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Abstract—LLM-based automated program repair methods
have attracted significant attention for their state-of-the-art
performance. However, they were primarily evaluated on a few
well-known datasets like Defects4J, raising questions about their
effectiveness on new datasets. In this study, we evaluate 11 top-
performing LLMs on DEFECTS4J-TRANS, a new dataset derived
from transforming Defects4J while maintaining the original
semantics. Results from experiments on both Defects4J and
DEFECTS4J-TRANS show that all studied LLMs have limited
generalizability in APR tasks, with the average number of
correct and plausible patches decreasing by 49.48% and 42.90%,
respectively, on DEFECTS4J-TRANS. Further investigation into
incorporating additional repair-relevant information in repair
prompts reveals that, although this information significantly
enhances the LLMs’ capabilities (increasing the number of
correct and plausible patches by up to 136.67% and 121.82%,
respectively), performance still falls short of their original results.
This indicates that prompt engineering alone is insufficient to
substantially enhance LLMs’ repair capabilities. Based on our
study, we also offer several recommendations for future research.

Index Terms—Program Repair, LLM, Generalizability of LLM

I. INTRODUCTION

With the rapid growth of the scale and complexity of mod-
ern software systems, the number and intricacy of software
bugs have also increased, resulting in significant financial
losses for organizations and end-users. Fixing these bugs
requires substantial consumption of time and effort from
developers. As a result, Automated Program Repair (APR),
which focuses on automatically fixing software bugs [1]–
[6], has attracted considerable attention from academia and
industry.

Recently, Large Language Models (LLMs) have demon-
strated impressive performance across various software engi-
neering (SE) tasks leading to the emergence of an increas-
ing number of LLM-based APR methods [7]–[13]. Several
existing works [7], [14], [15] have shown that LLMs, even
without additional repair-relevant information, can outperform
previous learning-based APR methods just using a few-shot
prompting. Researchers have explored various approaches to
enhance LLM-based APR by providing more repair-relevant
information, such as fault localization [15], bug reports [10]
and trigger test information [12]. Techniques such as Chain-
of-Thought (CoT) prompting [16], multi-turn dialogues [17],
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and multi-agent systems [18] have been employed to better
inform LLMs and improve their capabilities.

Although these LLM-based APR methods have achieved
remarkable results, they have primarily only been evalu-
ated on well-known datasets such as Defects4J [19] and
QuixBugs [20], which were proposed years ago. Recent
works [21]–[24] have highlighted the significant risk of mem-
orization in LLMs when evaluated on these datasets, leading to
our first research question (RQ1): How is the generalizability
of LLMs? Specifically, can LLMs achieve the same impressive
performance on another fresh new dataset? To answer this
question, we create the DEFECTS4J-TRANS dataset by ap-
plying program transformations to Defects4J dataset, ensuring
emantic equivalence while altering code content. Then, we
assess the generalizability of LLMs by comparing their repair
results on both Defects4J and DEFECTS4J-TRANS.
Results: The results show that the performance of LLMs sig-
nificantly declined on DEFECTS4J-TRANS, with the number
of correct and plausible patches decreasing by an average
of 49.48% and 42.90%, respectively. This suggests unsat-
isfactory generalizability and underscores the need for more
comprehensive evaluations of LLM-based APR methods.

This poor generalizability raises our second research ques-
tion (RQ2): Can repair-relevant information enhance the
generalizability of LLMs? To answer this question, we incor-
porate three types of repair-relevant information used in previ-
ous LLM-based APR methods [8], [10], [12], [13], to explore
their potential to enhance the generalizability of LLMs.
Results: The results indicate that incorporating this informa-
tion increased the number of correct and plausible patches
by up to 136.67% and 121.82%, respectively. However, most
LLMs still underperformed compared to their original results
on Defects4J, highlighting the need to develop more effective
LLM-based APR methods.
Contributions. To sum up, the contributions of this study are:
• We conducted the first extensive experiments to investigate
the generalizability of 11 top-performing LLMs, using 4 types
of prompts to explore the impact of different information. Our
findings reveal that the selected LLMs exhibit unsatisfactory
generalizability in APR tasks.
• We propose several future directions to enhance the gener-
alizability of LLM-based methods. Our findings aim to guide
the SE community in effectively utilizing LLMs for APR.
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Fig. 1. Overview of study design

• We have open-sourced all code, data and results involved in
our work [25] to promote replication and future research.

