.

In this example, the constant parameter “4” was mistakenly
used at line 455, and the desired parameter is “3”. This bug
cannot be fixed by existing redundancy-based APR techniques
due to either the large search space (e.g., GenProg [6], [17],
RSRepair [16], etc.) or the nonexistence of multi-line similar
code snippets for reference (e.g., SimFix [8], Transplant-
Fix [33], etc.). However, when it comes to the fine-grained
token level, we will find that the constant number “3” usually
co-appears with the tokens “value” and “index” elsewhere in
the program. These tokens exhibit a strong correlation (i.e.,
the locality property of source code). Leveraging this property
makes it both feasible and efficient to locate the correct code
elements for patch generation.
452 if ((contains(value, 0 ,4, "VAN ", "VON ") || ...)){
453 //-- obvious germanic --//;
454 result.append(’K’);
455 - } else if(contains(value, index + 1, 4, "IER")) {

+ } else if(contains(value, index + 1, 3, "IER")) {
456 result.append(’J’);
457 } else {...

Listing 1. Patch code of Codec-3 in Defects4J

98 public Date read(JsonReader in) throws IOException {
99 - if (in.peek() != JsonToken.STRING) {
100 - throw new JsonParseException("The date ...");

+ if (in.peek() == JsonToken.NULL) {
+ in.nextNull();
+ return null;

101 }
102 Date date = deserializeToDate(in.nextString()); ...

Listing 2. Patch code of Gson-17 in Defects4J
1 if (in.peek() == JsonToken.NULL) {
2 in.nextNull();
3 return null;
4 }
5 in.beginArray();

Listing 3. The reference code for repairing Gson-17

In fact, the locality property of source code may not only
exist at the token level but may also exist at higher levels,
e.g., expression or statement levels. For example, Listing 2
presents the patch code of Gson-17 from the Defects4J bench-
mark, while Listing 3 presents a reference code that can be
used for patch generation. According to the reference code,
the expression “in.peek()” may be correlated with the
expressions “JsonToken.NULL”, “in.nextNull()” and
“return null”. It can be seen that, although the reference
code can provide the required code elements for generating the
desired patch in these examples, how to utilize them is still
challenging since the possible combinations of code changes
according to the reference code are still too many, such as
replacing the throw statement with “in.nextNull()” or
inserting “in.nextNull”. In addition, replacing the condi-
tional expression also does not fix the bug due to the incorrect
operator “!=”. In particular, the code structures of reference
code and the faulty code may also be different in practice,
making patch generation harder. To address this challenge, we
propose a novel code representation method that decomposes
complex expressions into a unified simple form, which ignores

3

operators and complex code structures, e.g., !=, for, while,
etc., but still preserves the locality property of source code.

III. FRAMEWORK

In this section, we introduce the details of our approach
(named REPATT). Figure 2 presents the overview of REPATT.
In general, REPATT generates candidate patches by leveraging
the plastic surgery hypothesis and the locality property of
source code, utilizing both token-level pattern mining and
expression-level code search to handle different granularities
of code changes. Token-level pattern mining, an offline pro-
cess, constructs a query-efficient code pattern database for re-
pairing single-line bugs (ref. Listing 1). In contrast, expression-
level code search, an online process, identifies reference code
elements for multi-line fixes (ref. Listing 2). Their differing
strategies stem from (1) token-level mining focusing on small-
scale patterns within single lines, while expression-level pat-
terns span multiple lines, significantly expanding the search
space, and (2) token-level patterns often introducing numerous
small changes, impacting efficiency, while the expression-level
patterns correlated to a certain location (i.e., the faulty code)
will be very limited (refer to Figure 1). Therefore, we confine
the token-level patterns to those that are frequent to balance
efficiency.

A. Offline Pattern Mining

Based on our preliminary study (Section II-A), most
reusable code elements for patch generation exist at a fine-
grained level, typically one or two tokens. To leverage these
elements, REPATT employs a novel token-level pattern mining
algorithm guided by the locality property of source code. This
process is conducted offline over the given faulty project,
constructing a database of token usage patterns to support
efficient online patch generation. As aforementioned, we only
consider the token patterns within single lines to confine the
search space and avoid involving too much noise. In particular,
it is common that the tokens used in different code lines share
both commonalities and diversities. For example, the token
sequence in some code lines can be (“a”, “b”, “c”), while
it may also be (“a”, “d”, “c”) in some other code lines. To
preserve the semantics of programs, we keep the token orders
and design a skip-fashion pattern mining algorithm to address
the problem of diversity among code lines. Additionally, each
token is assigned a unique ID for efficient comparison, while
separators (e.g., “,” and “(”) and structural keywords (e.g., “if”
and “for”) are removed as they do not contribute to token-level
patch generation.

Specifically, to improve the pattern mining process, we
design a data structure – Prefix Embedding Tree, which is
defined as follows.

Definition 1: (Prefix Embedding Tree): a prefix embedding
tree constitutes a set of nodes, each of which is a tuple of
t = ⟨tok, id, p, C, sup⟩, where id denotes a unique embedding
of a certain token tok, p denotes the parent node of t, C
denotes a set of child nodes of t, while sup represents the

frequency of the token sequence from the root to the current
node t.

Furthermore, we use t.childNode(id) to obtain the
child node of t with the embedding id, and use
t.setChildNode(id, chd) to set the node chd with embedding
id as the child node of t. In addition, we use findOrCre-
ate(trees, tok) to find the tree rooted at the token tok in trees.
According to these notions, we present the pattern mining
process in Algorithm 1. In general, given the faulty program,
REPATT first decomposes all the code lines in the program
into a set of token sequences (i.e., ESs), where each token
sequence corresponds to one line of code. Then, it constructs
the prefix embedding trees (i.e., trees), which stores the token
patterns with corresponding usage frequencies.

Algorithm 1: Tree Building and Pattern Construction
Input: ESs: sequences of code element embeddings (IDs)
Output: trees: frequent pattern in the form of prefix tree.

1 Function build(ESs):
2 trees ← ∅
3 foreach S in ESs do
4 updated ← ∅ // Avoid counting duplicated tokens
5 buildTree(S, trees, updated) // Build trees
6 return trees // Embedding trees in programs
7 Function buildTree(seq, trees, updated):
8 start ← 0
9 while start < len(seq) do

10 root ← findOrCreate(trees, seq[start]) // Find node
11 root.sup ← root.sup + 1 // Increase the frequency
12 start ← start + 1
13 traverse(root, seq[start:], 0, 1, updated)
14 trees ← trees ∪ {root}
15 Function traverse(tree, seq, skip, length, updated):
16 if length ≥ MAX LEN or len(seq) == 0 then
17 return
18 else if skip < MAX SKIP then
19 traverse(tree, seq[1:], skip+1, length, updated)
20 node ← tree.childNode(seq[0]) // Not skip the token
21 if node is None then
22 node ← create a new node of id seq[0]
23 tree.setChildNode(seq[0], node)
24 if node is not in updated then
25 node.sup ← node.sup + 1 // Increase frequency
26 updated ← updated ∪ {node}
27 traverse(node, seq[1:], skip, length + 1, updated)

Specifically, for each token sequence S ∈ ESs (line 3),
REPATT either creates new trees using it or expands exist-
ing trees by updating pattern frequencies via buildTree(*)
(Line 5). In this process, REPATT maintains a set updated
to record the nodes whose frequencies have been calculated
for avoiding duplicated counting. More specifically, given the
token sequence seq and trees that have already constructed,
REPATT performs a top-down tree building process, iterating
over sub-sequences starting at different positions in seq (Line
9). That is, for each token sub-sequence starting at start,
REPATT finds the tree (or creates a new one) whose root node
is associated with the token seq[start] (Line 10) and updates
its frequency (Line 11). The tree is then recursively expanded
via traverse() using a skip-fashion pattern mining strategy,
where a token can either be included (Lines 20-27) or skipped
(Lines 18-19), constrained by MAX SKIP (Line 18). For each

4

Provide Frequent Patterns

Offline
Pattern
Mining

Pattern
Mining

Code
CODE

Embed
a = fun();

11 21 42
E.g.