II. RELATED WORK

We have not identified any studies dedicated to validating
the generalizability of LLMs in the APR task in the literature,
although some works aimed at addressing the risks associated
with LLMs in SE tasks. For example, studies [21]–[24] have
pointed out several potential issues (e.g., memorization and
reproducibility) when using LLMs for SE tasks, but they lack
thorough experimental validation. Additionally, new defect
datasets have been proposed to address the memorization is-
sues in LLMs, such as ConDefects [26], which collected recent
bugs from the online competition platform, and HumanEval-
Java [15], a mutation of the original HumanEval [27] dataset.
However, these datasets consist mainly of simple algorithmic
programs, where LLMs tend to perform well even when
directly generating the corresponding functional code, limiting
their ability to fully reflect the LLMs’ coding capabilities.
In contrast, DEFECTS4J-TRANS used in this study retains
more characteristics of real-world projects, such as project-
specific APIs, while effectively mitigating memorization issues
in LLMs. Other works [28], [29] have also introduced evolving
datasets for code generation tasks, which are different from our
study.

III. STUDY DESIGN

In this section, we detail the LLMs selected for evaluation,
the construction of DEFECTS4J-TRANS, the utilized prompts,
and the overall settings of the LLMs employed in this study.
Figure 1 shows the overview of our study. First, we apply our
code transformation tool to the Defects4J dataset to generate
DEFECTS4J-TRANS, which maintains the original fault se-
mantics but contains different code content. Then, we apply the
LLMs on both Defects4J and DEFECTS4J-TRANS, comparing
their performance differences to assess their generalizability.
Finally, we investigate the impact of three types of repair-
related information on the generalizability of LLMs.

A. Studied LLMs

Our selection of LLMs is based on the EvalPlus leader-
board [30], [31], which offers more rigorous tests for evalu-
ating coding capabilities of LLMs. We selected LLMs that

TABLE I
SUMMARY OF STUDIED LLMS.

LLM #Parameters ↑ #Average Score

WaveCoder-Ultra [32] 6.7B 66.5
DeepSeek-Coder-Instruct [33] 6.7B 68.4
OpenCodeInterpreter-DS [34] 6.7B 69.2
Magicoder-S-DS [35] 6.7B 70.2
Artigenz-Coder-DS [36] 6.7B 71.1
DeepSeek-Coder-Instruct-v1.5 [33] 7B 66.8
CodeQwen1.5 [37] 7B 73.8
StartChat2-v0.1 [38] 15B 67.9
OpenCodeInterpreter-DS [34] 33B 71.2
DeepSeek-Coder-Instruct [33] 33B 72.5
SpeechLess-CodeLlama-v2.0 [39] 34B 66.7

ranked in the top 20 on that leaderboard and capable of
performing inference locally. Due to resource constraints, we
excluded LLMs with parameter size exceeding 34B and those
without open-source access. In total, we chose 11 different
LLMs for our evaluation. These remaining LLMs still exhibit
competitive coding capabilities. For instance, CodeQwen1.5
achieved a score of 73.8, securing the 4th position on the
leaderboard. Table I provides details, including LLM name,
number of parameters, and average pass@1 score on the
EvalPlus benchmark. As shown, the parameter sizes of LLMs
ranging from 6.7B to 34B, with scores varying from 66.5 to
73.8. Particularly, GPT-4-Turbo achieves a score of 77.5.

B. Construction of DEFECTS4J-TRANS

To ensure the semantic equivalence, we primarily performed
equivalent transformations related to control flow statements in
the code. Following existing code transformation works [40],
[41], we designed five transformation operators and applied
them by parsing and modifying abstract syntax trees (AST)
using the Java Development Toolkit [42]. Due to space limits,
we briefly introduce each transformation operator’s function-
ality here. For detailed implementation, please refer to our
homepage [25]:

• T1-Variable Renaming: Replaces all variable names
in the original code with the new names generated by
StarCoder2-3B to maintain the naturalness of code.