11 21 2 31 25
E.g. a = b + c ;

Extract Faulty Snippet

Modify1:55→72

Modify2:55→42

Modify3:...

MatchEmbed
Online
Search

a = b;

m = b+c;

……

T1:=a,b T2:=b,c T3:=m,T2Bug:
Source Code in S-TAC Form

T1:=a,b T2:=c,d T3:=m,T2r1:
(67 55 89), ,

(67 72 89), ,

Search

Frequent Patterns in Prefix Tree Form
(id, freq.) 11 5

21 5

31 4 42 3

Patch1:(67,55,89) (67,72,89)

Patch2: ...

b+cm= c+dm=
CODE

r1: a = b ;
m= c+d ;

r2: a = m+n;

Reference Code

Adapt

Ranking & Validating

id token
11 a

21 =

…

Token
map

Fig. 2. Overview of our approach REPATT. Given a buggy project, ❶ REPATT first mines a set of token sequence patterns and represents them as prefix
trees. ❷ Then, based on the faulty code snippet, REPATT online searches a set of similar code snippets and transforms them into S-TAC form as reference
patterns. ❸ Finally, REPATT generates candidate patches by matching the faulty code with the reference patterns and validates them one by one.

contains 55

index 46

1 27

“IER” 3

3 15

1 27

value 55

index 46 1 27

3 10 3 5 “IER” 3

3 5

“IER” 3

1 30

value 75

index 58 1 28

3 11 3 5 “IER” 3

…

Fig. 3. Partial prefix embedding trees. We use concrete tokens to represent
the token ids for ease of understanding.

token, REPATT locates an existing node (Line 20) or creates
a new one if absent (Lines 21-23), updating its frequency as
needed (Lines 24-26). A pattern is finalized upon reaching
the maximum sequence length MAX LEN. Our evaluation
further examines the impact of MAX LEN and MAX SKIP
on REPATT’s performance.

Taking the faulty code Codec-3 (Listing 1) as an ex-
ample, the token sequence of the faulty code line will be
S=(“contains”, “value”, “index”, “+”, “1”, “4”, “IER”), based
on which the constructed prefix embedding trees are presented
in Figure 3, where we use the red line to highlight the patterns
related to the token sequence S. Consequently, the token
sequence from the root node to the leaf node denotes a possible
pattern and the number denotes its frequency. For example, the
frequency of the pattern (“contains”, “value”, “1”, “IER”) is
3. In particular, each distinct token will be the root node of an
individual prefix embedding tree. For instance, we present two
prefix embedding trees in Figure 3 that are related to the token
sequence S. As a result, when given a buggy sequence, we can
only search a very limited number of embedding trees whose
root tokens are included in the sequence, which can promote
the searching process. During pattern mining, patterns with a
frequency below a predefined threshold MIN SUPPORT are
discarded. A higher frequency suggests that a pattern is more
common and thus more likely to be reusable for repair. In the
repair phase, given a faulty code token sequence S′ , REPATT
searches for all matching patterns in the embedding trees and
generates patches based on these references.

B. Online Code Search and Representation

The expression-level code search aims to find code usage
patterns across multi-lines of code for reference, which may

cause a large search space if it is also considered like the
token-level pattern mining since there may be hundreds or
thousands of lines of code even in a single method. As a result,
the expression-level pattern mining process is designed as an
online code search process, which automatically identifies a
set of reference code when given the faulty code. Following
existing work [8], REPATT extracts no more than three lines of
code respectively before and after the given faulty line as the
faulty snippet, and then finds the N most similar snippets via
measuring the code similarity between the faulty and reference
snippets. Specifically, REPATT extracts a vector from each
snippet, where each element in the vector represents a feature
and the feature value represents the number of corresponding
AST node types in the snippet by following the study [8].
Then, we calculate the cosine similarity [49] between two
vectors for code ranking.

To adapt the reference code to the buggy code that many
have complex contexts in real practice, we propose a new
code representation method, named “Simplified Three-Address
Code” (abbr. S-TAC). It unifies the code representations by
ignoring the code structures under different contexts but still
preserves the locality property of source code.

Definition 2: (Simplified Three-Address Code): an S-TAC
is a triple of ⟨T, t1, t2⟩, where T is an intermediate symbol to
represent the expression correlated to t1 and t2, while t1 and
t2 are two expressions that are either the intermediate symbols
or simple items of variables, literal values, types, and function
calls. In particular, t1 and t2 can be null if they are keywords,
e.g., break and return.

Additionally, we use T := t1, t2 to represent ⟨T, t1, t2⟩
when there is no ambiguity. Compared with traditional Three-
Address Code (TAC) [50], S-TAC ignores both the coarse-
grained code structure information, e.g., if, and the fine-
grained operators, e.g., “+”. The reason for ignoring the
structure information is to make the source code from different
contexts applicable for patch generation. For example, the
conditional expression a > b in if statements can match that
either in for statements or in trinary conditional expressions,
enabling a more flexible code match. Similarly, the fine-
grained operators may also be specific to certain contexts and
thus affect the matching and reuse of code. In other words, our

5

𝑇! := in,
peek()

𝑇" := 𝑇! ,
JsonToken.STRING

𝑇# := JsonParseException,
“The data ...” 𝑇$:= 𝑇# 𝑇% := 𝑇" , 𝑇$

b1 b2 b3 b4 b5

𝑇! := in,
peek()

p1

𝑇" := 𝑇! ,
JsonToken.NULL

p2

𝑇# := in,
nextNull()

p3

𝑇$:= null

p4

𝑇% := 𝑇# , 𝑇$

p5

match match

in.peek() in.peek()!=JsonToken.STRING new JsonParseException(“”) throw new Json… if(in.peek()…){throw new…}

in.peek() in.peek()==JsonToken.NULL in.nextNull() return null if(in.peek()…){in.nextNull(); …}

Fig. 4. Matching results of partial S-TACs in Gson-17 shown in Listing 2. bi
represents the S-TAC form of the faulty if statement while the pi corresponds
to the if statement in the reference code. In particular, we also present the
source code corresponding to each T-SAC.

S-TAC representation can better reflect the locality property
of source code while reducing the noise induced by different
contexts.

Taking the code shown in Listing 2 and 3 as examples,
the S-TAC form for the if condition from the faulty code is
T1 := in, peek(), T2 := T1, JsonToken.STRING, while it
will be T1 := in, peek(), T2 := T1, JsonToken.NULL for
the reference code, where T1 and T2 are intermediate symbols.
In this way, the two conditions can be better matched with
each other. We will also evaluate the contribution of our S-
TAC form in the experiment (Section V).

C. Reference Code Adaptation

When given the faulty code, we can obtain a set of reference
code based on the previous two processes. Then for each
reference code pattern, REPATT tries to generate candidate
patches by matching the faulty code to the reference code.
Algorithm 2 presents the details of the matching process.
In general, REPATT performs a greedy match between the
faulty code and the reference code. Then, it generates patches
according to the difference between them. In other words,
given the token (or S-TAC) sequences for both faulty (i.e.,
BS) and reference code (i.e., RS), the matching algorithm
will return a set of pairs (i.e., PS), based on which REPATT
generates candidate patches according to a set of predefined
rules.

Given the token (or S-TAC) sequences of both faulty (BS)
and reference code (RS), REPATT first computes their longest
common sequence (cs, line 3) for greedy matching. It then
establishes mappings between unmatched elements in the
faulty and reference code based on these results (lines 5-13).
Using S.getNodes(a, b), REPATT retrieves elements between
positions a and b in sequence S. As illustrated in Figure 4,
cs for the S-TACs in Listings 2 and 3 is [(b1, p1), (b5, p5)].
From the figure we can observe that the S-TAC representation
abstracts away concrete code content, mitigating its impact on
pattern matching. The unmatched elements are divided into
two lists, os ([b2, b3, b4]) and ts ([p2, p3, p4]), whose Cartesian
product (i.e., ⋊⋉) forms all possible unmatched pairs (line 8). In
particular, if no sibling AST nodes of a faulty code element are
matched (line 21), REPATT attempts to map its parent nodes
via tryToMatchParent(*) (lines 21-25). For instance, since the
throw statement (b4) has no matched siblings, REPATT maps
the faulty if statement to its reference counterpart.