• T2-Loop Transformation: Transforms between
For-Loop and While-Loop structures equivalently.

• T3-Switch Transformation: Replaces Switch
Statement with a series of If Statement by
adding break flag and fall-through flag on
demand to ensure consistent executing logic.

• T4-Dead Code Injection: Inserts statements that will
never be executed, such as if (false) {...}. To
save tokens, we applied this operator once under each
Block Statement, and injected at most three in-
stances of dead code within a single function.

• T5-Boolean Transformation: Double negating boolean
predicates in If Statements. For example, if
(!(!(condition))) {...}.

We sequentially apply the above five operators to all 438
single-function bugs in Defects4J (existing LLM-based APR



methods mainly focusing on repairing bugs within a single
function [10], [12], [14]) to generate DEFECTS4J-TRANS.
Semantic consistency between DEFECTS4J-TRANS and the
original Defects4J was ensured through manual inspection and
by running Defects4J’s compilation and testing scripts.
// Provide a fix for the buggy function
{Buggy code and fixed code exmaples} or
{Repair-relevant Information}
// Provide a fix for the buggy function
// Buggy Function
{Buggy code want to fix}
//Fixed Function

Listing 1. The input prompt used in this study.

C. Prompt Engineering
Listing 1 shows the prompts used in this study. Following

prior works [10], [14], we provide the entire buggy func-
tion as the input to the LLMs, which then generate the
complete fixed function. This approach reflects a practical
scenario and effectively assesses the coding capabilities of
the LLMs. Specifically, the basic prompt template employs
“//Provide a fix for the buggy function” to
indicate the APR task and uses “//Buggy Function” and
“//Fixed Function” to help the LLM identify buggy and
fixed code. Additionally, for evaluating the impact of addi-
tional repair-relevant information, we designed three extended
prompts, detailed as follows.

1) Two-shot: Using the aforementioned template, we pro-
vide two pairs of buggy and fixed code examples. One is a
manually constructed toy example to help LLMs understand
the APR task, and the other is the repair example with the
shortest context from the same project, offering insight into
the coding style. This serves as the default prompt in RQ1.

2) Two-shotfl: This prompt further incorporates perfect
line-level fault localization information into the aforemen-
tioned Two-shot prompt by manually annotating the buggy
lines in the functions with /*bug is here*/.

3) Bug Report: This prompt replaces the two-shot exam-
ples with bug report information, and marks the report title
and content with “//Bug Report Title” and “//Bug
Report Content”. In other words, we only provide the
faulty function and the associated bug report to fit the input
length limit of LLMs without presenting repair examples.

4) Trigger Test: Similarly, this prompt replace the repair
examples with the trigger test and the corresponding error
message, which are marked with “//Trigger Test” and
“//Error Message”, respectively.

D. General Settings
We used the HuggingFace Library [43] to load LLM weights

and perform inference. Following Xia et al. [14], we set top-p
to 0.95 and the temperature to 0.8. Each LLM was invoked
200 times with the respective prompt for each bug. A patch
is considered plausible if it passes the test cases and correct
if it is semantically equivalent to the developer’s patch.

Our experiments were conducted on a local machine
equipped with dual Intel Xeon Golden 6348 CPUs, 512GB
RAM, and eight A800 GPUs, running Ubuntu 20.04.6LTS.

TABLE II
REPAIR PERFORMANCE OF DIFFERENT LLMS ON DEFECTS4J (D4J) AND

DEFECTS4J-TRANS (D4J-T)

LLM #Parameters #Correct Fixes #Plausible Fixes
#D4J #D4J-T Dec.(%) #D4J #D4J-T Dec.(%)