Algorithm 2: Reference Code Matching
Input: BS: a sequence of tokens or S-TACs that represent the bug.

RS: a sequence of tokens or S-TACs that represent the
reference code.

Output: PS: a set of original and target node pairs.
1 Function matchElement(BS, RS):
2 PS ← [], bf ← −1, rf ← −1
3 cs ← LCS(BS,RS) // The longest common sequence
4 if cs.size() > 0 then
5 foreach c in cs do
6 os ← BS.getNodes(bf,BS.indexOf(c.fst))
7 ts ← RS.getNodes(rf,RS.indexOf(c.snd))
8 PS.append(os⋊⋉ts) // All unmatched pairs
9 bf ← BS.indexOf(c.fst)

10 rf ← RS.indexOf(c.snd)
11 os ← BS.getNodes(bf,BS.length)
12 ts ← RS.getNodes(rf,RS.length)
13 PS.append(os⋊⋉ts) // Unmatched pairs at the end
14 PS ← PS ∪ tryToMatchParent(PS)
15 return PS
16 Function tryToMatchParent(PS):
17 result ← []
18 foreach ⟨a, b⟩ in PS do
19 parent ← a.getParent()
20 children ← parent.getChildren()
21 if PS.FirstSet().containsAll(children) then

// All sibling AST nodes are not matched
22 ts ← []
23 foreach c in children do
24 ts.append(PS.getSecond(c).getParent())
25 result.append([parent] ⋊⋉ ts)

// Add mappings of parent AST nodes
26 return result

Finally, according to the constructed mapping (i.e., PS),
REPATT will generate candidate patches from each pair
(a, b) ∈ PS according to the following rules (we use a to
represent the associated AST node in what follows for ease
of presentation): (1) replace a with b if the value type of b is
compatible with that of a; (2) insert b before and after a if b
is a standalone statement, e.g, expression statement; (3) insert
b before a if b is a conditional expression. Both token-level
and expression-level patch generations follow this mapping
algorithm, based on the types of a and b (e.g., replacing
variable a with another variable b generates a token-level
patch). In particular, we disable delete operations for patch
generation since they tend to generate incorrect patches [5],
[8]. Moreover, during this process, REPATT incorporates a
built-in validation step that performs lightweight static analysis
to check the validity of the newly generated code b, such as
whether all variables used by b are valid and usable in the
faulty location by checking their scopes.

D. Patch Ranking

After generating candidate patches, they will be evaluated
against the test suites associated with the faulty project. To
make the correct patches be evaluated as early as possible
and reduce incorrect patches, we have proposed a hierarchical
patch ranking strategy. As demonstrated in our preliminary
study, most of the reusable code elements exist at the fine-
grained granularity. Furthermore, previous study [51] also
shows that correct patches tend to involve small code changes.

6

Therefore, REPATT ranks all the patches generated by the finer-
grained token-level code changes higher than those generated
by the coarse-grained expression-level code changes.

Then, regarding the patches generated by expression-level
code changes, REPATT simply takes the similarity in code
search (refer to Section III-B) as the ranking score by fol-
lowing previous studies [8]. For patches generated by token-
level code changes, we consider two important factors: the
frequency of the reference code pattern and the similarity
between the faulty and fixed code by following existing stud-
ies [8], [51]. The ranking score is defined by Formula 1,where
freq denotes the frequency of a pattern and max freq
denotes the max freq of patterns referenced for generating
patches. Lorig and Lfixed represent the length of source code
(i.e., number of tokens) before and after applying a patch,
while LevenshteinDist represents the token-level Levenshtein
distance [52] between the faulty and the fixed code. As a
result, a patch with a higher score (i.e., referencing a more
frequent pattern and applying finer-grained modifications) will
rank higher and thus will be validated earlier by running the
test cases in the faulty project.

score = 0.5 ∗ freq

max freq
+ 0.5 ∗ (1− LevenshteinDist

max(Lorig, Lfixed)
) (1)

IV. EXPERIMENT CONFIGURATION

We address the following research questions in the study.
• RQ1: How effective is REPATT in repairing real-world bugs

, compared to the state-of-the-art APRs?
• RQ2: Can a combination of Repatt with traditional APR

approaches improve the state-of-the-art APRs?
• RQ3: What is each component’s contribution in REPATT?
• RQ4: What is the impact of the pattern frequency in

REPATT?

A. Subjects and Baselines

In our evaluation, we employed the widely-used Defects4J
benchmark [41], following existing studies [2]–[4], [8], [9],
[18], [20], [33]. In particular, we used both Defects4J v1.2
and v2.0 to demonstrate the generality of our approach.
Specifically, v1.2 includes 395 bugs from six large-scale real-
world projects and v2.0 includes 440 additional bugs from 12
real-world projects.

Furthermore, to show the effectiveness of REPATT, we
compared it with ten state-of-the-art APR approaches from
different categories, i.e., CapGen [1], SimFix [8], Transplant-
Fix [33], TBar [4], Recoder [18], SelfAPR [19], ITER [53],
AlphaRepair [22], Repilot [23] and GAMMA [24]. Specifi-
cally, CapGen, SimFix and TransplantFix are the three latest
and representative redundancy-based methods that repair
bugs by referencing similar code. TBar is the best-performing
template-based repair technique that generates candidate
patches by a set of manually defined patch templates. Recoder,
ITER and SelfAPR are the latest and best-performing deep
learning methods that are specially designed for program re-
pair. Finally, AlphaRepair, Repilot, and GAMMA represent the
most recent advance in APR techniques by adopting LLMs.

These baselines are the best-performing APR approaches using
different technologies and their complete experimental results
are available. By comparing our approach with these diverse
baselines, we would like to analyze the overall effectiveness
of our approach from different perspectives and make the
conclusions reliable.

B. Configuration and Metrics

For each bug, REPATT first constructs the token-level code
patterns based on the complete faulty program under repair
before the online repair (see Section III-A). The construction
is actually efficient and on average took about three minutes in
our experiment. Then, given the faulty line of code, REPATT
first generates at most 200 patches based on the constructed
token-level code patterns and then generates at most 1000
patches based on the expression-level code patterns due to its
large search space. Finally, all the patches will be ranked based
on the ranking strategy introduced in Section III-D. For base-
lines, we adopt their published experimental results directly
in their open-source repositories. Specifically, as the original
CapGen does not provide experimental results on the Closure
and Mockito bugs from Defects4J [41], we supplement these
results using those results reported in a previous study [54]

In our experiment, REPATT generates at most 3 candidate
patches that can pass all the test cases (i.e., plausible patches)
for each bug since some baseline approaches did not report
the ranking of patches, e.g., SelfAPR and LLM-based meth-
ods. Following previous study [4], [8], [9], [18], a patch
is deemed to be correct iff it is semantically equivalent to
the developer patch by manual check. In this process, the
first three authors independently conducted the annotation and
reached a consensus through discussion. We also published
all our results for further inspection and verification. Finally,
we report the number of correctly repaired bugs (equivalent to
the well-known recall) and the precision of patches (the ratio
of correctly repaired bugs to all the bugs that have plausible
patches).

All experiments were conducted on a server with Ubuntu
18.04, equipped with 128GB RAM and a processor of Intel(R)
Xeon(R) E5-2640.

V. RESULT ANALYSIS

A. Overall Effectiveness of REPATT (RQ1)

1) Perfect fault localization: As explained in Section IV-A,
we evaluated the effectiveness of our approach by comparing
it with eight state-of-the-art APR approaches since ITER
was only evaluated under the automated fault localization
setting (ref. Section V-A3). The repair results are presented
in Table I when given the actual faulty locations by following
existing studies [4], [18]–[20], [33]. From the table we can see
that REPATT successfully repaired 75 bugs while generating
incorrect patches for other 63 bugs, yielding a patch precision
of 54.3%. Notably, 66 bugs were correctly repaired by
the first plausible patch, suggesting that developers could
focus primarily on the first patch generated by REPATT to
reduce manual validation efforts. The results also show that our

7

TABLE I
NUMBER OF BUGS REPAIRED BY DIFFERENT METHODS WITH PERFECT FAULT LOCALIZATION. IN THE TABLE, X/Y DENOTES THE CORRESPONDING

APPROACH GENERATES CORRECT PATCHES FOR X BUGS AND GENERATES PLAUSIBLE PATCHES FOR Y BUGS.

Project TBar SimFix TransplantFix SelfAPR Recoder AlphaRepair Repilot GAMMA REPATT COMBINE

Defects4J v1.2
(395 bugs)

Mockito 3/3 0/0 3/3 3/3 2/- 4/- 0/- 2/- 1/2 2/5
Closure 16/24 5/6 10/19 19/23 23/- 22/- 21/- 23/- 10/12 20/31
Chart 11/13 4/8 6/10 7/10 10/- 8/- 5/- 10/- 6/7 11/21
Lang 13/18 8/13 4/10 10/13 10/- 12/- 14/- 15/- 6/11 16/27
Math 22/35 14/26 12/25 21/25 18/- 20/- 20/- 24/- 15/25 22/51
Time 3/6 1/1 1/2 3/3 3/- 2/- 1/- 2/- 2/3 4/7

Defects4J v2.0
(440 bugs)

Closure 0/0 1/1 0/3 1/1 0/- 0/- 0/- 0/- 1/1 2/5
Cli 1/7 0/1 4/8 8/9 3/- 5/- 6/- 9/- 4/9 4/15
Codec 3/6 1/1 2/4 8/9 2/- 6/- 6/- 3/- 4/6 3/8
Collections 0/0 0/0 0/0 1/1 0/- 0/- 1/- 0/- 0/0 0/0
Compress 2/12 0/4 4/10 6/8 3/- 1/- 3/- 4/- 4/13 7/18
Csv 2/6 0/2 1/2 1/1 3/- 1/- 3/- 0/- 1/3 2/7
Gson 1/4 2/2 1/2 1/1 0/- 2/- 1/- 3/- 2/3 2/5
JacksonCore 0/5 0/2 1/6 3/3 0/- 3/- 3/- 3/- 3/7 3/9
JacksonDatabind 2/17 1/10 7/20 8/10 0/- 8/- 8/- 10/- 10/18 11/33
JacksonXml 0/1 0/0 0/0 1/1 0/- 0/- 0/- 0/- 0/0 1/1
Jsoup 6/17 1/2 3/8 6/8 7/- 9/- 18/- 11/- 5/13 10/25
JxPath 1/6 0/0 2/7 1/1 0/- 1/- 1/- 2/- 1/5 4/12

Total 85/180 38/79 61/139 108/130 84/- 104/- 111/- 121/- 75/138 124/280

Precision(%) 47.2 48.1 43.9 83.1 - - - - 54.3 44.3

approach outperforms the state-of-the-art redundancy-based
methods SimFix and TransplantFix by repairing 97.4% and
23.0% more bugs, indicating the effectiveness of our approach
in reusing code at different granularities for patch generation.
Compared to SelfAPR, which repaired 108 bugs when con-
sidering Top-50 generated patches but only 34 when restricted
to Top-1, REPATT shows a more favorable trade-off between
precision and recall. When analyzing the incorrect patches
generated by REPATT, we found that most of them resulted
from the identification of non-representative patterns, which
led to incorrect modification locations or inappropriate fixes.
However, due to the weakness of the test suites [46], [48], [55],
these patches were able to pass all test cases, highlighting a
common challenge in test-based APR evaluation.

Similarly, LLM-based repair methods also did not report the
ranking of their correct patches. Specifically, AlphaRepair [22]
and Repilot [23] generated up to 5,000 patches per bug, while
GAMMA [24] even did not limit the number of candidate
patches. Although these methods may achieve a higher number
of correct fixes, they require developers to spend significant
time manually reviewing patches, reducing their practical-
ity [46], [48]. In contrast, REPATT enforces strict limits on the
number of generated patches, effectively mitigating this issue.
Furthermore, we analyzed REPATT’s performance on repairing
multi-location bugs. Among 75 correctly repaired bugs, 30
involved multiple locations, highlighting the effectiveness of
REPATT’s fine-grained repair strategy.

2) Degree of complementary: We also analyzed the over-
laps of bugs repaired by both REPATT and the baselines.
Specifically, we classified the baselines into traditional, LLM-
based and deep-learning-based methods according to the patch
generation techniques, and then compared REPATT with these
two methods separately. Figure 5 presents the results. In sum-
mary, REPATT successfully repaired 19 unique bugs that the
traditional APRs cannot fix, and 9 unique bugs that the LLM-
basd and deep learning-based methods cannot fix. In particular,

19

22 9

30

Repatt TBar

SimFixTransplantFix

(a) Traditional methods

9Repatt

GAMMA

Repilot

AlphaRepair 7

15

2420
Others

(b) LLM and DL based methods

5Repatt

LLM and DL based
Methods

Traditional
Methods

26

101

(c) All methods

Fig. 5. Overlaps of bugs repaired by different approaches.

when compared with all the eight baselines, our approach still
can repair 5 unique bugs. For example, to repair the bug shown
in Listing 1, the constant value “4” should be replaced by
“3”. Without the guidance of the fine-grained reference code,
it is nearly impossible for existing APRs to get the correct
patch due to the large search space. In general, compared
with traditional APRs, REPATT can more effectively utilize
fine-grained reusable code elements for patch generation. To
better understand its repair capabilities, we manually analyzed
the 19 bugs that were uniquely fixed by REPATT. We found
that 7 of them (36.8%) involved fine-grained code reuse and
edits, such as changing a single character, a variable name or
a method name. This demonstrates the capability of REPATT
to precisely identify and apply fine-grained code changes
effectively, which traditional approaches may overlook due to
their coarse-grained search spaces. Moreover, while compared
with LLM-based and deep learning-based methods, REPATT
only depends on a small number of reusable samples rather

8

TABLE II
REPAIR RESULT WHEN USING SBFL (#CORRECT/#PLAUSIBLE).

CapGen SimFix TBar TransplantFix Recoder ITER REPATT COMBINE

Total 22/49 36/81 50/131 44/137 70/140 45/66 31/37 90/236
Precision (%) 44.90 44.4 38.2 32.1 50.0 68.2 83.8 38.1

than the large-scale training data, which enables REPATT to
repair infrequent bugs, especially those requiring domain-
specific knowledge. In conclusion, the results reflect that our
approach indeed complements existing approaches.

3) Automated fault localization: In addition, some of the
baseline approaches [4], [8], [18], [33], [53] were also eval-
uated in a more realistic scenario where the perfect fault
localization was unknown. To ensure a fair comparison, we
evaluated our approach under the same conditions. Specifi-
cally, we utilized the commonly-used Ochiai [56] algorithm,
implemented by the GZoltar toolset [57], to obtain a list of
candidate faulty locations like existing APR tools [4], [8], [18].
Table II summarizes the experimental results. From the table,
we can see that the number of correctly repaired bugs drops
sharply for all the repair approaches due to the inaccurate
fault localization results. Moreover, almost all baseline ap-
proaches experienced a significant decline in patch precision.
For instance, the precision of SimFix, TBar and TransplantFix
drops 7.8%, 19.1%, and 26.9%, respectively. In contrast, the
precision of our approach was improved by 54.3%. One of
the reasons is that fine-grained code changes focus on fixing
local code without making extensive changes to the original
content, thereby preserving program logic and maintaining the
effectiveness of test cases, leading to more correct patches.
In contrast, coarse-grained modifications often involve larger
code changes, which may unintentionally alter program func-
tionality, resulting in many patches that pass the tests but are
semantically incorrect due to the problem of weak tests [46]–
[48]. In summary, our approach significantly outperforms the
baselines by achieving 15.6%-51.7% higher patch precision.
Notice that the high precision of patches is very important
since it affects the usability of APR techniques [46], [48],
especially in the real-world repair scenarios where perfect fault
localization is unknown – high precision denotes less wasted
human effort for manual validation.