WaveCoder-Ultra 6.7B 65 34 47.69↓ 105 57 45.71↓
DeepSeek-Coder-Instruct 6.7B 63 36 42.86↓ 114 73 35.96↓
OpenCodeInterpreter-DS 6.7B 56 27 51.79↓ 91 51 43.96↓
Magicoder-S-DS 6.7B 77 38 50.65↓ 120 67 44.17↓
Artigenz-Coder-DS 6.7B 75 43 42.67↓ 111 71 36.04↓
CodeQwen1.5 7B 74 37 50.00↓ 125 72 42.40↓
DeepSeek-Coder-Instruct-v1.5 7B 71 42 40.85↓ 136 89 34.56↓
StarChat2-v0.1 15B 92 30 67.39↓ 152 55 63.82↓
OpenCodeInterpreter-DS 33B 87 37 57.47↓ 119 61 48.74↓
DeepSeek-Coder-Instruct 33B 94 45 52.13↓ 133 76 42.86↓
Speechless-CodeLlama-v2.0 34B 107 66 38.32↓ 160 108 32.50↓

Average 78.27 39.55 49.48↓ 124.18 70.91 42.90↓

E. Research Questions

In this work, we study the following two questions:
• RQ1:How is the generalizability of LLMs? We eval-

uated the generalizability of 11 top-performing LLMs in
program repair by comparing their repair capabilities on
Defects4J and DEFECTS4J-TRANS accordingly.

• RQ2:Can repair-relevant information enhance the
generalizability of LLMs? Based on RQ1, we selected
4 LLMs that exhibited the weakest generalizability in this
RQ to optimize time efficiency. We empirically analyzed
whether incorporating repair-relevant information could
enhance their repair performance.

IV. PRELIMINARY EVALUATION

A. RQ1: Generalizability

Table II shows the number of correct and plausible patches
generated by 11 LLMs using the Two-shot prompt, as de-
scribed in Section III-C, on both Defects4J and DEFECTS4J-
TRANS. We observe a decline in both correct and plausible
repairs across all selected LLMs. Notably, the StarChat2 [38]
experienced the largest drop, with correct and plausible repairs
decreasing by 67.39% and 63.82%, respectively. The smallest
decline was seen in SpeechLess-CodeLlama-v2.0 [39], with
decreases of 38.32% and 32.50%. On average, the number
of correct and plausible patches generated by the LLMs
decreased by 49.48% and 42.90%, respectively. This results
indicate that LLMs may still struggle to correctly understand
the semantics of faulty programs as their repair capability
highly depends on the form of code. For instance, we observed
that many LLM-generated patches tend to repeatedly modify
the injected dead code or transformed boolean predicates,
rather than addressing the actual errors. This also motivates
the experiments in RQ2.

When comparing the 6.7B and 33B parameter versions
of DeepSeek-Coder-Instruct and OpenCodeInterpreter-DS, we
observe a significant scaling effect. LLMs with larger pa-
rameter size generate more correct and plausible patches.
Interestingly, the larger parameter size appears to correlate
with weaker generalization capabilities. The two 33B models
experienced decline rates of 52.13% and 57.47%, while the
decline rates for the 6.7B models were 42.86% and 51.79%.
We believe this is due to the larger models having a higher
degree of overfitting to the original dataset.



TABLE III
REPAIR PERFORMANCE OF LLMS ON DEFECTS4J-TRANS USING DIFFERENT PROMPTS

LLM Two-Shot Two-Shotfl Trigger Test Bug Report
#Correct Fixes #Plausible Fixes #Correct Fixes #Plausible Fixes #Correct Fixes #Plausible Fixes #Correct Fixes #Plausible Fixes

WaveCoder-Ultra-6.7B 34 57 44(+29.41%↑) 64(+12.28%↑) 59(+73.53%↑) 94(+64.91%↑) 72(+111.76%↑) 111(+94.74%↑)
StarChat2-v0.1-15B 30 55 53(+76.67%↑) 76(+38.18%↑) 71(+136.67%↑) 114(+107.27%↑) 69(+130.0%↑) 122(+121.82%↑)
OpenCodeInterpreter-DS-6.7B 27 51 48(+77.78%↑) 75(+47.06%↑) 43(+59.26%↑) 72(+41.18%↑) 62(+129.63%↑) 100(+96.08%↑)
OpenCodeInterpreter-DS-33B 37 61 50(+35.14%↑) 67(+9.84%↑) 59(+59.46%↑) 96(+57.38%↑) 68(+83.78%↑) 110(+80.33%↑)