B. Improvement over SOTA APRs (RQ2)

As presented in Section V-A2, REPATT complements ex-
isting APR approaches. In this research question, we aim to
explore the possibility of our approach to improving existing
APRs. Specifically, we combine REPATT with existing APRs
by proposing a post patch ranking strategy and see whether
it can further improve the best-performing APR. Given the
patches generated by different APRs for a bug, we will rank
the ones with smaller code changes higher by following the
insights from both our study and the previous research [51].
In particular, we use GumTree [58], a fine-grained and mature
code differencing tool, to measure the change sizes of patches.
If two patches have the same number of code changes, we use

41.1%

16.1%
10.5%

32.3%

Repatt
TransplantFix
SimFix
TBar

(a) Using perfect FL

25.6%

23.3% 22.2%

28.9%

Repatt
TransplantFix
SimFix
TBar

(b) Using SBFL

Fig. 6. Source of correct patches in COMBINE

the patch precision to break the tie. In this study, we combined
our approach with the three traditional APR approaches, i.e.,
Simfix, TBar, and TransplantFix. In this way, the combined
method shares a similar repair pipeline to the individuals, i.e.,
not demanding large-scale training data. Therefore, the patch
ranking will be REPATT>SimFix>TBar>TransplantFix based
on their patch precision in Tables I and II for patches having
the same change size.

The experimental results are also presented in Tables I
and II (i.e., COMBINE) when using the perfect fault local-
ization and the SBFL, respectively. The results show that
by combining the strength of different APR tools, COMBINE
correctly repaired 124 bugs by the first patches, 39 more
bugs compared with the best-performing APR (TBar for Top-
1 patches), leaving the improvement as 45.9%. Moreover,
even compared to LLM-based methods, which do not report
detailed patch rankings and impose loose constraints on the
number of generated patches (e.g., producing 5,000 or more
patches per bug), COMBINE still outperforms these 3 LLM-
based approaches, repairing up to 20 more bugs. Similarly,
when using the SBFL results, COMBINE also outperforms
the best-performing Recoder by repairing 20 more bugs, and
improves the individuals by at least 80% (vs Tbar). Our
results show the promise to improve the repair capability of
APRs by combining the strength of individuals. Although this
approach may increase the time required to repair one defect,
the additional overhead can be mitigated through parallel
execution, similar to some LLM-based APR methods [59].
In particular, to analyze the contribution of our approach in
the combination, we present the percentages of correct patches
generated by each APR in Figure 6. About 41.1% and 25.6%
correct patches were contributed by REPATT under different
repair settings, indicating its large contribution to the overall
effectiveness of the combined method. However, though the
combined method is effective in repairing much more bugs,
the patch precision is still low, i.e., less than 45%. To improve
the patch precision, existing patch filtering approaches [5],
[47], [48] can be further incorporated.

C. Contribution of Each Component (RQ3)

REPATT incorporates two major components for patch gen-
eration, i.e., offline token-level pattern mining and online
expression-level code search. To evaluate the effectiveness
of each component, we have repeated our experiment by

9

TABLE III
BUGS FIXED BY EACH COMPONENT (#CORRECT/#PLAUSIBLE).

Components Offline Mining Online Search No Skip No S-TAC

Total 42/64 33/85 24/54 0/22
Precision (%) 65.6 38.8 44.4 0

removing each component, respectively. Table III presents
the experimental results. The offline token-level pattern min-
ing contributed 42 correct fixes and expression-level code
search contributed 33 correct fixes, demonstrating that both
components largely contributed to the overall effectiveness
of REPATT. However, from the table, we can also observe
that the expression-level code search tends to generate more
plausible but incorrect patches compared with the token-level
pattern mining, which is consistent with the conclusions in
prior studies [51]. Our further analysis of the results shows
that most of incorrect patches are generated due to referenc-
ing infrequent code. In contrast, token-level pattern mining
takes the frequency into consideration, which potentially can
effectively filter out many incorrect patches. In summary, the
two components in REPATT complement each other.

In addition, as introduced in Section III, our token-level
pattern mining process incorporates a skip-fashion pattern
mining process, which can find more potential reference
patterns for patch generation. Therefore, we further conducted
an experiment, where we only use the token-level repair but
disable the skip-fashion in pattern mining (i.e., MAX SKIP=0
in Algorithm 1). The column of “No Skip” in Table III presents
the results. It shows that this skip-fashion mining process is
effective since its removal caused 42-24=18 fewer bugs to be
repaired. Moreover, the patch precision is also decreased from
65.6% to 44.4%, demonstrating the value of this process in
REPATT. Additionally, we further evaluated the performance of
the S-TAC form in our expression-level repair. Specifically, we
did not transform the reference code into S-TAC. Instead, they
will be decomposed into the traditional TAC format without
removing the code structures based on the abstract syntax tree.
The experimental results are also presented in Table III (i.e.,
“No S-TAC”). After removing the S-TAC form, REPATT failed
to repair any bugs by searching reference code online. We
further analyzed the results and found that the contexts of
most reference code from online search are different from the
faulty code, making the code adaptation fail to generate correct
patches. On the contrary, 22 incorrect patches were generated.
In summary, the experimental results demonstrate that both
the skip-fashion online pattern mining and the S-TAC form in
the online search process are effective.

D. The Impact of Pattern Frequency (RQ4)

As introduced in Section IV-B, the threshold of pattern
frequency is 3 by default. To investigate its impact on the
effectiveness of our approach, we have conducted an addi-
tional experiment when using different frequency settings for
MIN SUPPORT, i.e., 2, 3, and 5. As a consequence, when
adopting different settings, the performance of REPATT was

not largely affected. Specifically, REPATT correctly repaired
43/91, 42/64, and 32/68 bugs by the token-level patterns when
using the threshold as 2, 3, and 5, respectively. In other words,
our approach is not very sensitive regarding the number of
correct patches when the threshold is small (i.e., 2 or 3).
However, when the threshold is too large (such as 5), REPATT
tends to repair much fewer bugs. The reason is evident as the
large threshold will cause fewer patterns that can be used for
patch generation. On the contrary, a smaller threshold (i.e., 2)
tends to produce much more incorrect patches (i.e., 91-43=48)
since the referenced patterns may be not general enough for
reuse, which will affect the usability of REPATT. In summary,
the recall and precision of program repair indeed contradict
each other. Effective patch generation techniques are always in
an urgent need. In this paper, we have moved forward towards
this direction. In general, setting the threshold as 3 can produce
relatively better results.

VI. DISCUSSION

Limitation: In this study, we have explored the feasibility of
reusing finer-grained code elements for patch generation. For
complex bugs that require multi-line changes, the reference
code may not exist, where our approach will be less effective.
In this case, our approach may potentially be combined with
others since they complement each other according to our
experimental results.

Internal threats to validity. Similar to existing works,
our study also face an internal threat of manually verifying
plausible patches to identify correct patches. To address this,
the first three authors independently performed a careful
analysis of each patch and reached a consensus. In particular,
we have also made all generated patches publicly available for
further inspection and validation.

External threats to validity. The primary external threat to
validity lies in the subjects used in our evaluation, and the per-
formance of REPATT may not be generalized to other datasets.
To address this, we evaluate REPATT on two widely used
datasets – Defects4J v1.2 and v2.0, which together contain
over 800 real-world bugs from 17 diverse projects. Our results
demonstrate that REPATT is effective and achieves promising
performance. In the future, we plan to evaluate REPATT on
more datasets to further address this threat. Moreover, our
study also share a common external threat with many existing
studies – due to the complexity and resource constraints,
we reused the results of baselines reported in their papers
without reproducing them in our own environment. To address
this, we carefully examined the open-source repositories of
the baselines and adhere to the common 5-hour time budget
setting used in APR. In the future, we plan to conduct a
more comprehensive evaluation of both our approach and the
baselines a unified environment to further address this threat.

VII. RELATED WORK

There are many automated program approaches have been
proposed and achieved good results [2], [3], [6], [8], [10]–[12],

10

TABLE IV
COMPARISON OF REPATT WITH EXISTING REDUNDANCY-BASED APR

APPROACHES

Approach Reuse Granularity Patch Generation Technique Context Awareness

GenProg Statement Genetic Programming (GP)-based random search No

AE Statement Systematic search pruned by semantic equivalence No

RSRepair Statement Random application of mutation operators No

ARJA Statement Multi-objective GP with type-matching No

ssFix ASTNode Syntactic search and code transfer YES

SimFix ASTNode Similarity search and pattern mining YES

CapGen ASTNode Context-aware search and ranking of AST node edits YES

SearchRepair Statement Semantic search via SMT constraint solving YES

HERCULES ASTNode Simultaneous repair of abstract sibling locations YES

TransplantFix ASTNode Graph differencing of CFGs to transplant methods YES

Repatt Token Pattern matching using mined token/S-TAC patterns YES

[20], [21], [51], [54], [60]–[63], among which redundancy-
based APR approaches have been attracted much attention,
such as GenProg [6], [17], AE [61], [64], RSRepair [16],
ARJA [64], ssFix [9], SimFix [8], CapGen [1], SearchRpe-
pair [65], HERCULES [66] and so on. All these approaches
are based on the “plastic surgery hypothesis” [29]. Specifically,
Table VI summarizes the major differences among them ,
including code reuse granularity, patch generation strategies
and whether they are context-aware. For example, GenProg
reuses code statement using a genetic programming-based
random search and is not context aware, ssFix retrieves
syntactically similar code of AST and will rename variables
to fit current context. SimFix further incorporates history
patches to refine the patch space and consider the context.
Similarly, CapGen considers the frequency of tokens for patch
generation while HERCULES leverages the co-evolution of
program elements. Our approach enhances redundancy-based
APR by enabling finer-grained code reuse, differentiating it
from existing methods. Unlike SimFix and ssFix, which rely
on AST differences, our method operates at the token level,
capturing more granular code patterns. Compared to CapGen,
which considers token frequency without their contextual
relationships, our approach mines structured code patterns for
patch generation. Additionally, unlike SearchRepair, we avoid
costly semantic code searches and uniquely support noncon-
secutive token usage patterns, which have been shown to be
effective but are not utilized by existing methods. Other APR
techniques, such as PAR [14] and TBar [4], improve patch
quality through predefined repair templates, while constraint-
solving-based techniques [3], [10], [51], [63], [67]–[70] rely
on symbolic execution and constraint solving, often facing
scalability challenges. Different from these approaches, this
work aims to improve the performance of redundancy-based
APR techniques and does not face the scalability issue.

With the rapid development of deep learning techniques,
the latest APR approaches also leverage such techniques
for patch generation. Early studies use statistical machine
learning algorithms to sort or pick patch ingredients. For
example, Prophet [7], ACS [2], Elixir [15], Hanabi [71], and
LIANA [72] all use different learning models for patch ingre-
dient selection. More recently, state-of-the-art deep learning

techniques have been employed in APR techniques, such as
SEQUENCER [44], CoCoNut [73], CURE [21], DLFix [45],
Recoder [18], RewardRepair [74], SelfAPR [19], and many
others [43], [75]. These approaches suffer from interpretabil-
ity issues and mostly can repair simple bugs (e.g., single-
line bugs). In contrast, our approach generates patches by
reusing existing code, which complements them based on
our experimental results. The latest LLM-based APR methods
further improved repair performance [20], [22], [43], [76],
[77]. For example, Repilot [23] integrates CodeT5 [78] with
a completion engine to enhance repair performance, while
GAMMA [24] utilizes CodeBERT and UniXcoder [79] to fill
predefined repair templates. Unlike REPATT, these methods
treat LLMs as black boxes and are still facing challenges
related to interpretability [80], data leakage [81], and general-
izability [82]. In addition, according to our evaluation results,
our approach also complements these LLM-based methods,
and thus can be further combined with them for better APR.

VIII. CONCLUSION

To enhance redundancy-based APR, this paper proposes
REPATT, a novel repair technique using a two-level pattern
mining process for precise patch generation via fine-grained
code reuse. Evaluations on Defects4J v1.2 and v2.0 show
that REPATT complements existing methods by repairing
unique bugs and improving patch precision in real-world
repair scenarios. Furthermore, we present the first attempt at
combining different approaches to improve the SOTA APRs.
Our promising results encourage further research, and we have
open-sourced our data and implementations for replication and
exploration [40].

ACKNOWLEDGMENT

We thank the editors and anonymous reviewers for their
constructive suggestions to help improve the quality of
this paper. This work was supported by the National Key
Research and Development Program of China (Grant No.
2024YFB4506300), and the National Natural Science Foun-
dation of China (Grant Nos. 62202324, No. 62322208 and
No. 62202040).

REFERENCES

[1] M. Wen, J. Chen, R. Wu, D. Hao, and S.-C. Cheung, “Context-aware
patch generation for better automated program repair,” in ICSE, 2018.

[2] Y. Xiong, J. Wang, R. Yan, J. Zhang, S. Han, G. Huang, and L. Zhang,
“Precise condition synthesis for program repair,” in ICSE, 2017.

[3] J. Xuan, M. Martinez, F. Demarco, M. Clément, S. Lamelas, T. Durieux,
D. Le Berre, and M. Monperrus, “Nopol: Automatic repair of conditional
statement bugs in java programs,” TSE, 2017.

[4] K. Liu, A. Koyuncu, D. Kim, and T. F. Bissyandé, “Tbar:
Revisiting template-based automated program repair,” in Proceedings
of the 28th ACM SIGSOFT International Symposium on Software
Testing and Analysis. New York, NY, USA: Association for
Computing Machinery, 2019, p. 31–42. [Online]. Available: https:
//doi.org/10.1145/3293882.3330577

[5] S. H. Tan, H. Yoshida, M. R. Prasad, and A. Roychoudhury, “Anti-
patterns in search-based program repair,” in FSE, 2016.

[6] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest, “Automatically
finding patches using genetic programming,” in ICSE, 2009, pp. 364–
374.

11

https://doi.org/10.1145/3293882.3330577
https://doi.org/10.1145/3293882.3330577

[7] F. Long and M. Rinard, “Automatic patch generation by learning correct
code,” in Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, 2016, pp. 298–
312.

[8] J. Jiang, Y. Xiong, H. Zhang, Q. Gao, and X. Chen, “Shaping program
repair space with existing patches and similar code,” in ISSTA, 2018.

[9] Q. Xin and S. P. Reiss, “Leveraging syntax-related code for
automated program repair,” ser. ASE, 2017. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3155562.3155644

[10] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra, “Semfix:
Program repair via semantic analysis,” in ICSE, 2013, pp. 772–781.

[11] T.-D. B. Le, D. Lo, C. Le Goues, and L. Grunske, “A learning-to-rank
based fault localization approach using likely invariants,” in ISSTA, 2016,
pp. 177–188.

[12] X.-B. D. Le, D. Lo, and C. Le Goues, “History driven program repair,”
in SANER, 2016, pp. 213–224.

[13] X.-B. D. Le, D.-H. Chu, D. Lo, C. Le Goues, and W. Visser, “S3: syntax-
and semantic-guided repair synthesis via programming by examples,” in
Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering. ACM, 2017, pp. 593–604.