Average 32.00 56.00 48.75(+52.34%↑) 70.5(+25.89%↑) 58.0(+81.25%↑) 94.0(+67.86%↑) 67.75(+111.72%↑) 110.75(+97.77%↑)

B. RQ2: Impacts of Repair relevant Information

Table III shows the repair results of the four selected LLMs,
which exhibited the most significant decline in RQ1 (IV-A),
using different prompts. Overall, with the incorporation of
additional repair-relevant information, all LLMs demonstrate
improved repair capabilities, with 29.41% to 136.67% im-
provements on the number of correct patches and 9.84% to
121.82% improvements on the number of plausible patches.

Among the three types of repair-relevant information added,
the bug report information yielded the most significant im-
provement for these four LLMs, with average increases of
111.72% in correct patches and 97.77% in plausible patches.
We attribute this enhancement to the high quality of the bug
reports in the Defects4J dataset, which involved substantial
human effort in analyzing and providing information relevant
to bug identification and repair, allowing the LLMs to better
understand how to fix the buggy code. In contrast, fault
localization information provided the least improvement for
the four LLMs, with average increases of 52.34% in correct
patches and 25.89% in plausible patches. This aligns with
previous findings [15], suggesting that LLMs may struggle
to effectively interpret fault localization information in this
format. A possible reason is the limited availability of training
data that include fault localization identifiers within the code.

Although incorporating repair-relevant information can im-
prove LLMs’ repair capabilities, only OpenCodeInterpreter-
6.7B and WaveCoder-Ultra-6.7B showed slight improvements
with bug reports across 12 experimental setups (4 LLMs ×
3 prompts), compared to their performance on the original
Defects4J dataset. The other 10 experimental setups still
performed below their results on the original dataset. The
findings suggest that enhancing the generalizability of LLM-
based APR methods still requires significant progress.

V. THREATS TO VALIDITY

Manually reviewing all plausible patches to identify correct
patches that are semantically consistent with the developer
patches is an internal threat to the validity of our work. Follow-
ing common APR practice, we perform a careful analysis of
each plausible patch and have published our full set of correct
and plausible patches at our homepage [25].

VI. FUTURE PLANS

Evaluate on a broader range of LLM-based APR
methods and datasets. The number of LLM-based methods
selected in this study is limited, and the investigation was

conducted solely on Java programming language. In the future,
we aim to evaluate more LLM-based methods on more datasets
across different programming languages.

Explore better methods to enhance LLMs’ understand-
ing of program semantics. This study reveals that LLMs
continue to face challenges in accurately grasping program
semantics. Most LLM-based APR methods focus primarily
on designing different ways to utilize LLMs. A promising
direction lies in integrating traditional APR techniques, such
as heuristic and constraint-solving based methods, with LLMs.
For example, program analysis and verification could be
applied to validate and refine LLM-generated patches, thereby
improving their semantic understanding and repair capabilities.

Enhance the generalizability of LLMs. This study indi-
cates that simple code transformation can significantly degrade
the performance of LLMs. Therefore, we plan to explore
a code normalization method to unify code format before
processing by LLMs. Specifically, we may either pre-define
a set of code normalization rules or use a fine-tuned LLM
to ensure consistent representation of code, such as naming
conventions and code structures, with the same semantics. This
approach potentially allows us to filter out non-essential code
features while preserving the key code semantics. Moreover,
the unified representation can be used to fine-tune LLMs and
enhance the application of learned knowledge from historical
data. Finally, we urge developers of LLMs and LLM-based
methods to share their datasets and engage in discussions about
potential risks.

VII. CONCLUSION

In this study, we explore the generalizability of LLMs in
the APR task and examine how various types of repair-relevant
information affect the LLMs’ bug-fixing capabilities. Our find-
ings indicate that the studied 11 top-performing LLMs show
limited genralizability. While incorporating repair-relevant in-
formation helps improve repair performance, challenges re-
main. Based on our study, we propose several promising
directions for future research and have open-sourced all our
experimental data to facilitate replication and further investi-
gation [25].
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