[14] D. Kim, J. Nam, J. Song, and S. Kim, “Automatic patch generation
learned from human-written patches,” in ICSE, 2013, pp. 802–811.

[15] R. K. Saha, Y. Lyu, H. Yoshida, and M. R. Prasad, “Elixir: Effective
object oriented program repair,” in ASE. IEEE Press, 2017. [Online].
Available: http://dl.acm.org/citation.cfm?id=3155562.3155643

[16] Y. Qi, X. Mao, Y. Lei, Z. Dai, and C. Wang, “The strength of random
search on automated program repair,” in ICSE, 2014, pp. 254–265.

[17] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “Genprog: A
generic method for automatic software repair,” TSE, vol. 38, no. 1, pp.
54–72, Jan 2012.

[18] Q. Zhu, Z. Sun, Y.-a. Xiao, W. Zhang, K. Yuan, Y. Xiong,
and L. Zhang, “A syntax-guided edit decoder for neural program
repair,” in ESEC/FSE, 2021, p. 341–353. [Online]. Available:
https://doi.org/10.1145/3468264.3468544

[19] H. Ye, M. Martinez, X. Luo, T. Zhang, and M. Monperrus, “Selfapr:
Self-supervised program repair with test execution diagnostics,” in 37th
IEEE/ACM International Conference on Automated Software Engineer-
ing, 2022, pp. 1–13.

[20] N. Jiang, K. Liu, T. Lutellier, and L. Tan, “Impact of code language
models on automated program repair,” in 2023 IEEE/ACM 45th Inter-
national Conference on Software Engineering (ICSE). IEEE, 2023, pp.
1430–1442.

[21] N. Jiang, T. Lutellier, and L. Tan, “Cure: Code-aware neural machine
translation for automatic program repair,” in Proceedings of the 43rd
International Conference on Software Engineering, 2021, pp. 1161–
1173.

[22] C. S. Xia and L. Zhang, “Less training, more repairing please: revisiting
automated program repair via zero-shot learning,” in Proceedings of
the 30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, 2022, pp. 959–
971.

[23] Y. Wei, C. S. Xia, and L. Zhang, “Copiloting the copilots: Fusing
large language models with completion engines for automated program
repair,” in Proceedings of the 31st ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, 2023, pp. 172–184.

[24] Q. Zhang, C. Fang, T. Zhang, B. Yu, W. Sun, and Z. Chen, “Gamma:
Revisiting template-based automated program repair via mask predic-
tion,” in 2023 38th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 2023, pp. 535–547.

[25] Z. Chen, “The essence of similarity in redundancy-based program
repair,” 2018.

[26] M. White, M. Tufano, M. Martinez, M. Monperrus, and D. Poshyvanyk,
“Sorting and transforming program repair ingredients via deep learning
code similarities,” in 2019 IEEE 26th International Conference on
Software Analysis, Evolution and Reengineering (SANER). IEEE, 2019,
pp. 479–490.

[27] C. Yang, “Accelerating redundancy-based program repair via code
representation learning and adaptive patch filtering,” in Proceedings
of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
ser. ESEC/FSE 2021, 2021, p. 1672–1674.

[28] Z. Chen and M. Monperrus, “The remarkable role of similarity in
redundancy-based program repair,” arXiv preprint arXiv:1811.05703,
2018.

[29] E. T. Barr, Y. Brun, P. Devanbu, M. Harman, and F. Sarro,
“The plastic surgery hypothesis,” in Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software
Engineering, ser. FSE 2014. New York, NY, USA: Association
for Computing Machinery, 2014, p. 306–317. [Online]. Available:
https://doi.org/10.1145/2635868.2635898

[30] K. Liu, S. Wang, A. Koyuncu, K. Kim, T. F. Bissyandé, D. Kim, P. Wu,
J. Klein, X. Mao, and Y. L. Traon, “On the efficiency of test suite based
program repair: A systematic assessment of 16 automated repair systems
for java programs,” in Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering, ser. ICSE ’20, 2020, p. 615–627.

[31] M. Motwani, M. Soto, Y. Brun, R. Just, and C. Le Goues, “Quality of
automated program repair on real-world defects,” IEEE Transactions on
Software Engineering, vol. 48, no. 2, pp. 637–661, 2022.

[32] S. Wang, M. Wen, L. Chen, X. Yi, and X. Mao, “How different is
it between machine-generated and developer-provided patches? : An
empirical study on the correct patches generated by automated program
repair techniques,” in 2019 ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM), 2019, pp.
1–12.

[33] D. Yang, X. Mao, L. Chen, X. Xu, Y. Lei, D. Lo, and J. He, “Trans-
plantfix: Graph differencing-based code transplantation for automated
program repair,” in Proceedings of the 37th IEEE/ACM International
Conference on Automated Software Engineering, ser. ASE ’22, 2023.

[34] D. Rattan, R. Bhatia, and M. Singh, “Software clone detection: A
systematic review,” Information and Software Technology, vol. 55, no. 7,
pp. 1165–1199, 2013.

[35] X. B. D. Le, D. Lo, and C. Le Goues, “History driven program repair,”
in 2016 IEEE 23rd International Conference on Software Analysis,
Evolution, and Reengineering (SANER), vol. 1, 2016, pp. 213–224.

[36] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu, “On the
naturalness of software,” ser. ICSE ’12, 2012, pp. 837–847.

[37] B. Ray, V. Hellendoorn, S. Godhane, Z. Tu, A. Bacchelli, and P. De-
vanbu, “On the” naturalness” of buggy code,” in Proceedings of the 38th
International Conference on Software Engineering, 2016, pp. 428–439.

[38] A. Khanfir, M. Jimenez, M. Papadakis, and Y. Le Traon, “Codebert-
nt: code naturalness via codebert,” in 2022 IEEE 22nd International
Conference on Software Quality, Reliability and Security (QRS). IEEE,
2022, pp. 936–947.

[39] Z. Tu, Z. Su, and P. Devanbu, “On the localness of software,” in
Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, ser. FSE 2014, 2014, p. 269–280.

[40] Homepage, 2025, available at: https://zenodo.org/records/14997209.
[41] R. Just, D. Jalali, and M. D. Ernst, “Defects4j: A database of existing

faults to enable controlled testing studies for java programs,” in ISSTA,
2014, pp. 437–440.

[42] R. K. Saha, Y. Lyu, W. Lam, H. Yoshida, and M. R. Prasad, “Bugs.jar:
A large-scale, diverse dataset of real-world java bugs,” in Proceedings
of the 15th International Conference on Mining Software Repositories,
ser. MSR ’18, 2018, p. 10–13.

[43] C. S. Xia, Y. Wei, and L. Zhang, “Automated program repair in the
era of large pre-trained language models,” in Proceedings of the 45th
International Conference on Software Engineering, 2023.

[44] Z. Chen, S. Kommrusch, M. Tufano, L.-N. Pouchet, D. Poshyvanyk,
and M. Monperrus, “Sequencer: Sequence-to-sequence learning for end-
to-end program repair,” IEEE Transactions on Software Engineering,
vol. 47, no. 9, pp. 1943–1959, 2019.

[45] Y. Li, S. Wang, and T. N. Nguyen, “Dlfix: Context-based code trans-
formation learning for automated program repair,” in Proceedings of
the ACM/IEEE 42nd International Conference on Software Engineering,
2020, pp. 602–614.

[46] Z. Qi, F. Long, S. Achour, and M. Rinard, “An analysis of patch
plausibility and correctness for generate-and-validate patch generation
systems,” ser. ISSTA 2015, 2015, pp. 24–36.

[47] Q. Xin and S. P. Reiss, “Identifying test-suite-overfitted patches through
test case generation,” in Proceedings of the 26th ACM SIGSOFT
International Symposium on Software Testing and Analysis, ser. ISSTA
2017. New York, NY, USA: Association for Computing Machinery,
2017, p. 226–236.

[48] Y. Xiong, X. Liu, M. Zeng, L. Zhang, and G. Huang, “Identifying patch
correctness in test-based program repair,” in ICSE, 2018.

[49] G. Salton, Ed., Automatic Text Processing. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 1988.

12

http://dl.acm.org/citation.cfm?id=3155562.3155644
http://dl.acm.org/citation.cfm?id=3155562.3155643
https://doi.org/10.1145/3468264.3468544
https://doi.org/10.1145/2635868.2635898
https://zenodo.org/records/14997209

[50] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers: principles,
techniques and tools, 2020.

[51] S. Mechtaev, J. Yi, and A. Roychoudhury, “Directfix: Looking for simple
program repairs,” in ICSE, 2015, pp. 448–458.

[52] V. I. Levenshtein, “Binary codes capable of correcting deletions, inser-
tions, and reversals,” in Soviet physics doklady, vol. 10, no. 8, 1966, pp.
707–710.

[53] H. Ye and M. Monperrus, “Iter: Iterative neural repair for multi-
location patches,” in Proceedings of the 46th IEEE/ACM International
Conference on Software Engineering, 2024, pp. 1–13.

[54] A. Ghanbari, S. Benton, and L. Zhang, “Practical program repair
via bytecode mutation,” in Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis, 2019, pp.
19–30.

[55] H. Tian, Y. Li, W. Pian, A. K. Kabore, K. Liu, A. Habib, J. Klein, and
T. F. Bissyandé, “Predicting patch correctness based on the similarity
of failing test cases,” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 31, no. 4, pp. 1–30, 2022.

[56] R. Abreu, P. Zoeteweij, and A. J. Van Gemund, “On the accuracy of
spectrum-based fault localization,” in TAICPART-MUTATION, 2007, pp.
89–98.

[57] J. Campos, A. Riboira, A. Perez, and R. Abreu, “Gzoltar: An eclipse
plug-in for testing and debugging,” ser. ASE ’12, 2012, p. 378–381.

[58] J. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Monperrus, “Fine-
grained and accurate source code differencing,” in ASE, 2014, pp. 313–
324.

[59] C. S. Xia, Y. Ding, and L. Zhang, “The plastic surgery hypothesis in the
era of large language models,” in 2023 38th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 2023,
pp. 522–534.

[60] F. Long, P. Amidon, and M. Rinard, “Automatic inference of code
transforms for patch generation,” in ESEC/FSE, 2017, pp. 727–739.

[61] W. Weimer, Z. Fry, and S. Forrest, “Leveraging program equivalence
for adaptive program repair: Models and first results,” in ASE, 2013, pp.
356–366.

[62] Y. Pei, C. A. Furia, M. Nordio, Y. Wei, B. Meyer, and A. Zeller,
“Automated fixing of programs with contracts,” IEEE Transactions on
Software Engineering, vol. 40, no. 5, pp. 427–449, 2014.

[63] S. Mechtaev, M.-D. Nguyen, Y. Noller, L. Grunske, and A. Roychoud-
hury, “Semantic program repair using a reference implementation,” in
Proceedings of the 40th International Conference on Software Engineer-
ing, 2018, pp. 129–139.

[64] Y. Yuan and W. Banzhaf, “Arja: Automated repair of java programs via
multi-objective genetic programming,” IEEE Transactions on software
engineering, vol. 46, no. 10, pp. 1040–1067, 2018.

[65] Y. Ke, K. T. Stolee, C. Le Goues, and Y. Brun, “Repairing programs
with semantic code search,” in ASE, 2015, pp. 295–306.

[66] S. Saha et al., “Harnessing evolution for multi-hunk program repair,” in
2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE). IEEE, 2019, pp. 13–24.

[67] S. Mechtaev, J. Yi, and A. Roychoudhury, “Angelix: Scalable multiline
program patch synthesis via symbolic analysis,” in ICSE, 2016.

[68] X. Gao, B. Wang, G. J. Duck, R. Ji, Y. Xiong, and A. Roychoudhury,
“Beyond tests: Program vulnerability repair via crash constraint extrac-
tion,” ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 30, no. 2, pp. 1–27, 2021.

[69] L. Chen, Y. Pei, and C. A. Furia, “Contract-based program repair without
the contracts,” in ASE, 2017.

[70] J. Hua, M. Zhang, K. Wang, and S. Khurshid, “Towards practical
program repair with on-demand candidate generation,” in ICSE, 2018.

[71] Y. Xiong and B. Wang, “L2s: A framework for synthesizing the
most probable program under a specification,” ACM Trans. Softw. Eng.
Methodol., vol. 31, no. 3, 2022.

[72] L. Chen, Y. Pei, M. Pan, T. Zhang, Q. Wang, and C. A. Furia,
“Program repair with repeated learning,” IEEE Transactions on Software
Engineering, vol. 49, no. 2, pp. 831–848, 2022.

[73] T. Lutellier, H. V. Pham, L. Pang, Y. Li, M. Wei, and L. Tan, “Coconut:
combining context-aware neural translation models using ensemble for
program repair,” in Proceedings of the 29th ACM SIGSOFT international
symposium on software testing and analysis, 2020, pp. 101–114.

[74] H. Ye, M. Martinez, and M. Monperrus, “Neural program repair with
execution-based backpropagation,” in Proceedings of the 44th Interna-
tional Conference on Software Engineering, 2022, pp. 1506–1518.

[75] Z. Fan, X. Gao, A. Roychoudhury, and S. H. Tan, “Automated repair
of programs from large language models,” in Proceedings of the 45th
International Conference on Software Engineering, 2023.

[76] J. A. Prenner, H. Babii, and R. Robbes, “Can openai’s codex fix bugs?
an evaluation on quixbugs,” in Proceedings of the Third International
Workshop on Automated Program Repair, 2022, pp. 69–75.

[77] F. Li, J. Jiang, J. Sun, and H. Zhang, “Hybrid automated program
repair by combining large language models and program analysis,” ACM
Transactions on Software Engineering and Methodology, 2024.

[78] Y. Wang, W. Wang, S. Joty, and S. C. Hoi, “Codet5: Identifier-aware
unified pre-trained encoder-decoder models for code understanding and
generation,” arXiv preprint arXiv:2109.00859, 2021.

[79] D. Guo, S. Lu, N. Duan, Y. Wang, M. Zhou, and J. Yin, “Unixcoder:
Unified cross-modal pre-training for code representation,” arXiv preprint
arXiv:2203.03850, 2022.

[80] Q. Zhang, C. Fang, Y. Xie, Y. Ma, W. Sun, Y. Yang, and Z. Chen,
“A systematic literature review on large language models for automated
program repair,” arXiv preprint arXiv:2405.01466, 2024.

[81] J. Sallou, T. Durieux, and A. Panichella, “Breaking the silence: the
threats of using llms in software engineering,” in Proceedings of the 2024
ACM/IEEE 44th International Conference on Software Engineering:
New Ideas and Emerging Results, 2024, pp. 102–106.

[82] F. Li, J. Jiang, J. Sun, and H. Zhang, “Evaluating the generalizability
of llms in automated program repair,” in 2025 IEEE/ACM 47th Interna-
tional Conference on Software Engineering: New Ideas and Emerging
Results (ICSE-NIER). IEEE, 2025, pp. 91–95.

13

	I Introduction
	II Motivation
	II-A Preliminary Study
	II-B Running Example

	III Framework
	III-A Offline Pattern Mining
	III-B Online Code Search and Representation
	III-C Reference Code Adaptation
	III-D Patch Ranking

	IV Experiment Configuration
	IV-A Subjects and Baselines
	IV-B Configuration and Metrics

	V Result Analysis
	V-A Overall Effectiveness of Repatt (RQ1)
	V-A1 Perfect fault localization
	V-A2 Degree of complementary
	V-A3 Automated fault localization

	V-B Improvement over SOTA APRs (RQ2)
	V-C Contribution of Each Component (RQ3)
	V-D The Impact of Pattern Frequency (RQ4)

	VI Discussion
	VII Related Work
	VIII Conclusion
	References

